
E

Group Theory Aspects of Carbon Nanotubes

In this appendix we provide information needed for solving problems related to
carbon nanotubes (see Sect. 9.4). Carbon nanotubes in general exhibit com-
pound rotation-translation operations and therefore belong to nonsymmor-
phic space groups. From the symmetry point of view, there are two types
of carbon nanotubes, namely chiral and achiral tubes. We here discuss the
structure of carbon nanotubes and provide the character tables for the group
of the wavevectors at k = 0 and k �= 0, for both chiral and achiral tubes [8].

Fig. E.1. An unrolled carbon nanotube projected on a graphene layer (a single layer
of crystalline graphite). When the nanotube is rolled up, the chiral vector Ch turns
into the circumference of the cylinder, and the translation vector T is aligned along
the cylinder axis. R is the symmetry vector (Sect. E.4) and θ is the chiral angle. The
unit vectors (a1,a2) of the graphene layer are indicated in the figure along with the
inequivalent A and B sites within the unit cell of the graphene layer [64]



534 E Group Theory Aspects of Carbon Nanotubes

E.1 Nanotube Geometry and the (n, m) Indices

A single wall carbon nanotube (SWNT) is constructed starting from
a graphene layer (see Fig. E.1) by rolling it up into a seamless cylinder.
The nanotube structure is uniquely determined by the chiral vector Ch which
spans the circumference of the cylinder when the graphene layer is rolled up
into a tube. The chiral vector can be written in the form

Ch = na1 +ma2 , (E.1)

where the vectors a1 and a2 bounding the unit cell of the graphene layer
contain two distinct carbon atom sites A and B, as shown in Fig. E.1, while n
and m are arbitrary integer numbers. In the shortened (n,m) form, the chiral
vector is written as a pair of integers. The (n,m) notation is widely used to
characterize the geometry of each distinct (n,m) nanotube [63, 64].

The nanotube can also be characterized by its diameter dt and chiral
angle θ, which determine the length Ch = |Ch| = πdt of the chiral vector and
its orientation on the graphene layer (see Fig. E.1). Both dt and θ are expressed
in terms of the indices n and m by the relations dt = a

√
n2 + nm+m2/π and

tan θ =
√

3m/(2n+m), as one can derive from Fig. E.1, where a =
√

3aC−C =
0.246nm is the lattice constant for the graphene layer and aC−C = 0.142nm is
the nearest neighbor C–C distance. As an example, the chiral vector Ch shown
in Fig.E.1 is given by Ch = 4a1 + 2a2, and thus the corresponding nanotube
can be identified by the integer pair (4, 2). Due to the sixfold symmetry of the
graphene layer, all nonequivalent nanotubes can be characterized by the (n,m)
pairs of integers where 0 ≤ m ≤ n. It is also possible to define nanotubes with
opposite handedness, for which 0 ≤ n ≤ m [65]. The nanotubes are classified
as chiral (0 < m < n) and achiral (m = 0 or m = n), which in turn are known
as zigzag (m = 0) and armchair (m = n) nanotubes (see Figs. 9.11 and E.1).

E.2 Lattice Vectors in Real Space

To specify the symmetry properties of carbon nanotubes as 1D systems, it
is necessary to define the lattice vector or translation vector T along the
nanotube axis and normal to the chiral vector Ch defined in Fig. E.1. The
vectors T and Ch define the unit cell of the 1D nanotube. The translation
vector T , of a general chiral nanotube as a function of n and m, can be
written as

T = (t1a1 + t2a2) = [(2m+ n)a1 − (2n+m)a2]/dR , (E.2)

with a length T =
√

3Ch/dR, where d is the greatest common divisor of (n,m),
and dR is the greatest common divisor of 2n+m and 2m+n. Then d and dR

are related by
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dR =

{
d if n−m is not a multiple of 3d

3d if n−m is a multiple of 3d .
(E.3)

For the (4, 2) nanotube shown in Fig.E.1, we have dR = d = 2 and (t1, t2) =
(4,−5). For armchair and zigzag achiral tubes, T = a and T =

√
3a, respec-

tively. The unit cell of an unrolled nanotube on a graphene layer is a rectangle
bounded by the vectors Ch and T (see the rectangle shown in Fig. E.1 for the
(4, 2) nanotube). The area of the nanotube unit cell can be easily calculated
as a vector product of these two vectors, |Ch×T | = √

3a2(n2 +nm+m2)/dR.
Dividing this product by the area of the unit cell of a graphene layer
|a1 × a2| =

√
3a2/2, one can get the number of hexagons in the unit cell

of a nanotube,

N =
2(n2 + nm+m2)

dR
. (E.4)

For the (4, 2) nanotube we have N = 28, so that the unit cell of the (4, 2) nan-
otube (see the rectangle shown in Fig.E.1) contains 28 hexagons, or 2×28 = 56
carbon atoms. For armchair (n, n) and zigzag (n, 0) nanotubes, N = 2n.

E.3 Lattice Vectors in Reciprocal Space

The unit cell of a graphene layer is defined by the vectors a1 and a2. The
graphene reciprocal lattice unit vectors b1 and b2 can be constructed from a1

and a2 using the standard definition ai ·bj = 2πδij , where δij is the Kroneker
delta symbol. In Fig. E.2, we show a diagram for the real space unit cell of
a graphene sheet (Fig. E.2(a)) and its corresponding reciprocal lattice unit cell

Fig. E.2. (a) Real space structure of a graphene layer. The gray rhombus represents
the graphene unit cell with the lattice vectors denoted by a1 and a2 delimiting it.
Note that this area encloses a total of two atoms, one A atom and one B atom.
(b) Reciprocal space unit cell of the graphene layer denoted by the unit vectors b1

and b2. Note also that the reciprocal space structure has two inequivalent points K
and K′ [8]
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is shown in Fig. E.2(b). Note the rotation by the angle 30◦ of the hexagons in
real space (Fig. E.2(a)) with respect to those in reciprocal space (Fig. E.2(b)).

In a similar fashion, the reciprocal space of a nanotube can be constructed,
if we consider the nanotube as a 1D system with an internal structure that is
composed of the 2N atoms in its unit cell and with a translational symmetry
given by the translation vector T . The reciprocal space of the nanotube can be
constructed by finding a pair of reciprocal lattice vectors K1 and K2 which
satisfy: Ch ·K1 = T ·K2 = 2π and Ch ·K2 = T ·K1 = 0. Due to the spatial
confinement of the nanotube in the radial direction, the vector Ch does not
play the role of a translation vector but rather of a generator of pure rotations,
and the relation Ch ·K1 = 2π can only be satisfied for integer multiples of
2π/dt, where dt is the diameter of the nanotube.

E.4 Compound Operations and Tube Helicity

All multiples of the translation vector T will be translational symmetry op-
erations of the nanotube [73]. However, to be more general, it is necessary to
consider that any lattice vector

tp,q = pa1 + qa2 , (E.5)

with p and q integers, of the unfolded graphene layer will also be a symmetry
operation of the tube. In fact, the symmetry operation that arises from tp,q

will appear as a screw translation of the nanotube. Screw translations are
combinations of a rotation (Rφ) by an angle φ and a small translation of τ in
the axial direction of the nanotube, and can be written as {Rφ|τ}, using the
notation common for space group operations [8, 64].

Any lattice vector tp,q can also be written in terms of components of the
nanotube lattice vectors, T and Ch, as

tp,q = tu,v = (u/N)Ch + (v/N)T , (E.6)

where u and v are negative or positive integers given by

u =
(2n+m)p+ (2m+ n)q

dR
(E.7)

and
v = mp− nq . (E.8)

The screw translation of the nanotube which is associated with the graphene
lattice vector tu,v can then be written as

tu,v = {Cu
N |vT/N} , (E.9)

where Cu
N is a rotation of u(2π/N) around the nanotube axis, and {E|vT/N}

is a translation of vT/N along the nanotube axis, with T being the magnitude



E.4 Compound Operations and Tube Helicity 537

of the primitive translation vector T , and E being the identity operation. It
is clear that if a screw vector {Cu

N |vT/N} is a symmetry operation of the
nanotube, then the vectors {Cu

N |vT/N}s, for any integer value of s, are also
symmetry operations of the nanotube. The number of hexagons in the unit-
cell N assumes the role of the “order” of the screw axis, since the symmetry
operation {Cu

N |vT/N}N = {E|vT }, where E is the identity operator, and vT
is a primitive translation of the nanotube.

The nanotube structure can be obtained from a small number of atoms
by using any choice of two noncolinear screw vectors {Cu1

N |v1T/N} and
{Cu2

N |v2T/N}. The two vectors will be colinear if there exists a pair of integers
s and l different from 1, for which lu1 = su2 +λN , and lv1 = sv2 +γT , where,
λ and γ are two arbitrary integers. The area of the nanotube cylindrical sur-
face delimited by these two noncolinear vectors can be regarded as a reduced
unit cell. Note that the number of atoms in this reduced unit cell is given by
the ratio between the area delimited by these vectors (|tu1,v1 × tu2,v2 |) and
the area of the unit cell of a graphene sheet (|a1×a2|) multiplied by 2, which
is the number of carbon atoms in the graphene unit cell. Thus the number of
atoms in the reduced unit cell defined by tu1,v1 and tu2,v2 is given by

2
|tu1,v1 × tu2,v2 |
|a1 × a2| = 2

|v2u1 − u2v1|
N

. (E.10)

It is important to point out that, in this case, the nanotube ceases to be
described as a quasi-1D system, but as a system with two quasitranslational
dimensions, which are generated by the two screw vectors.

There are many combinations of screw vectors which can be used to con-
struct the structure of the nanotube. These combinations can be divided
into four categories: helical–helical, linear–helical, helical–angular, and linear–
angular, as described below. Either one of these constructions can be used
to obtain the nanotube structure. The helical–helical construction is char-
acterized by choosing two general screw vectors, for the construction of the
nanotube structure (see Fig. E.3(a)). Although this scheme permits the defi-
nition of a 2-atom unit cell, the unit cell does not exhibit the full symmetries
of the nanotube, and thus is inadequate for representing the nanotube. The
linear–helical scheme is characterized by using the translation vector T and
a general screw vector as unit vectors (see Fig. E.3(b)). This scheme main-
tains the translational symmetry of the nanotube, but not the point group
operations, and it also permits the definition of a two-atom unit cell. In the
helical–angular construction, a general screw vector is used along with a vec-
tor in the circumferential direction of the nanotube (see Fig.E.3(c)). This
construction also permits the definition of a 2-atom unit cell. However, the
2-atom unit cell does not exhibit many of the symmetries of the nanotube.
Instead it is convenient to define a 2d-atom unit cell, where the integer d is
given by d = gcd(n,m), and this unit cell will exhibit all the point group
symmetry operations of the nanotube, but not the translational symmetry.
The linear–angular construction uses as unit vectors the translational vector
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Fig. E.3. The 2-atom reduced unit cell for the: (a) helical–helical, (b) linear–helical,
and (c) helical–angular construction for a (4, 2) nanotube. In (b) the deformed
rhombus, which delimits the reduced unit cell that connects points both inside and
outside the nanotube unit cell, had to be truncated to stay within the figure [8]

T and a vector in the circumferential direction, and thus parallel to Ch. The
linear–angular construction does not permit the definition of a 2-atom unit
cell. However, by choosing the vector in the circumferential direction to be
Ch, the total unit cell of the nanotube, which exhibits all the translational
and point symmetries of the nanotube, is restored.

E.5 Character Tables for Carbon Nanotubes

In this section we present the character tables for dealing with carbon nan-
otubes. Tables E.1 and E.2 give the character tables for the group of the
wavevectors for chiral carbon nanotubes, at k = 0, π/T and 0 < k < π/T ,
respectively. Tables E.3 and E.4 give the character tables for the group of the
wavevectors for achiral carbon nanotubes, at k = 0, π/T and 0 < k < π/T ,
respectively. Some of the point symmetry operations in these tables are shown
in Fig.E.4.
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Fig. E.4. (a) Unit cell of the chiral (4,2) nanotube, showing the Cd rotation around
the nanotube axis, with d = 2, and one of the C′2 rotations perpendicular to the
nanotube axis. A different class of two-fold rotations (C′′2 ), which is present for
both chiral and achiral nanotubes, is not shown here. (b) A section of an achiral
armchair (3,3) nanotube is shown emphasizing the horizontal mirror plane σh and
the symmetry operation Cd, with d = 3. (c) The same (3,3) armchair nanotube is
shown but now emphasizing of the vertical mirror planes σv [8]

Table E.2. Character table for the group of the wavevector 0 < k < π/T for chiral
nanotubes

CN {E|0} {Cu
N |vT/N}1 {Cu

N |vT/N}2 · · · {Cu
N |vT/N}� · · · {Cu

N |vT/N}N−1

A 1 1 1 · · · 1 · · · 1

B 1 –1 1 · · · (−1)� · · · –1

E±1

{
1

1

ε

ε∗
ε2

ε∗2
· · · ε�

ε∗� · · · εN−1

ε∗(N−1)

}

E±2

{
1

1

ε2

ε∗2
ε4

ε∗4
· · · ε2�

ε∗2� · · · ε2(N−1)

ε∗2(N−1)

}

...
...

...
...

...
...

...
...

E±( N
2 −1)

{
1

1

ε
N
2 −1

ε∗
N
2 −1

ε2(
N
2 −1)

ε∗2(
N
2 −1)

· · · ε�(
N
2 −1)

ε∗�( N
2 −1)

· · · ε(N−1)( N
2 −1)

ε∗(N−1)( N
2 −1)

}

This group is isomorphic to the point group CN . The ± signs label the different
representations with characters which are complex conjugates of each other. These
irreducible representations are degenerate due to time reversal symmetry. The com-
plex number ε is e2πi/N .
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