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XIII

Preface

Raman spectroscopy is the inelastic scattering of light by matter. Being highly
sensitive to the physical and chemical properties of materials, as well as to envi-
ronmental effects that change these properties, Raman spectroscopy is now evolv-
ing into one of the most important tools for nanoscience and nanotechnology. In
contrast to usual microscopy-related techniques, the advantages of using light for
nanoscience relate both to experimental and fundamental aspects. Experimentally,
the techniques are widely available, relatively simple to perform, possible to carry
out at room temperature and under ambient pressure, and require relatively simple
or no special sample preparation. Fundamentally, optical techniques (normally us-
ing infrared and visible wavelengths) are nondestructive and noninvasive because
they use the photon, a massless and chargeless particle, as a probe.

For understanding Raman spectroscopy, a combination of experiments and the-
ory is important because some concepts of basic solid state physics are needed for
explaining the behavior of the Raman spectra as a function of many experimen-
tal parameters, such as light polarization, the energy of the photon, temperature,
pressure and changes in the environment. In this book, starting from some known
example of physics and chemistry, we will explain how to use the basic concepts of
molecular and solid state physics, together with optics to understand Raman scat-
tering. Graphene, nanographite and carbon nanotubes (sp2 carbons) are selected
as the materials to be studied, due to their importance to nanoscience and nan-
otechnology, and because the Raman technique has been extremely successful in
advancing our knowledge about these nanomaterials. It is possible to observe Ra-
man scattering from one single sheet of sp2-hybridized carbon atoms, the two-di-
mensional (2D) graphene sheet, as well as from a narrow strip of a graphene sheet
rolled-up into a 1 nm diameter cylinder to form the one-dimensional (1D) single-
wall carbon nanotube. These observations are possible simply by shining light on
the nanostructure focused through a commonly available microscope. This book
therefore focuses on the basic concepts of both Raman spectroscopy and sp2 carbon
nanomaterials, together with their interaction. The similarities and differences in
the Raman spectra for different sp2carbon nanomaterials, such as graphene and
carbon nanotubes, provide a deep understanding of the Raman scattering capabil-
ities that are emphasized in this book.
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XIV Preface

There is a general feeling that Raman spectroscopy is too complicated for a non-
specialist. Often, common users of Raman spectroscopy as a characterization tool
for their samples only touch the surface of the capabilities of the Raman technique.
This book is aimed to be sufficiently pedagogic and also detailed to help the gen-
eral nanoscience and nanotechnology user of Raman spectroscopy to better utilize
their instrumentation to yield more detailed information about their nanostruc-
tures than before. Our challenge was writing a book that would build from the
most basic concept, the Schrödinger equation for the hydrogen atom, going up to
the highest level use and application of Raman spectroscopy to study nanocarbons
in general.

The book was initially structured for use in a course for graduate students in
the Federal University of Minas Gerais (UFMG), Brazil, and it is organized in two
parts. The first part gives the basic concepts of Raman spectroscopy and nanocar-
bons, addressing why we choose nanocarbons as prototype materials for writing
this Raman book. The text is suitable for physicists, chemists, material scientists,
and engineers, building a link between their languages, a link that is necessary for
the future development of nanoscience. The second part gives a detailed treatment
of the Raman spectroscopy of nanocarbons, addressing both fundamental material
science and the use of Raman spectroscopy towards material applications. Again
nanostructured sp2-hybridized carbon materials are model systems, both due to
the common interest that physicists, chemists, material scientists, and engineers
have in these systems and because these systems are pertinent to the length scales
where these fields converge. By giving more details, the second part gives examples
of the large amount of physics one can learn from studying nanocarbons.

Even though the Raman effect was first observed in the early 1920s, we be-
lieve this book is the starting point for lots of new scientific perspectives that
the “nano” generation is making possible. We hope the reader will be interest-
ed in Raman spectroscopy and will accept the challenges that many researchers
are now trying to solve in applying this technique to study nanostructures. Prob-
lem sets are included at the end of each chapter, designed to provide a better
understanding of the concepts presented in this book and to reinforce the learn-
ing process. We appreciate if the readers are willing to solve our problems and
send the solutions to the authors to post on the web. The answers by the read-
ers and students using this book can be posted on the following web page: http:
//flex.phys.tohoku.ac.jp/book10/index.html.

Finally, we strongly acknowledge all students and collaborators who have con-
tributed to the development of this book.

September, 2010 Ado Jorio, Belo Horizonte, MG, Brazil
Riichiro Saito, Sendai, Japan

Gene Dresselhaus and Mildred S. Dresselhaus,
Cambridge, MA, USA




