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Resonance Raman Scattering: Experimental Observations of the
Radial Breathing Mode

In the next three chapters, we present an in depth analysis of the resonance Ra-
man scattering process, that makes possible the observation of the Raman spectra
from isolated nanocarbons, such as a single-layer graphene [86], one isolated car-
bon nanotube [176] or an isolated nanoribbon [83]. Although resonance can occur
in any nanocarbon material, in these chapters, we focus on the radial breathing
mode (RBM) of nanotubes because the RBM is an especially instructive example of
resonance Raman scattering. Because of the low frequency (low energy) of ωRBM

and because of the one-dimensional character of carbon nanotubes, the RBM spec-
tra are extremely informative about resonance Raman phenomena. Thus, the study
of the RBM spectra can serve to give a clear picture on how Raman spectroscopy
can be used to probe the electronic structure of nanotubes. Furthermore, the RBM-
related science is so well developed that there are already sufficient experiments
and theory in the literature to address most of the information one can general-
ly extract from a Raman feature through its intensity (IRBM), frequency (ωRBM),
linewidth (ΓRBM), and the dependence of the three properties on the excitation laser
energy (Elaser), and also paying attention to environmental effects. Here the envi-
ronmental effects refer to spectral changes associated with perturbations due to
doping or arising from changes in the materials surrounding the SWNT. Since we
are dealing with a nanomaterial, any surrounding material will play an important
role in the observed optical-related properties, and the RBM spectra can also be
used to probe such environmental conditions.

In this chapter, we start in Section 9.1 with the definition of the RBM and a de-
scription of its frequency dependence on the tube diameter, which can be simply
derived from elasticity theory. In Section 9.2 we review the general optical proper-
ties of the RBM spectra in one isolated SWNT, including the resonance Raman
effect, the resonance window, Stokes and anti-Stokes phenomena and polariza-
tion effects. The final Section 9.3 ends the chapter with an extension of the res-
onance Raman analysis discussed in Section 9.2 to SWNT samples with a broad
(n, m) distribution. These results will serve as a basis for the study of the carbon
nanotube electronic structure, theoretically addressed in Chapter 10. Chapter 10 is
very interesting from the physics point of view, by departing from the tight-binding
description already introduced in Chapter 2, and by discussing the effect of σ–π
hybridization and of excitonic effects on the Raman spectra. Chapter 11 addresses
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Figure 9.1 (a) Schematic picture of the
atomic displacements in the radial breath-
ing mode (RBM). (b) Three superimposed
Raman spectra of the RBM of three isolated
SWNTs grown by the chemical vapor depo-
sition (CVD) method and contained on a
Si/SiO2 substrate. The spectra are taken at
three different spots on the substrate where

the RBM Raman signal from resonant SWNTs
are found. The RBM frequencies (linewidths)
are displayed in cm�1. Also shown are the
(n, m) indices assigned from the Raman spec-
tra for each resonant tube. The step in the
spectrum at � 225 cm�1 and the peak at
303 cm�1, common to all spectra, come from
the Si/SiO2 substrate [176].

both the electron–photon and electron–phonon matrix elements and their effect on
the observed Raman spectra.

9.1
The Diameter and Chiral Angle Dependence of the RBM Frequency

As suggested by its name, in the radial breathing mode (RBM) all the C atoms are
vibrating in the radial direction with the same phase, as if the tube were breathing
(see Figure 9.1a). The atomic motion does not break the tube symmetry, that is,
the RBM is a totally symmetric (A 1) mode. Since this particular vibrational mode
only occurs in carbon nanotubes, it is used to distinguish carbon-based samples
containing carbon nanotubes from sp2 carbon samples that do not contain carbon
nanotubes, and to give particular emphasis to samples containing single-wall car-
bon nanotubes (SWNTs), where the intensity of the RBM is strong compared with
other nonresonant spectra coming from the substrate or with other resonance Ra-
man spectra (see Figure 9.1b) [176]. A very important characteristic is the RBM fre-
quency dependence on tube diameter (ωRBM / 1/dt). Although this dependence
was first predicted using force constant calculations [278], an analytical derivation
can be made using elasticity theory, that is the subject of Section 9.1.1. Later in Sec-
tion 9.1.5 shows the small deviations from the simple inverse diameter dependence
due to curvature effects and the Kohn anomaly.

9.1.1
Diameter Dependence: Elasticity Theory

Here we show the dependence of the RBM frequency on the SWNT diameter.
Elasticity theory describes the energetics of a continuous, homogeneous medium
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under strain, and follows mostly from Hooke’s law (strain being proportional to
stress) and Newton’s second law. Then the potential energy in an elastic medium
is given by [95]:

U D 1
2

6X
λD1

6X
µD1

Cλµ eλ eµ , (9.1)

where Cλµ is the stiffness constant which relates strain and stress, and eλ (or eµ)
is the strain. The sum in Eq. (9.1) is over all possible strain/stress axes (λ, µ D
x x , y y , zz, y z, zx , x y ). Equation (9.1) is a general expansion from a harmonic
potential U D 1

2 K x2. If we consider a uniaxial strain along z, it is common to
use the Young’s modulus (Y D Cz z z z), which is defined as the coefficient relating
strain/stress to tension/deformation along zz.

The elastic energetics for the RBM can then be described by a one-dimensional-
like tension/deformation. The variation in nanotube radius (δR) can be related to a
one-dimensional strain e along the radial direction r, which stretches the graphene
sheet in the circumferential direction, associated with the nanotube by

e D δR

R
, (9.2)

and the related elastic energy will be given by

U D 1
2

ˆ
Ye2dV D 1
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�
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, (9.3)

from where, by considering a general vibration with a spring constant k ω Dp
k/M , where k is given by Y V/R2, we get

ωRBM D
r

Y V

M R2 D
s

Y

�

1
R

D A

dt
, (9.4)

where V is the volume and M is the mass of the cylinder, � D M/V is the density
and dt is the tube diameter. The proportionality constant A in Eq. (9.3) can be esti-
mated from the elastic properties of graphite. By describing sound waves in terms
of elasticity theory, we see that

p
Y/� is the sound velocity for the longitudinal

acoustic mode (vL D 21.4 km/s) [279]. Therefore, A describes the elastic behavior
of an isolated SWNT in the large diameter limit, where elasticity theory is expected
to be valid, thereby giving A D 227 cm�1 nm [95, 259, 279, 280].

Figure 9.2 shows a plot of ωRBM vs. dt for 197 different SWNTs (of which 73 are
metallic and 124 semiconducting) [31, 189]. For all the 197 SWNTs, their (n, m)
indices were assigned by experiment (extracted from Figure 9.15, discussed in Sec-
tion 9.3.2) and their diameters were determined by the relation for tube diameter
dt D aC–C

p
3(n2 C mn C m2)/π, where aC–C D 0.142 nm is the carbon–carbon

distance (see Section 2.3.1). By thus fitting the experimental data shown in Fig-
ure 9.2 using the relation ωRBM D A/dt C B, we obtain A D (227.0˙0.3) nm cm�1

and B D (0.3 ˙ 0.2) cm�1. This result is in remarkably good agreement with elas-
ticity theory, thus directly connecting one-dimensional carbon nanotubes and their
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Figure 9.2 Experimental radial breathing mode frequency (ωRBM) as a function of tube diam-
eter (dt). Open circles represent experimental values and the solid line is given by ωRBM D
227.0/dt C 0.3 [189].

two-dimensional counterpart graphene from which nanotubes are conceptually de-
rived.

Although experiment and elasticity theory agree perfectly in the experiment an-
alyzed in Figure 9.2, these results have only been obtained, so far, for one spe-
cific type of SWNT, that is, SWNTs which are ultra-long, vertically aligned and
grown by the water-assisted chemical vapor deposition (CVD) method [281]. Most
of the RBM experimental results in the literature have been fitted with the relation
ωRBM D A/dt C B, with values for the parameters A and B varying widely from
paper to paper [189, 282], as discussed in the next section.

9.1.2
Environmental Effects on the RBM Frequency

As discussed in the previous section, the RBM resonance Raman scattering (RRS)
of SWNTs grown by the water-assisted CVD method [281] follows the simplest lin-
ear relation between ωRBM and dt, namely ωRBM D A/dt, with the proportion-
ality constant A D 227.0 cm�1 nm, in agreement with the elastic properties of
graphene [279], and with a negligible environmental effect (B � 0) [189]. However,
all the other experimental results in the carbon nanotube literature have been fitted
with the relation ωRBM D A/dt C B, with values for A and B varying from one re-
search group to another [172, 176, 180, 183, 184, 283–288]. A nonzero value for the
empirical constant factor B prevents the expected limit of a graphene sheet from
being achieved, where ωRBM should go to zero when dt approaches infinity. There-
fore, B is supposedly associated with an environmental effect on ωRBM, rather than
an intrinsic property of SWNTs. The “environmental effect” here means the effect
of the surrounding medium, such as bundling, molecules adsorbed from the air,
the surfactant used for the SWNT bundle dispersion, the substrates on which the
tubes are sitting, etc. As we will discuss here, all the observed ωRBM values report-
ed in the literature are upshifted from the fundamental relation (ωRBM D 227/dt ,
with B D 0), the upshift exhibiting a dt dependence in quantitative agreement with
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recent predictions which consider the van der Waals interaction between SWNTs
and their environment [189].

In Figure 9.3 we compare similar ωRBM Raman spectra taken from two differ-
ent samples. The gray lines show the ωRBM spectra for the “super-growth” SWNTs
which are compared to the black line ωRBM spectra obtained from a SWNT sam-
ple grown by the alcohol-assisted CVD method [287]. Comparing the spectra in
Figure 9.3a and b it is clear that the ωRBM values for the “alcohol-assisted CVD”
sample are upshifted from the “super-growth” ωRBM frequencies.1)

Figure 9.4a shows the difference between several determinations of ωRBM D
A/dt C B found in the literature [172, 176, 180, 183, 184, 286, 287] and the ωRBM D
227.0/dt relation for the “super-growth” samples. All the curves in the literature
converge within the 1 to 2 nm dt range, which is the diameter range for which most
of the experimental data were actually obtained. Figure 9.4b shows the difference
between the actual experimental values for ωRBM from the literature (ωLit.

RBM) [176,
183, 184, 283–288] and for the “super-growth” (S.G) sample (ωS.G.

RBM), as a function of
dt. All the published results for ωLit.

RBM are grouped in Figure 9.4b on a dt-dependent
upshifted trend for ∆ωRBM D ωLit.

RBM � ωS.G.
RBM. Therefore, the dt dependence of the

difference between the experimental data in the literature and the fundamental
relation ωRBM D 227.0/dt is always of the same sign, as shown in Figure 9.4b.

The problem of addressing the environmental effect on ωRBM is now reduced to
solving a simple harmonic oscillator equation for a cylindrical shell subjected to an
inwards pressure (p (x )) given by [189, 279]:

2x (t)
dt

C �

Y
(1 � ν2)

@2x (t)
@t2 D � (1 � ν2)

Y h
p (x ) , (9.5)

where x (t) is the displacement of the nanotube in the radial direction, p(x ) D
(24 K/s2

0)x (t), and K (in eV/Å2) gives the van der Waals interaction strength, s0 is

(a)

(b)

Figure 9.3 The ωRBM spectra for “super-growth” SWNTs (gray) and for “alcohol CVD” SWNTs
(black). The spectra are obtained using different laser lines: (a) 590 nm (gray) and 600 nm
(black); (b) 636 nm (gray) and 650 nm (black) [189].

1) The differences in the low frequency region (below � 120 cm�1) are due to different dt

distributions among various nanotube samples.
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Figure 9.4 (a) Difference between the
ωRBM dependence on dt from the literature
(ωLit. Rel.

RBM ) values and the ωRBM D 227.0/dt
relation as a function of tube diameter dt . (b)
Difference between the experimental ωRBM
data from the literature (ωLit.

RBM) and the ωRBM
data for the “super-growth” sample (ωS.G.

RBM)

as a function of dt [189]. Each symbol in (b)
represents data from a different reference
(see [189] for the references in the legends to
(a) and (b) of this figure). The thick solid line
is a fit to the data in (b), as discussed in the
text, and also shown in (a) [189].

the equilibrium separation between the SWNT wall and the environmental shell,
Y is the Young’s modulus (69.74 � 1011 g/cm s2), � is the mass density per unit
volume (2.31 gm/cm3), ν D 0.5849 is Poisson’s ratio and h represents the thickness
of the shell [279]. If p (x ) vanishes, Eq. (9.5) gives the fundamental frequency ω0

RBM
for a pristine SWNT in units of cm�1,

ω0
RBM D

(
1

πc

�
Y

�(1 � ν2)

�1/2
)

1
dt

, (9.6)
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where the term inside the curly bracket in Eq. (9.6) gives the fundamental value of
A D 227.0 cm�1 nm.2) For a nonvanishing p (x ) we have

ω0
RBM D 227.0

�
1
d2

t
C 6(1 � ν2)

Y h

K

s2
0

�1/2

, (9.7)

where [6(1 � ν2)/Y h] D 26.3 Å2/eV. The shift in ω0
RBM due to the environment is

given by ∆ωRBM D ω0
RBM � ω0

RBM. The data in Figure 9.4b is fitted (see thick black
solid line) by considering K/s2

0 in Eq. (9.7) as an adjustable parameter. The best
fit is obtained with K/s2

0 D (2.2 ˙ 0.1) meV/Å4. The dt-dependent behavior of the
environmental effect in ωRBM is then established in Figure 9.4 for dt up to dt D
3 nm. A similar environmental effect is obtained for SWNTs in bundles [172, 287],
surrounded by different surfactants [180, 183, 184, 283–285], suspended in air by
posts [286], or sitting on a SiO2 substrate [176], but this environmental effect is
absent in “super-growth” SWNTs.

For simplicity, all the ωRBM results in the literature which are upshifted from the
pristine values due to the van der Waals interaction with the environment can be
generally described by:

ωLit.
RBM D 227

dt

q
1 C Ce � d2

t , (9.8)

where Ce D [6(1 � ν2)/E h][K/s2
0] (nm�2) gives the effect of the environment on

ωRBM. Table 9.1 gives the the Ce values fitting the RBM results for several sam-
ples in the literature. For dt < 1.2 nm, where the curvature effects become im-
portant, the environmental effect depends more critically on the specific sample
(i. e., Ce for one SWNT sample on SiO2 may differ from another sample on SiO2 in
the literature), and the observed environmental-induced upshifts range from 1 to
10 cm�1 for small diameter tubes within bundles or wrapped by different surfac-
tants (e. g., SDS (sodium dodecyl sulfate) or single-stranded DNA). This effect gets
even stronger when considering the effect of the outer tube on the inner tube in a
double-wall carbon nanotube (DWNT), as discussed in the next section.

Table 9.1 Strength of the environmental effect on the RBM frequency as measured by the Ce
factor in Eq. (9.8) which fits different SWNT samples in the literature.

Ce Sample Reference

0 Water-assisted CVD Araujo [189]
0.05 HiPCO@SDS Bachilo [288]

0.059 Alcohol-assisted CVD Araujo [287]

0.065 SWNT@SiO2 Jorio [176]
0.067 Free-standing Pailet [286]

2) Equation (9.6) is different from Eq. (9.3) because in Eq. (9.6) we consider the Poisson ratio ν ¤ 0,
and the (1/2πc) term used to measure frequency in cm�1 is given explicitly.
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9.1.3
Frequency Shifts in Double-Wall Carbon Nanotubes

The inner and the outer tubes of a DWNT can be either metallic (M) or semicon-
ducting (S).3) Thus, the following four configurations are possible: M@M, M@S,
S@S, and S@M, where S@M denotes an S inner tube inside an M outer tube,
following the common notation for fullerenes [289, 290]. Each DWNT configura-
tion is expected to possess distinct electronic properties. In particular, for the S@M
configuration, the S inner tube of a DWNT could be regarded as a good approxi-
mation for an isolated semiconducting SWNT that is electrostatically shielded and
physically protected from the local environment by an outer metallic tube. There-
fore, the experimental data from the inner tubes can be used as a standard when
compared to SWNTs that are subjected to environmental effects, such as contact
with a substrate, water, oxygen, or charged molecular species [290].

Most spectroscopic experiments on DWNTs have been performed on bundles
or solution-based samples [291–296], so that it has been inherently difficult to
use Raman spectra to investigate which inner (n, m) tubes are actually contained
inside the variety of observed outer (n0, m0) tubes (see Figure 9.5a). In order to
quantitatively determine which specific inner and outer tubes actually form each
DWNT, one must perform Raman experiments on individual DWNTs (see Fig-
ure 9.5c). Techniques that combine the use of E-beam lithography, atomic force
microscopy (AFM) and Raman mapping have been developed to measure the Ra-
man spectra from the inner and outer layers of the same individual DWNTs (see
Figure 9.5) [289, 290].

An investigation of the Raman spectra of 11 isolated C60-DWNTs, all with (6,5)
semiconducting inner tubes and all with the S@M configuration was performed
using a single laser excitation energy of Elaser D 2.10 eV [290]. The outer tubes of
the 11 DWNTs that are formed with a (6,5) inner tube can have different (n, m)
designations from one another but some outer tubes will have common (n, m) chi-
ralities. The radial breathing mode (RBM) frequencies ωRBM,o for the outer tube for
such a DWNT as a function of ωRBM,i for the inner tube are shown in Figure 9.6a.
In this figure we see that for these 11 individual isolated DWNTs, ωRBM,o for the
outer tubes varies over a 12 cm�1 range, while ωRBM,i for the inner tubes (which
all correspond to (6,5) tubes) does not have a constant value, but rather varies over
a range of 18 cm�1. This 18 cm�1 variation in the RBM frequency ωRBM,i for the
inner tube is large, considering that all these inner tubes are (6,5) tubes. These
experiments tell us that in forming a DWNT, the inner and outer tubes impose
considerable stress on one another. This is suggested by the fact that the nominal
wall to wall distances ∆dt,io between the inner (i) and outer (o) tubes of the DWNTs
are less than the c-axis distance in graphite (0.335 nm). In fact Figure 9.6b shows
that ∆dt,io values as small as 0.29 nm can be observed, implying a decrease of up

3) In discussing DWNTs, there are two
methods for preparing DWNTs, one from
heat-treating C60 containing SWNTs (called
peapods) and denoted by C60-DWNTs, and

a second CVD-based method denoted by
CVD-DWNTs. Since the two methods lead to
DWNTs with different diameter distributions
they have somewhat different characteristics.
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Figure 9.5 (a) Raman spectra for the RBM re-
gion for CVD-DWNT and C60-DWNT bundles
(Elaser = 2.13 eV). (b) Atomic force micro-
scope (AFM) image of one individual, isolated
DWNT. Inset: Silicon substrate with Au mark-
ers showing the location of the DWNT. (c)
Raman spectra for the RBM Raman region
(Elaser = 2.11 eV) for an isolated individual

C60-DWNT and (d) AFM height profile of the
individual, isolated DWNT shown in (b) with
the RBM spectrum shown in (c). The verti-
cal lines connecting (a) and (c) show that the
ωRBM of the prominent tube diameters ob-
served in the C60-DWNT bundles coincide
with the ωRBM of the inner and outer tubes of
the isolated C60-DWNTs [290].

to 13% in the wall to wall distance for this set of 11 DWNTs (all of which have (6,5)
inner tubes) [290]. In such studies, the tube diameters dt and wall to wall distances
between inner and outer tubes ∆dt,io were determined from the radial breathing
mode frequency-based on the relation between ωRBM and dt developed for SWNTs
(see Section 9.1.2). These estimates for dt should be considered as nominal values
for dt, and further work is needed to develop a corresponding relation between
ωRBM and 1/dt that is valid for DWNTs. Because of the differences in the Coulomb
interaction expected for the 4 different DWNT configurations, i. e., S@M, M@S,
S@S and M@M, it is expected that even if a linear relation between ωRBM and 1/dt

is retained for the inner and outer tubes of each DWNT configuration, the detailed
relation will depend on the metallicity configuration of a given DWNT, as given
above.

In the case of MWNTs, most of the samples are composed of tubes with diam-
eters too large to exhibit observable RBM features. Although, in a few cases the
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Figure 9.6 All the inner tubes for the 11 pea-
pod-DWNTs in this figure are (6,5) semicon-
ducting tubes. (a) Plot of the ωRBM,i of the in-
ner tube vs. ωRBM,o for the outer tubes which
pair to form eleven different isolated DWNTs.
(b) Plot of the nominal wall to wall distance

∆dt,io for each of the 11 isolated DWNTs
vs. ωRBM,i shown in (a). An increase in the
ωRBM,i of the inner tubes (all are (6,5) tubes)
is accompanied by a decrease in the mea-
sured nominal wall to wall dt,io distance [290].

inner tubes have small enough diameters (dt . 2 nm) and their RBM contribu-
tions can be seen [297], generally the RBM is not a reliable probe for studying and
characterizing MWNTs.

9.1.4
Linewidths

The Raman spectral width is given by the lifetime of phonons. Several mechanisms
can be responsible for the linewidth broadening of the resonance Raman features
in SWNT spectra, including temperature-dependent effects (anharmonic process-
es, phonon–phonon and electron–phonon interactions and other effects), tube–
tube/tube–substrate interactions, and nanotube defects (vacancies, substitutional
and interstitial impurities, 7-5 structural defects, etc.), finite size effects, trigonal
warping, as well as the energy separations between the incident or scattered pho-
ton and the pertinent van Hove singularity. Linewidth studies are best carried out
at the single nanotube level where inhomogeneous broadening effects are mini-
mized and linewidths approaching the natural linewidths for the various processes
should be achievable.

Figure 9.7 shows the dependence of the RBM linewidth (ΓRBM) on diameter dt

for 170 SWNTs grown by CVD on a Si/SiO2 substrate. It is noteworthy that ΓRBM

values down to 4 cm�1 are observed in individual SWNTs, since Raman peaks in
sp2 carbons are usually broader [242]. The low ΓRBM values are characteristic of 1D
SWNTs. From the 170 data points in Figure 9.7, we clearly observe an increase
in the average ΓRBM value (and also in the minimum value) with increasing dt,
that is, with increasing number of atoms along the circumference of the SWNTs.
While this result might have a relation to intrinsic confinement effects related to
the increase of the tube diameter, a tube flattening due to tube-substrate interaction
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Figure 9.7 ΓRBM vs. dt for 81 M-SWNTs (filled symbols) and 89 S-SWNTs (open symbols)
at 300 K. Circles indicate data obtained with the 2.41 or 2.54 eV laser excitation lines, and dia-
monds when obtained with a 1.58 eV laser [242].

is also expected to increase with increasing tube diameter, and this flattening may
also play an important role in the observed linewidth dependence [298]. In the
Raman spectra of SWNTs deposited in Si/SiO2 substrates, RBM features are not
often observed below 90 cm�1, although SWNTs with dt > 2.5 nm are not rare in
this type of sample. The limited accuracy in identifying larger diameter tubes is
probably caused by too large a broadening of the RBM peak.

9.1.5
Beyond Elasticity Theory: Chiral Angle Dependence

There are two effects that are not considered by elasticity theory. The first is related
to the chirality-dependent distortion of the lattice. The second is related to electron–
phonon coupling in metallic SWNTs and is associated with the Kohn anomaly (see
Section 8.4). These two effects can generate a chiral angle dependence of the RBM
frequencies. The first effect should be observable in measurements made on small
diameter (dt � 1 nm) SWNTs, where the curvature-induced lattice distortion is
important. The second is observed only in metallic SWNTs.

Results of ωRBM vs. (dt, θ ) (i. e., (n, m)) were obtained from SWNTs grown by
the HiPCO (high pressure CO CVD) method and dispersed in surfactant aqueous
solution [299]. The best linear relation fitting the RBM frequency dependence on
diameter obtained for this sample was ωRBM D 218.3/dt C 15.9 (for a discussion
of changes to the ωRBM vs. dt relation see Section 9.1.2). Figure 9.8 shows a plot of
the deviations of ωRBM values from the best linear 1/dt dependence that fits all the
experimental data (∆ωRBM D ωRBM � (218.3/dt C 15.9)) as a function of the chiral
angle θ . In this figure, one clearly sees deviations of the points from ∆ωRBM D 0,
and these deviations are as large as ∆ωRBM � ˙3 cm�1, which is much larger than
the experimental accuracy (' 1.0 cm�1).
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Figure 9.8 Deviation of the experimentally
observed RBM frequency (ωRBM) from the
linear dependence given by (218.3/dt C 15.9),
as a function of θ for a particular HiPCO nan-

otube sample [299]. Filled, open and crossed
circles denote M-SWNTs, type I and type II
S-SWNTs, respectively. The dotted lines show
an experimental accuracy of ˙1 cm�1 [299].

Interesting trends can be seen from the deviations in Figure 9.8. The first is the
observation of a systematically larger ∆ωRBM for M-SWNTs (metallic SWNTs, solid
bullets) when compared with S-SWNTs (semiconducting SWNTs, open bullets).
The second is a ∆ωRBM dependence on the chiral angle θ , showing a clear increase
in ∆ωRBM with increasing θ from 0ı (zigzag) to 30ı (armchair), and both of these
effects are stronger for metallic tubes.

Some of these deviations in ωRBM are due to curvature effects. For small dt

SWNTs, curvature weakens the sp2 chemical bonds which now have components
along the circumferential direction, because of sp2–sp3 mixing. As a result, the
RBM frequencies decrease with respect to their ideal values as the SWNT diam-
eter decreases. Moreover, curvature destroys the isotropy of the elastic constants
in SWNTs and therefore introduces a chirality dependence into ωRBM. All these
effects are well documented from a theoretical point of view [182, 300] where, by
allowing the atoms to assume relaxed equilibrium positions for each (dt, θ ), the
effective diameter changes could be determined. Kürti et al. [300] describe in detail
the curvature effects on many structural properties of SWNTs. For instance, it is
predicted that diameter deviations from the ideal dt values are roughly the same
for zigzag and armchair tubes, but the changes in bond lengths are larger for the
two C–C bonds with components along the circumferential direction for zigzag
tubes as compared to the three such bonds for armchair tubes with similar diam-
eter. This is a purely geometric effect, related to the directions of the three C–C
bonds with respect to the circumferential direction. Therefore, in armchair tubes,
the circumferential strain is more evenly distributed between the bonds, leading to
smaller bond elongation. Since the RBM softening is directly related to the elonga-
tion of bonds along the circumference, a larger softening of ωRBM for zigzag tubes
relative to armchair tubes is expected.

Finally, similar to the effect discussed for the G-band in Chapter 8, a phonon
frequency shift of the radial breathing mode for M-SWNTs is predicted [275]
and observed [301] as a function of Fermi energy, although a much smaller shift
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(� 3 cm�1) due to the Kohn anomaly effect is expected for ωRBM than for ωG.
Armchair nanotubes will not show any renormalization-induced frequency shift
while zigzag nanotubes will exhibit the maximum phonon softening. This chirality
dependence originates from the k-dependent electron–phonon coupling for RBM
phonons [275]. In the chiral and zigzag metallic SWNTs, a small energy gap is
opened by the curvature of the cylindrical surface. When the curvature-induced
gap is larger than „ωRBM, then the Kohn anomaly effect disappears. Since the gap
is proportional to 1/d2

t and „ωRBM is proportional to 1/dt, there is a lower limit of
dt (1 to 1.8 nm depending on chiral angle) below which we cannot see the Kohn
anomaly effect for the RBM phonon [275] .

9.2
Intensity and the Resonance Raman Effect: Isolated SWNTs

The Raman effect as shown in Figures 9.1 and 9.9 for the RBM features is a res-
onant process. With the physics of ωRBM and ΓRBM in place, next we consider the
evolution of the RBM intensity as the laser excitation energy is varied. The range
of laser energies over which the resonance Raman spectra is observed is called the
resonance window (see Section 4.3.2).

9.2.1
The Resonance Window

Strong resonant effects occur in the Raman scattering from an isolated SWNT
when the energy of the incident or scattered light matches an optical transition Ei i

(see Section 2.3.4), thereby strongly enhancing the Raman signal [112, 136, 171,
176, 282, 303]. Therefore, it is possible to use the resonance Raman effect to study
the electronic structure of individual SWNTs, and much effort has therefore been
given to measuring the Raman spectra under resonant conditions [176, 302, 304–
306]. In this section we review observations of the resonance window for the RBM
feature.

Figure 9.9a shows an AFM image of a Si substrate with a thin SiO2 surface
coating [176, 307] and with lithographic markers on an 8 � 8 µm2 lattice. Isolat-
ed SWNTs were grown on top of the substrate by a CVD method (see lines in
Figure 9.9b). The light spot (� 1 µm diameter) is positioned to be close to a mark
(� 1 µm size) (see Figure 9.9a) in order to achieve good precision in always re-
turning the light spot to the same position on the sample as Elaser is changed.
The dashed circles in Figure 9.9a,b display the position where the laser spot is
placed, showing the presence of some isolated SWNTs. From the AFM measured
SWNT heights, the diameters (dt) of the 11 SWNTs that lie within the light spot
are determined, with dt ranging from 0.7 nm to 1.9 nm (the AFM precision is
about ˙0.2 nm). Raman spectra of the sample were measured in the laser exci-
tation wavelength (energy) range 720 nm (1.722 eV) � Elaser � 785 nm (1.585 eV)
with steps of 4 nm (� 0.009 eV), as shown in Figure 9.9c,d. All the anti-Stokes
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Figure 9.9 (a,b) AFM image of the SWNT
sample. Part (a) shows the markers used to
localize the spot position (dashed circle) on
the substrate during the Raman experiment
and for further AFM characterization of the
SWNTs that are located within the light spot
indicated by the dashed circle in (b). (c) anti-
Stokes and (d) Stokes Raman spectra from
isolated SWNTs on a Si/SiO2 substrate for
several different laser excitation energies.
From bottom to top, the spectra were taken at
Elaser D 1.623, 1.631, 1.640, 1.649, 1.666,
1.685, 1.703, and 1.722 eV. The excitation
was provided by a tunable Ti:Sapphire laser
(P < 10 mW on the sample) pumped by an Ar

ion laser (6 W). The incident light was filtered
with a single-monochromator (Macpherson
1200 g/mm), and the scattered light was ana-
lyzed with an XY DILOR triple-monochroma-
tor, equipped with a N2 cooled CCD detector.
The Stokes signal quality (d) is not as good
as that for the anti-Stokes signal (c) due to
the frequency-dependent spectrometer effi-
ciency that drops off rapidly with increasing
laser wavelength, being worse in the Stokes
frequency region. The flat region appearing
in all the Stokes spectra in (d) comes from
light leakage, and was cut out from the spec-
tra [302].

(Figure 9.9c) and Stokes (Figure 9.9d) spectra were corrected to account for spec-
trometer efficiency at each laser energy, and the spectra were then normalized by
the 303 cm�1 Si substrate peak intensities. The anti-Stokes intensities were multi-
plied by [n(ω) C 1]/n(ω), where n(ω) D 1/[exp(„ω/ kB T ) � 1] is the Bose–Einstein
thermal factor, ω is the RBM frequency, kB is the Boltzmann constant, and T is
the temperature (see Section 4.3.2.1). Although high laser power was used to mea-
sure the Raman spectra, T was found to be close to room temperature (not higher
than 325 K), and this was confirmed by changing the laser power from 1 mW/µm2

(10 MW/cm2) to 10 mW/µm2 (100 MW/cm2), where the Stokes/anti-Stokes inten-
sity ratio for the 521 cm�1 and nonresonant 303 cm�1 Si peaks remained con-
stant. Furthermore, the ωRBM peak did not show a temperature-dependent shift,
and the intensity ratios between the RBM features and the 303 cm�1 Si peaks also
remained constant in both the Stokes and anti-Stokes spectra [302].
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With the light spot position shown in Figure 9.9a, the Raman spectra were mea-
sured with many different laser excitation energies. Figure 9.9 shows the anti-
Stokes (c) and Stokes (d) Raman spectra of one light spot for several different laser
excitation energies Elaser, increasing from the bottom to the top spectra (see cap-
tion). In Figure 9.9c,d, we see the RBM feature at 173.6 cm�1 appearing and dis-
appearing over the tunable energy range of Elaser, thereby allowing us to tune over
the whole resonant window of one optical transition energy (Ei i) for this resonant
SWNT. The linewidth for this ωRBM D 173.6 cm�1 peak is ΓRBM D 5 cm�1, typ-
ical of that for one isolated SWNT (see Section 9.1.4) [176, 242]. The data points
in Figure 9.10 show the peak intensity of the 173.6 cm�1 RBM feature vs. Elaser in
the anti-Stokes (a) and Stokes (b) processes, which define the resonance window
width Γ for both the anti-Stokes and Stokes processes for the SWNT measured in
Figure 9.9.

The RBM peak intensity I(Elaser), which is a function of Elaser, can be evaluat-
ed from Eq. (5.20) (Chapter 5). The first and second factors in the denominator
of Eq. (5.20), respectively, describe the resonance effect with the incident and scat-
tered light. Here C(�) applies to the anti-Stokes (Stokes) process for the phonon of
energy Eph, while γRBM gives the inverse lifetime for the resonant scattering pro-
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Figure 9.10 Raman intensity vs. laser excita-
tion energy El for the ωRBM D 173.6 cm�1

peak (see Figure 9.9) for the (a) Stokes and
(b) anti-Stokes Raman processes. Circles and
squares indicate two different Elaser runs on
the same SWNT sample. The line curves in-
dicate the resonant Raman window predict-
ed from Eq. (5.20), with Ei i D 1.655 eV,

γr D 8 meV, but taking the sum over internal
states (

P
m,m0 ) outside the square modulus.

The upper inset compares the theoretically
predicted Stokes and anti-Stokes resonant
windows on an energy scale in eV, and the
lower insert shows the joint density of states
(JDOS) vs. Elaser for this SWNT [302].
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cess [308]. For simplicity, the matrix elements M d M epM d can be considered to be
independent of energy in this small energy range. Here M d and M ep are, respec-
tively, the matrix elements for the electron-radiation (absorption and emission) and
the electron–phonon interactions. Chapter 11 develops the theory for these matrix
elements in detail.

The curves in Figure 9.10 show theoretical fits to the experimental data points
for the Stokes (dashed line) and anti-Stokes (solid line) resonant windows for
an (18,0) metallic zigzag SWNT, using Eph D 21.5 meV obtained from ωRBM D
173.6 cm�1 [302]. Notice the asymmetric lineshape in the resonance windows.
These fits were actually obtained in [302] by considering not a coherent Raman
scattering process, but an incoherent scattering process, where the sum over the
internal states (

P
m ,m0 in Eq. (5.20)) was taken outside the square modulus. How-

ever, this procedure is controversial, since this asymmetry could be generated by
other resonance levels lying close in energy.

Disregarding the asymmetry aspect, the width of the resonant windows gives
γRBM D 8 meV, in good agreement with previous measurements [171, 172, 309]
and a transition energy of Ei i D 1.655 ˙ 0.003 eV is also found. The upper inset
to Figure 9.10 shows a comparison between the theoretically predicted Stokes and
anti-Stokes resonant windows, revealing a shift in these resonant windows due to
the resonant condition for the scattered photon, Es D Ei i ˙ Eph for the anti-Stokes
(C) and the Stokes (�) processes, respectively. Therefore, by using a tunable laser,
it is possible to study the resonance window for one isolated SWNT, giving its Ei i

value with a precision better than 5 meV at room temperature. Resonance windows
for the RBM mode are, in fact, found to have a dependence on both diameter and
chiral angle, as discussed in Section 9.3.2.

9.2.2
Stokes and Anti-Stokes Spectra with One Laser Line

In the nonresonant Raman spectra, the anti-Stokes intensity is always smaller than
the Stokes intensity, and the IaS/IS intensity ratio can be used to measure the sam-
ple temperature (see Section 4.3.2.1). However, under sharp resonance conditions
the IaS/IS ratio strongly depends on the difference between the laser excitation en-
ergy Elaser and the resonance energy Ei i . The IaS/IS intensity ratio for the RBM
then depends sensitively on Ei i � Elaser, and the IaS/IS ratio for the RBM feature at
Elaser can be used to determine Ei i experimentally to within 10 meV and to deter-
mine whether the resonance is with the incident or scattered photon [310].

Figure 9.11 shows both Stokes and anti-Stokes spectra for the RBM for another
isolated SWNT sitting on a Si/SiO2 substrate, which is similar to the SWNTs shown
in Figure 9.9. The measured anti-Stokes intensity is already corrected by the Bose–
Einstein thermal factor, and a temperature T D 300 K was found from the two Si
phonon features also present in these spectra. In Figure 9.11a,b the normalized
anti-Stokes intensity at ωRBM D 253 cm�1 is much larger than the Stokes intensi-
ty. This asymmetry in intensity between the anti-Stokes and Stokes RBM spectra
can be quantitatively analyzed by using resonance Raman theory, and the resulting
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Figure 9.11 (a) Resonant anti-Stokes and (b) Stokes Raman spectra of a (12,1) SWNT (as
identified in [310]) on a Si/SiO2 substrate, using Elaser D 1.579 eV (758 nm). The peak at
˙303 cm�1 comes from the Si substrate. The RBM frequencies are displayed in cm�1.

resonance window I(Elaser) for both the anti-Stokes and Stokes spectra from one
isolated tube can be calculated using Eq. (5.20).

9.2.3
Dependence on Light Polarization

As discussed in Chapter 6, the totally symmetric Raman-active modes (A 1 sym-
metry) can only be observed when both the incident and scattered light are polar-
ized along the tube (Z Z ), or perpendicular to the tube axis (X X ). In the (Z Z )
scattering configuration, an optical transition is allowed between electronic states
with the same angular momenta, that is, Eµµ D E

(v )
µ ! E

(c)
µ (see Section 6.4.5).

Such a transition is equivalent to the usual Ei i transitions denoted in the Kataura
plot (see Section 2.3.4). In the (X X ) scattering configuration, an optical transi-
tion is allowed between electronic states with different angular momenta, that is,
Eµµ D E

(v )
µ ! E

(c)
µ˙1

. Such transitions are usually denoted by Ei,i˙1, and they dif-
fer in energy from the usual transition energies Ei i [311]. There have been strong
efforts to characterize such transitions, using polarized photoluminescence spec-
tra [40, 312].

Since the RBM features from isolated SWNTs are seen only under resonance
conditions, it is expected that the RBM from a single carbon nanotube will be seen
in the (Z Z ) and (X X ) polarizations for different laser excitation energies. The po-
larization dependence of the Raman intensity related to the laser excitation energy
has been called the antenna effect. This antenna effect was first reported by Dues-
berg et al. [235] (see Figure 9.12) and later by others [226–228, 313–315].

In general the intensity of the (X X ) polarized spectra should be strongly sup-
pressed by the so-called depolarization effect. Ajiki and Ando [238] have calculated
the optical conductivity of carbon nanotubes taking into account this depolariza-
tion effect, and they found that the absorption of light polarized parallel to the tube
axis (Z) is up to 20 times larger than that for perpendicularly polarized light (X).
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Figure 9.12 Raman spectra of an isolated
SWNT (or a thin rope of SWNTs) in the V V
configuration for various angles α i between
the tube axis and the polarization of the inci-
dent laser beam, as depicted in the inset. For

α i D 0ı and 180ı (V V D Z Z ), the polariza-
tion of the incident radiation is parallel to the
axis of the SWNTs determined from scanning
force microscopy images with an accuracy of
˙10ı [235].

This leads to a strongly reduced Raman signal when the polarization of the inci-
dent radiation is perpendicular to the nanotube axis. This polarization behavior has
been demonstrated experimentally in SWNT bundles, where many (n, m) tubes
are present and both Ei i and Ei,i˙1 can be determined for specific tubes using the
same sample with the same excitation laser energy [316].

9.3
Intensity and the Resonance Raman Effect: SWNT Bundles

In this section the resonance window analysis introduced in the previous section
will be extended to SWNT ensembles. Through the RBM resonance window anal-
ysis, we can study the (n, m) dependence of the optical transition energies (Ei i).
This analysis reveals a great deal of information that goes beyond the simple tight-
binding method described in Chapter 2, including σ�π hybridization and utilizing
the science of excitons. The optical transition energies in SWNTs which are sensi-
tive to these excitonic effects have been studied in detail through fluorescence and
Raman spectroscopy experiments [80, 183, 185]. Though some aspects of the exper-
iments can be interpreted within the context of a simple, noninteracting electron
model [182, 299], it has become increasingly clear that electron–electron interac-
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tions also play an important role in determining the optical transition energies.
Finally, SWNTs represent one of the best known materials system for the study of
exciton photophysics, both from a theoretical and experimental viewpoint. Since
SWNTs involve only carbon atoms, theoretical calculations can be carried out by
using a relatively simple model Hamiltonian, as discussed in Chapter 10.

9.3.1
The Spectral Fitting Procedure for an Ensemble of Large Diameter Tubes

In isolated SWNTs (Section 9.2.1), or even in ensembles of small dt SWNTs (briefly
discussed in Section 4.4.2, see Figure 4.13a), each radial breathing mode (RBM)
in resonance with a given excitation laser line (Elaser) is spectrally well-defined in
frequency (ωRBM), so that the RBM peaks and resonance profiles can be clearly
identified. When larger dt SWNTs are present and the differences in ωRBM become
smaller than the RBM linewidth, the RBM peaks cannot be clearly resolved and
the spectra exhibit broad RBM features with contributions from several different
(n, m) SWNTs. Therefore, fitting the Raman spectra becomes complex. It is then
necessary to establish a systematic procedure to perform the Raman spectral anal-
ysis.

Figure 9.13a shows the RBM Raman spectrum obtained from the “alcohol-as-
sisted” SWNTs using Elaser D 1.925 eV (644 nm) [287]. The bullets show the data
points and the solid line shows the fit obtained using 34 Lorentzian curves (the
peaks below the spectral curve in Figure 9.13a). Each Lorentzian curve can be relat-
ed to the RBM from SWNTs with the same (n, m) index. The dark gray Lorentzians
represent the RBM from M-SWNTs and the light gray Lorentzians represent the
RBM from S-SWNTs. To determine how many Lorentzians should be used to fit

(a)

(b)

Figure 9.13 (a) Raman spectrum (bul-
lets) obtained with a 644 nm laser line
(Elaser D 1.925 eV). This spectrum was fit-
ted by using 34 Lorentzians (curves under

the spectra) and the solid line is the fitting
result. (b) The Kataura plot used as a guide
for the fitting procedure (from EPAPS material
in [287]).
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each resonance spectrum, we use the Kataura plot (see Figure 9.13b). The dashed
horizontal line in Figure 9.13b represents the excitation energy for the spectrum
shown in Figure 9.13a, and the two bold horizontal lines (above and below the
dashed line) give the approximate boundary for the RBM resonance profiles (see
detailed discussion in Section 9.3.2). To fit the spectrum shown in Figure 9.13a we
expect that transitions corresponding to all the bullets inside the rectangle limited
by the two bold lines should occur. The vertical bold lines connecting Figure 9.13a,b
indicate that the metallic 2n C m D 30 family is in resonance with the laser exci-
tation energy 1.925 eV, while the dashed vertical line shows the RBM feature from
the (7, 5) SWNT.

The difficulty in performing the spectral fitting is due to the large number of
Lorentzian curves needed to fit a broad RBM profile [282]. The fitting program
tends to broaden and increase some peaks, while eliminating others. If for the
same fit one Lorentzian is shifted by a couple of cm�1, the fitting program will
return a completely different fitting result. Therefore, some constraints for the peak
frequencies and spectral linewidths (full width at half maximum (FWHM)) must
be applied. For example, the ωRBM obey the relation ωRBM D (227/dt)

p
1 C Ce/d2

t ,
which correctly describes environmental effects by changing Ce and this relation is
discussed in detail in Section 9.1.2. For lack of information, we may have to require
all the Lorentzian peaks in one experimental spectrum to share the same FWHM
value.

After analyzing all the spectra such as shown in Figure 9.13a, the Raman intensi-
ty at each RBM frequency has to be plotted as a function of Elaser. Such a plot gives
the resonance profile for the (n, m)-specific SWNTs that have the specified RBM
frequency. The RBM peak intensity I(Elaser), which is a function of Elaser, can be
evaluated from Eq. (5.20) or, alternatively, by using a simplification of this equation
given by

I(Elaser) /
ˇ̌̌
ˇ 1
(Elaser � Ei i � i γRBM)(Elaser � Ei i ˙ Eph � i γRBM)

ˇ̌̌
ˇ
2

. (9.9)

To illustrate the fitting procedure, Figure 9.14 shows three resonance profiles (black
bullets), one in the near-infrared range (a), one in the visible range (b), and one in
the near-ultraviolet range (c). The three resonance profiles were fitted according
to resonance Raman scattering theory (solid line, from Eq. (9.9), and the values
obtained for Ei i are indicated in Figure 9.14 (as well as for ωRBM and (n, m)) [287,
317]. Notice the resonance window width for SWNTs in bundles (usually within
40–160 meV range) are much broader than for isolated SWNTs (see Figure 9.10).

9.3.2
The Experimental Kataura Plot

In this section, the resonance window analysis is extended to all (n, m) SWNTs,
from where we can study the Ei i dependence on (dt, θ ). Figure 9.15a shows a
2D RBM map for the water-assisted CVD grown (here called the “super-growth”,
S.G. [281]). SWNT sample. This sample has a very broad diameter distribution, and
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Figure 9.14 Resonance windows for specific
(n, m) SWNTs within a bundle. (a) Resonance
profile (black dots) in the near-infrared range
for ωRBM D 192.7 cm�1. The data for tube
(14,3) was fitted (solid line) using Eq. (9.9)
with γRBM D 0.065 eV and Ei i D 1.360 eV.
(b) Resonance profile in the visible range is

shown for ωRBM D 192.5 cm�1 (tube (12,6)),
with γRBM D 0.045 eV and Ei i D 1.920 eV.
(c) Resonance profile in the near-ultraviolet
range is shown for ωRBM D 257.6 cm�1

(tube (11,1)), with γRBM D 0.073 eV and
Ei i D 2.890 eV (from EPAPS material
in [287]).

can be used to gain a deep understanding of the SWNT optical properties. For the
construction of the experimental Kataura plot in Figure 9.15a, 125 different laser
lines were used [189, 317]. By fitting each of the spectra with Lorentzians, (n, m)
indices were assigned to 197 different SWNTs.4)

Figure 9.15b is a plot of all E S.G.
i i obtained experimentally by fitting the reso-

nance windows extracted from the data in Figure 9.15b, as a function of ωS.G.
RBM.

The observed E S.G.
i i ranges from E S

11 up to E S
66 (the superscripts S stand for semi-

conducting S-SWNTs and M for metallic M-SWNTs). Finally, all the E S.G.
i i data in

Figure 9.15b can be fitted using an empirical equation that is discussed below and
given by [282, 287, 318]:

Ei i(p , dt) D α p

p

dt

�
1 C 0.467 log

0.812
p/dt

�
C � p cos 3θ/d2

t , (9.10)

where p is defined as 1, 2, 3, . . . , 8 for E S
11, E S

22, E M
11 , E S

33, E S
44, E M

22 , E S
55, E S

66, thus mea-
suring the distance of each cutting line from the K point in the zone-folding proce-
dure. The fitting gave values α p D 1.074 for p D 1, 2, 3 and α p D 1.133 for p � 4.
The � p values for the lower (upper) Ei i branches are �0.07(0.09), �0.18(0.14),
�0.19(0.29), �0.33(0.49), �0.43(0.59), �0.6(0.57), �0.6(0.73) and �0.65 (unknown)
for p D 1, 2, 3, . . . , 8, respectively [317, 318]. The functional form in Eq. (9.10) car-
ries a linear dependence of Ei i on p/dt, as expected from the tight-binding theory
plus quantum confinement of the 2D electronic structure of graphene, a logarith-
mic correction term that comes from many-body interactions, and a θ -dependent
term which includes electronic trigonal warping and chirality-dependent curvature

4) The data for Figure 9.2 came from this experiment [189, 317].
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Figure 9.15 (a) RBM resonance Raman map
for the “super-growth” (S.G.) SWNT sam-
ple [189, 317, 318]. (b) Kataura plot of all tran-
sition energies (ES.G.

i i ) that could be experi-
mentally obtained from the resonance win-
dows extracted from (a), as function of ωRBM.

(c) Kataura plot obtained from Eq. (9.10) with
the parameters that best fit the data in (b).
The stars stand for M-SWNTs, the open bul-
lets stand for type I S-SWNTs and the filled
bullets stand for type II S-SWNTs [317].

effects (σ�π hybridization) [287]. The theoretical understanding of all these factors
will be discussed in Chapter 10.

9.4
Summary

In this chapter we show how the RBM spectra from single-wall carbon nanotubes
can be used to study the concepts of resonance Raman scattering in detail. Al-
though resonance Raman scattering should be observable in every nanocarbon
material, the RBM for carbon nanotubes is special because of the one-dimensional
physics of carbon nanotubes and the low RBM energy. These two properties, to-
gether, generate a very sharp resonance window for RBMs. Furthermore, the RBM
frequency depends on tube diameter, as explained here using elasticity theory. Due
to this dt dependence, the RBM from different (n, m) tubes can be identified, and
used to study, through the resonance effect, the electronic structure of the carbon
nanotubes, as well as environmental effects. This electronic structure is summa-
rized in the empirical Eq. (9.10), which is related to many physical concepts that
will be discussed in the next chapter.
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Problems

[9-1] Obtain the density of graphite in kg/m3. Here we can use the in-plane C–C
distance which is 1.42 Å and the interlayer distance between two graphene
layers which is 3.35 Å and note that about 2% of the carbon atoms in
graphite are 13C and the remaining 98% are 12C. For this problem we need
at least three digits in numerical accuracy.

[9-2] When the radius of a zigzag SWNT is modified by δR , determine by how
much the C–C distance is modified along the circumferential direction.

[9-3] The Young’s modulus of graphene is Y D 1060 GPa. Obtain the sound
velocity of the LA phonon mode by calculating the nanotube density.

[9-4] The Young’s modulus of SiC, Fe and diamond are, respectively, Y D 450,
200, 1200 GPa. Obtain sound velocities for these materials.

[9-5] Obtain the sound velocities for an ideal air sample in units of m/s and
km/h.

[9-6] Obtain the formula for the sound velocity for the TA phonon mode Ct Dp
G/�, where G, the shear modulus, is given by G D Y/(2(1 C ν)), and

where Y and ν are the Young’s modulus and Poisson ratio, respectively.

[9-7] Evaluate A in Eq. (9.4) in cm�1 units.

[9-8] Check that all terms in Eq. (9.5) are dimensionless.

[9-9] Obtain Eq. (9.6) from Eq. (9.5). Note that a factor 1/2πc appears when we
measure ω in units of cm�1. Using the known values for the various fac-
tors, get the value of 227 for ωRBM in units of cm�1 for dt D 1 nm.

[9-10] Calculate the shift of ωRBM in Eq. (9.7) for dt D 1 nm and 2nm.

[9-11] Estimate Ce in Eq. (9.8) and the diameter at which the correction term Ce d2
t

becomes 0.21.

[9-12] Explain that the anharmonic term in the vibrational Hamiltonian gives a
finite lifetime to the phonon which is responsible for the Raman spectral
width.

[9-13] Using the uncertainty relation between energy and time, obtain the phonon
lifetime for Raman spectra with a spectral width of 1 cm�1 and of 10 cm�1.

[9-14] Evaluate the electric field in V/m for a laser power of 1 mW/µm2.

[9-15] For T D 300 K and 77 K, what is the intensity ratio of the Stokes to anti-
Stokes nonresonant Raman signals for a 173.6 cm�1 RBM phonon? How
about for a 1590 cm�1 G-band?

[9-16] Measure the resonance window values from Figure 9.10 and estimate the
lifetime of photoexcited carriers. Explain by giving some reasons for which
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lifetime is shorter, the lifetime of the photoexcited carriers or the lifetime of
phonons.

[9-17] For 785 nm laser light, obtain the wavelength in nm for the Stokes and anti-
Stokes scattered light for a 173.6 cm�1 RBM phonon.

[9-18] For 785 nm laser light, what is the Ei i energy of the scattered light res-
onance conditions for the Stokes and anti-Stokes Raman spectra for a
173.6 cm�1 RBM phonon?

[9-19] Give the expected intensity ratio IS /IaS between the Stokes and anti-Stokes
RBM signals shown in Figure 9.10 for Elaser D 1.63 eV, Elaser D 1.65 eV and
Elaser D 1.67 eV. Consider both T D 0 K and T D 300 K.

[9-20] Explain why the intensity ratio of the Stokes to anti-Stokes resonance Ra-
man intensity for one laser energy might not give the temperature of the
sample. For the nonresonance Raman intensity, on the other hand, we may
get the information needed to determine the temperature. Why?

[9-21] Consider that the spectra in Figure 9.11 were obtained from a SWNT with
γRBM D 8 meV. Using Eq. (9.9), find the value of Ei i which gives the ob-
served IS /IaS .

[9-22] Build your own Kataura plot using Eq. (9.10). Evaluate the E S
22 and E S

33 en-
ergies for the (6,5), (11,1), (10,5) SWNTs by using Eq. (9.10).

[9-23] There are two definitions for the type of semiconducting SWNTs; one is
Type I and Type II using (mod(2n C m , 3) D 1 and D 2), and the other is
Mod 1 and 2 using mod(n � m , 3) D 1, 2. Show that Type I and Mod 2 (or
Type II and Mod 1) are equivalent to each other.

[9-24] In the (n, m) map of SWNTs, show that SWNTs with 2n C m D const. have
a similar diameter while SWNTs with n � m D const. have a similar chiral
angle. Explain that the 2n C m D const. family is suitable for studying the
chiral angle dependence while that n � m D const. family is suitable for
studying the diameter dependence.




