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8
The G-band and the Time-Dependent Perturbations

In Chapter 7 we learned how to treat strain effects in the G-band of graphene-
related systems. This includes pressure effects and other mechanical deformations,
such as bending the graphene sheet to “build” a carbon nanotube. The next step
would be the study of temperature (T) and doping-dependent effects. However, for
an accurate description of such effects in graphene related systems, it is important
to understand the dynamics of electron–phonon coupling because the so-called
Born–Oppenheimer (or adiabatic) approximation is not valid for graphene.

In this chapter we review the detailed G-band properties connected to dynamic
effects of the electron–phonon coupling by introducing the concepts of the Kohn
anomaly and by discussing the effect of temperature and doping on the electron–
phonon coupling. These effects have to be derived within time-dependent pertur-
bation theory, as explained in Section 8.1, where we discuss the breakdown of the
adiabatic approximation. In Section 8.2 we introduce the effect of changing temper-
ature and show how time-dependent perturbation theory applies for interpreting
experimental studies of doping by using a gate, as well as by studying temperature-
related effects. We address graphene in Section 8.3 and SWNTs in Section 8.4.

8.1
Adiabatic and Nonadiabatic Approximations

To put the time-dependent perturbations in the context of the general vibrational
properties, we stress that in most cases, atomic vibrations are treated in the so-
called adiabatic approximation. We can use the adiabatic approximation when the
electrons move sufficiently fast so that they can follow the small motion of the
heavy nuclei. Then the motion of the electrons can be expressed as a function of
the position of the atom (not as a function of the momentum of the atom). How-
ever, when the atomic motion is much faster than the time for electron-momen-
tum relaxation by the electron–phonon interaction, the adiabatic approximation is
no longer valid. This problem is pictured in Figure 8.1 where the differences in
electronic behavior in the adiabatic vs. nonadiabatic approaches are highlighted,
respectively, in Figure 8.1b,c [248].
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Figure 8.1 Schematic π-band structure of
graphene near the high-symmetry K point
of the Brillouin zone. Here the graphene
is doped and the filled electronic states are
shown in gray. (a) Bands of the perfect crystal.
The Dirac point is at the K point, the elec-
tronic states are filled up to the Fermi energy
�F, and the Fermi surface is a circle centered
at K. (b) Bands in the presence of a Γ C

6 (E2g)
lattice distortion. The Dirac points are dis-
placed from K by ˙s. Within the adiabatic
approximation, the electrons remain in the
instantaneous ground state: the bands are
filled up to the Fermi energy �F and the Fermi
surface follows the Dirac point displacement.
The total electron energy does not depend
on s. (c) Bands in the presence of a Γ C

6 (E2g )
lattice distortion. In the nonadiabatic case,

the electrons do not have time to relax their
momenta to follow the instantaneous ground
state. In the absence of scattering, the elec-
tron momentum is conserved and a state with
momentum k is occupied if the state with the
same k was occupied in the unperturbed case.
As a consequence, the Fermi surface is the
same as in the unperturbed case and does not
follow the Dirac cone displacement. The total
electron energy increases with s2, resulting in
the observation of a Γ C

6 -phonon softening.
(d) Atomic displacement pattern of the Γ C

6
(E2g ) phonon. The atoms are displaced from
their equilibrium positions by ˙u/

p
2. Note

that the displacement pattern of the Dirac
points (in reciprocal space) is identical to the
displacement pattern of the carbon atoms (in
real space) [248].

The G-band frequency of ωG � 1584 cm�1 corresponds to 22 fs as the period for
atomic motions. In fact, coherent phonon spectroscopy measurements [43] which
can observe oscillations in the transmission probability of light in a material as a
function of time at the frequency of G-band phonons, observed a 47 THz oscillation
for the G-band which indeed corresponds to 22 fs. The measured electron-momen-
tum relaxation times, due to impurity, electron–electron and electron–phonon scat-
tering processes are all on the order of a few hundred femtoseconds, as deduced
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from the electron mobility in graphene [249] and from ultrafast spectroscopy mea-
surements in graphite [250, 251]. Thus the virtually excited electrons do not have
sufficient time to relax their momenta to reach the instantaneous adiabatic ground
state (see the schematics for a nonadiabatic process in Figure 8.1) [248]. Electrons
and phonons are thus strongly coupled, and cannot be treated within the usual adi-
abatic approximation, thus generating a strong G-band frequency dependence on
structure, doping (changes in the Fermi level) and temperature.

8.2
Use of Perturbation Theory for the Phonon Frequency Shift

This section starts in Section 8.2.1 by describing the general effect of temperature
(T) of phonons, and by highlighting the importance of T on the Fermi distribution.
In Section 8.2.2 perturbation theory is used to calculate the phonon frequency shift
due to the electron–phonon interaction under nonadiabatic conditions, showing
the effect of changes in the Fermi distribution as a function of gate voltage and
temperature.

8.2.1
The Effect of Temperature

The change in the phonon frequencies with temperature is a general manifestation
of anharmonic terms in the lattice potential energy, which are responsible for the
phonon–phonon coupling of the phonon population and of the thermal expansion
of the crystal [252]. The effect of temperature on the G-band frequency for different
sp2 nanocarbons has been measured and is represented by:

ωG D ω0
G C �T , (8.1)

where ω0
G is the G-band frequency in the limit T ! 0 and � is the coefficient

for the temperature-dependent correction to ωG (to first order). Table 8.1 gives the
values of � for different sp2 nanocarbons, found in the literature. Calizo et al. [253]
found ω0

G D 1584 cm�1 and 1582 cm�1 for 1-LG and 2-LG, respectively. They de-
scribe the temperature-dependent effects as roughly divided into the self-energy shift
due to the anharmonic coupling of the phonon modes and to the shift due to the
thermal expansion of the crystal,1) that is [253]:

ωG � ω0
G D (�T C �V )∆T D

�
@ω
@T

�
V

∆T C
�

@ω
@V

�
T

∆T . (8.2)

In fact, for highly oriented pyrolytic graphite (HOPG) it has been considered that
the thermal expansion occurs mainly along the c axis, and the in-plane thermal

1) The thermal expansion of a crystal is also a result of anharmonicity. However, the thermal
expansion is also related to changes of the elastic force constants with volume, and these two
different physical mechanisms can be considered separately.
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Figure 8.2 The Fermi–Dirac distribution at 300 K (solid), 77 K (dashed), and 4 K (dot-dashed) as
a function of energy scaled by kB , the Boltzmann constant.

Table 8.1 The temperature coefficient in Eq. (8.1) for different sp2 carbons.

Sample � (cm�1/K) Reference

1-LG �0.0162 [253]
2-LG �0.0154 [253]

SWNT �0.0189 [254]

DWNT �0.022 [255]
HOPG �0.011 [256]

expansion is negligible, that is, � D (�T C�V ) � �T for HOPG [256]. The ωG shifts
with temperature have been used to obtain the thermal conductivity of graphene,
as explained in [257].

However, for an accurate description of the G-band frequency behavior, we have
to consider the electron–phonon coupling, and that the electron population in crys-
talline structures depends on temperature. This dependence is described by the
Fermi–Dirac distribution f (E ), which gives the probability that an orbital at ener-
gy E will be occupied in an ideal electron gas in thermal equilibrium [95]:

f (E ) D 1
exp[(E � µ)/ kBT ] C 1

, (8.3)

where T is the temperature in degrees Kelvin (K), kB is the Boltzmann constant,
and the quantity µ is the chemical potential. At absolute zero temperature, the
chemical potential is equal to the Fermi energy (µ D EF). In general, f (E ) D 1/2
at E D µ for Eq. (8.3) and Figure 8.2 shows f (E ) for three temperatures of interest.
At T D 0, the occupation probability is f (E ) D 1 up to the Fermi level, above which
the occupation probability drops rapidly. When the temperature increases, there is
a spread in the occupation probability around EF (see Figure 8.2). These changes in
carrier occupation will affect the G-band frequency, as discussed in the following
sections.
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8.2.2
The Phonon Frequency Renormalization

Within the framework of time-dependent perturbation theory, we consider that
when the phonon can excite an electron–hole pair (see Figure 8.3) by the electron–
phonon interaction, this virtual process2) gives rise to a phonon energy renormal-
ization that depends on the electronic structure, the Fermi level and the temper-
ature [141, 196, 258, 259]. The phonons then renormalize the electron energies,3)

while the electrons renormalize the phonon energies.4) Both of these perturbations
occur over a longer time than that observed in Raman spectra, which is on the
order of 1 s, and thus we can observe these phenomena in Raman spectra. This
electron–phonon coupling gives rise to a controllable modification to the G-band
frequency as a function of the gate voltage, and this modification depends strong-
ly on the geometrical structure of the nanomaterial, which applies to both carbon
nanotubes and graphene.

The phonon frequency shift due to the electron–phonon (el–ph) interaction of
the Γ -point LO- and iTO-phonon modes for graphene (and also for SWNTs) can be
calculated by second-order perturbation theory. The phonon energy including the
el–ph interaction can be written as:

„ωλ D „ω(0)
λ C „ω(2)

λ , (8.4)

(λ D LO, iTO) where ω(0)
λ is the unperturbed phonon frequency without consider-

Figure 8.3 (a) An intermediate electron–
hole pair state that contributes to the energy
shift of the optical phonon modes is depict-
ed. A phonon mode is denoted by a zigzag
line and an electron–hole pair is represented
by a loop. The low-energy electron–hole pair
satisfying 0 � E � 2EF is forbidden at zero

temperature by the Pauli principle. (b) The
energy-dependent real and imaginary parts of
the h(E) correction to the phonon energy by
an intermediate electron–hole pair state. Es-
pecially the sign of the correction depends on
the energy of the intermediate state as given
by h(E) (see text in Section 8.2) [260].

2) Here a virtual process means the mixing
of the wavefunction of the excited states
into the ground state wavefunction in
perturbation theory. We here consider
the electron–phonon interaction as a
perturbation.

3) Through the so-called Peierls-like
mechanism, that is, the deformation of the
electronic structure due to electron–phonon
coupling.

4) Resulting in the so-called Kohn anomaly
effect, that is, a deformation of the phonon
structure due to electron–phonon coupling.
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ation of the el–ph interaction, and „ω(2)
λ is the perturbation term given by second-

order perturbation theory

„ω(2)
λ D 2

X
k

jheh(k)jHintjωλij2
„ω(0)

λ � (Ee(k) � Eh(k)) C i Γλ

� [ f (Eh(k) � EF) � f (Ee(k) � EF)] , (8.5)

and is the quantum correction to the phonon energy due to electron–hole pair cre-
ation as shown in Figure 8.3a. The factor 2 in Eq. (8.5) comes from the spin degen-
eracy. In Eq. (8.5), heh(k)jHintjωλi is the matrix element for creating an electron–
hole pair at momentum k by the el–ph interaction with a q D 0 phonon, while
Ee(k) (Eh(k)) is the electron (hole) energy and Γλ is the decay width. In Figure 8.3a,
an intermediate electron–hole pair state that has the energy of E D Ee(k) � Eh(k)
is shown. Thus in Eq. (8.5) we need to sum (

P
k ) over all possible intermediate

electron–hole pair states which can have a much larger energy than the phonon
(E � „ω(0)

λ ).
Since heh(k)jHintjωλi is a smooth function of E D Ee(k)�Eh(k) which appears in

the denominator of Eq. (8.5), the contribution to „ωλ(2) from an electron–hole pair
depends strongly on its energy. In Figure 8.3b, we plot the real part and imaginary
part of the denominator of Eq. (8.5), h(E ) D 1/(„ω(0) � E C i Γ ) as a function of E in
the case of „ω(0) D 0.2 eV and Γ D 5 meV. Here Re(h(E )) has a positive (negative)
value when E < „ω(0) (E > „ω(0)) and the lower (higher) energy electron–hole pair
makes a positive (negative) contribution to „ω(2)

λ . Moreover, an electron–hole pair
satisfying E < 2jEFj cannot contribute to the energy shift (shaded region in Fig-
ure 8.3a,b) because of the Fermi distribution function f (E ) in Eq. (8.5). Thus, the
quantum correction to the phonon energy by an intermediate electron–hole pair
can be controlled by changing the Fermi energy, EF (see Figure 8.4b). For example,
when jEFj D „ω(0)/2, then „ω(2)

λ takes a minimum value at zero temperature since
all positive contributions to „ω(2)

λ are suppressed in Eq. (8.5) (e. g., see dashed line
in Figure 8.4b). Since Re(h(E )) � �1/E for E � „ω(0), all high energy interme-
diate states contribute to phonon softening if we include all the electronic states in
the system. Here we introduce a cut-off energy at Ec D 0.5 eV as

PEe(k)<Ec
k in order

to avoid such a large energy shift in Eq. (8.5). The energy shift due to the high-
energy intermediate states (

PEe(k)>Ec
k ) can be neglected by renormalizing „ω(0) so

as to reproduce the experimental results of the observed Raman spectra [38, 261]
since the contribution from Ee(k) > Ec just gives a constant energy shift to „ω(2).
These results do not depend on the selection of the cut-off energy,5) since Ec is
much larger than „ω(0).

The Im(h(E )) in Figure 8.3b is nonzero only very close to E D „ω(0), which
shows that the phonon can resonantly decay into an electron–hole pair with the

5) A cut-off energy is generally taken for setting the upper-limit of the integration in calculating
a physical property even when the integration has a contribution above the cut-off energy. In
order to avoid the cut-off energy dependence of the results, a smooth function is defined for
switching off this contribution. Calculating the phonon frequency in a solid essentially contains
the electron–phonon interaction in discussions that were given in the 1950s. See details in [38].
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Figure 8.4 (a) Linewidth and (b) frequen-
cy of the Raman G-band as a function of the
electron concentration. The calculations are
made using time-dependent perturbation the-
ory, which considers the dynamic effects (i. e.,
under the nonadiabatic approximation) and

lattice distortion induced by doping. (c) G-
band frequency behavior on a larger doping
range comparing the expected results for adia-
batic vs. nonadiabatic and constant lattice vs.
doping induced lattice distortions (extended
lattice). Adapted from [258].

same energy as the phonon. It is noted that when jEFj > „ω(0)/2, then the reso-
nance window width is small, that is Γλ � 0 at zero temperature, while Γλ may
take a finite value at a finite temperature (see Figure 8.4a). The plot in Figure 8.3b
gives Γλ self-consistently6) calculating Γλ D �Im(„ω(2)

λ ) in Eq. (8.5). Figure 8.4a
shows the expected behavior of the G-band FWHM by changing the electron con-
centration (i. e., changing the Fermi level).

The effect of changing temperature on the phonon renormalization is shown
in Figure 8.4 by the different line styles, as rationalized by the Fermi distribution
related term in Eq. (8.5). As discussed in Section 8.2.1, at T D 0 the occupation
probability is f (E ) D 1 up to the Fermi level, above which the occupation probabil-
ity drops rapidly. This makes a highly singular dependence for the phonon renor-
malization and linewidth variation at EF D ˙„ωG/2 (see Figure 8.4a,b). When the
temperature increases, there is a spread in the occupation probability around EF

(see Figure 8.2), thus smoothing out the singularities at EF D ˙„ωG/2.7)

Finally, you may have noticed the asymmetry in the frequency shift in Figure 8.4b
for large doping values (e. g., electron concentration ! ˙0.8�1013 electrons/cm�2).
This asymmetry is clearer in Figure 8.4c where the doping range is extended. The
Kohn anomaly effect discussed here occurs within a small doping range, where

6) When the initial value of Γλ in Eq. (8.5) is the

same as Im(„ω(2)
λ ), then we can say that the

calculation is self-consistent. The value of Γλ

depends on the electron–phonon interaction
(numerator of Eq. (8.5)). This treatment is

equivalent to the treatment of Γλ when using
the uncertainty relation.

7) The Fermi function f (E ) in Eq. (8.5)
becomes a smooth function of energy at
300 K (see Figure 8.2).
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EF lies near the K point. When higher doping levels take place, lattice distortion
induced by doping dictates the ωG behavior. From Figure 8.4c we see that lattice
distortion induced p doping causes a hardening of ωG, while n doping causes a
softening of ωG. The difference from weak and strong doping will be discussed
further for gate and chemical doping of SWNTs, respectively (Section 8.4.4). In the
case of graphene, up to now only gate doping results are available experimentally,
as discussed in the next section.

8.3
Experimental Evidence of the Kohn Anomaly on the G-band of Graphene

In this section the effect of doping on the G-band of single-layer graphene (Sec-
tion 8.3.1) and on the G-band of double-layer graphene (Section 8.3.2) is explicitly
considered.

8.3.1
Effect of Gate Doping on the G-band of Single-Layer Graphene

Experimental observation of the effect of doping on the G-band phonon frequency
is shown in Figure 8.5 [196]. The G-band is observed to upshift in frequency (Fig-
ure 8.5a,b) and to decrease in linewidth (Figure 8.5c) with doping, as predicted by
time-dependent perturbation theory. The physics behind this behavior comes from
the Pauli exclusion principle. Under increasing doping, the electron–hole interac-
tion for different energies will be forbidden, thereby decreasing the Kohn anomaly
effect. At T D 0 K, the effect would be abrupt, but for T ¤ 0 K, there is an ener-
gy distribution for the carriers and the Kohn anomaly-induced frequency change
tends to saturate when the Fermi level is far from „ωλ/2. The two anomalies at
˙„ωG/2 are not clearly seen in this experiment due to temperature-induced broad-
ening (see Figure 8.4a). However, a gate voltage dependence for the G-band fre-
quency ωG was measured at T D 12 K, where phonon anomalies at EF D ˙„ωG/2
could be clearly distinguished [262]. The 12 K experiment was, however, carried
out on bilayer graphene, where another interesting effect occurs, as described in
Section 8.3.2.

8.3.2
Effect of Gate Doping on the G-band of Double-Layer Graphene

In bilayer graphene, the unit cell has 4 C atoms rather than 2, and as a result there
are two π and two π*-bands at the K point (see Figure 2.11). In this case, there will
be more than two Kohn anomalies in the G-band gate-dependent frequency renor-
malization (see schema on the right hand side of Figure 8.6) [262]. When the Fermi
energy reaches ˙„ωG/2, the π � π� transition from the valence band to the low-
er conduction band shown in Figure 8.6(I) is no longer allowed, as it is in single-
layer graphene. However, the transition from the now filled lowest energy π*-band
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Figure 8.5 The Raman G peak of doped
monolayer graphene. (a) The G-band spectra
at 295 K for many values of the gate voltage
Vg. The red spectrum corresponds to the un-
doped case, which occurs at V ¤ 0 due to
natural doping of graphene by the environ-

ment. (b) The G peak position (frequency)
and (c) the linewidth as a function of electron
concentration, deduced from the applied gate
voltage data. Black circles: measurements;
solid line: finite-temperature nonadiabatic
calculation. Adapted from [196].

to the higher energy π*-band, shown by the dashed red arrow in Figure 8.6(II), is
possible. When the gate voltage rises further and the Fermi energy reaches the sec-
ond band, π� � π� transitions are suppressed, as shown in Figure 8.6(III). These
effects are seen in the G-band frequency and linewidth of bilayer graphene (see Fig-
ure 8.6), where a distinctly different behavior with respect to the monolayer case
(see Figure 8.5) is clearly observed for both the G-band frequency and linewidth.
Therefore, when discussing graphene systems above, we saw that the renormaliza-
tion effect changes significantly in going from single-layer to bilayer graphene, and
it would change further by increasing the number of layers, although the renormal-
ization effect will become less and less evident with increasing layer number.

8.4
Effect of the Kohn Anomaly on the G-band of M-SWNTs vs. S-SWNTs

The Kohn anomaly is important for systems with an electronic gap smaller than
the phonon energy. The Kohn anomaly is, therefore, applicable to the G-band
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Figure 8.6 (a) Peak frequency (Pos(G)) and
linewidth (FWHM(G)) for the Raman G-band
feature of doped bilayer graphene vs. Fer-
mi energy. Black circles: measurements; red
line: finite-temperature nonadiabatic calcula-

tion. (b) Schematics of the electron–phonon
coupling at three different doping levels, as
indicated by the thicker lines on the electronic
bands. Adapted from [262].

in graphene and also in metallic SWNTs. As shown by the “�” symbols in Fig-
ure 7.6, the LO G-band in metallic SWNTs experiences a large renormalization in
frequency, due to the what is called a Peierls-like mechanism [124]. This Peierls-like
mechanism is, in fact, due to the electron–phonon interaction, as is also the Kohn
anomaly effect, but the effect is much stronger in metallic carbon nanotubes than
in graphene, due to the phonon confinement that generates a dynamic gap open-
ing. For semiconducting SWNTs, some renormalization occurs related to virtual
transitions, but the effect should be minor for S-SWNTs. Furthermore, in SWNTs,
because of their spatial confinement effects, there is a rich behavior depending not
only on their metal vs. semiconducting behavior, but also on the SWNT diameter
and chirality. We discuss these results here.

8.4.1
The Electron–Phonon Matrix Element: Peierls-Like Distortion

In this section we show that the Kohn anomaly is very different for LO and iTO
phonons. The effect of the G-band phonons on the electronic structure is eval-
uated here first for graphene, within the first-neighbor tight-binding model and
the adiabatic approximation. The corresponding effect for nanotubes will then be
summarized based on quantum confinement and zone-folding effects. Although
the extended tight-binding and nonadiabatic approximations are needed for quan-
titative studies, the simple pedagogic picture described here can account for the
fundamentals of the pertinent physical effect.
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Consider the matrix elements HAA, HAB , HB A, and HB B evaluated within the
framework of the nearest neighbor π-band orthogonal tight-binding model in the
linear in u/a approximation (u is the amplitude of phonon displacements, and
a D p

3aC C D 0.246 nm is the graphene lattice constant):

HAA D HB B D E0 C �

3X
j

(u B j � u A0) � (rB j � rA0)/aC C , (8.6)

HAB D H�
AB D

3X
j

[t C α(u B j � u A0) � (rB j � rA0)/aC C ]

� exp[i k � (rB j � rA0 C u B j � u A0)] . (8.7)

Here, E0 is the atomic orbital energy which is set to zero to define our energy scale,
t D �2.56 eV is the transfer or hopping integral for graphene, � D 39.9 eV/nm
is the on-site electron–phonon coupling (EPC) coefficient, α D 58.2 eV/nm is the
off-site EPC coefficient [222, 263, 264], rA j and rB j are the equilibrium atomic
positions shown by the gray and green dots in Figure 8.7a, respectively, u A j and
u B j are the atomic displacements associated with the Γ C

6 (E2g, G-band) phonon
mode represented by arrows in Figure 8.7a, subscript j D 0, . . . , 3 labels the central
atom and its three nearest neighbors, aC C D 0.142 nm is the interatomic distance
and k is the electron wave vector. Upon substituting u A j and u B j from the G-band
eigenvectors (Figure 8.7a for the LO phonon) into Eq. (8.6) and setting the graphene
determinant equal to zero, we find that kF(k0

F) oscillates at the phonon frequency
with a displacement amplitude ∆ kF(∆ k0

F) given by:

∆ kF D �∆ k0
F D � 2

p
3αu

ta
Oy for LO ,

∆ kF D �∆ k0
F D C2

p
3αu

ta
Ox for iTO ,

(8.8)

Figure 8.7 (a) Arrows indicate the atomic motions for the G-band mode in graphene. (b) The
red arrow indicates the displacement of the π � π� crossing point on the E(k) diagram when
the G-band LO phonon displacement takes place [117].
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around the K(K 0) point in the Brillouin zone [124]. Note that ∆ kF and ∆ k0
F are

determined by the off-site EPC coefficient α, since the � terms in Eq. (8.6) that are
linear in u/a cancel for the u A j and u B j vectors [265]. The arrow in Figure 8.7b
shows such a ∆ kF measurement for the LO phonon. This change in the electronic
structure causes a distortion in the electronic matrix element, that is responsible
for the EPC.

Now, if we move to metallic nanotubes, the presence of cutting lines in the Bril-
louin zone due to spatial confinement will play a very important role. For an arm-
chair SWNT in an equilibrium position, a cutting line crosses the K point, and
the valence and conduction bands cross (see Figure 8.8a). When a displacement of
the G-band iTO phonon takes place (see Figure 8.8b), the π � π� crossing point
moves along the cutting line direction, and no significant change in the electronic
structure occurs. However, when a displacement of the G-band LO phonon takes
place (see Figure 8.8c), the π � π� crossing point now moves perpendicular to the
cutting line direction, thus opening a band gap. This effect changes the total elec-
tronic energy of the tube significantly, generating a significant electron–phonon
coupling, much stronger than that in graphene. In linear carbon chains, this gap
opening decreases the energy enough, so that the phonon softens towards zero fre-
quency and the carbon chain gets distorted (going to the C�C–C�C–C bonding
configuration from the original CDCDCDC bonding configuration). This distor-
tion is known as the Peierls distortion. In carbon nanotubes, the energy lowering
due to the Peierls distortion is not larger than the thermal energy, and therefore

Figure 8.8 (a) Electronic band structure of
graphene in the vicinity of the K point. Pan-
els (b) and (c) indicate the changes in the
electronic band structure caused by the pres-
ence of iTO (transverse) and LO (longitudi-
nal) phonon modes. For the A1(iTO) mode
in armchair SWNTs (and the A1(LO) mode
in zigzag SWNTs), the crossing point shifts

away from K towards the Γ point. For the
A1(LO) mode in armchair nanotubes (and the
A1(iTO) mode in zigzag tubes), the crossing
point moves perpendicular to the line Γ K ,
opening a band gap. The thick lines indicate
the band structure of an armchair tube ob-
tained by intersecting the gray plane with the
two cones. Adapted from [124].
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the tube does not distort.8) However, the LO phonon mode in the nanotube suffers
a strong renormalization effect, exhibiting a significant softening in the phonon
frequency. The same holds for zigzag and chiral metallic nanotubes but to a lesser
degree. Although the cutting line for this case will have a different direction, the
∆ kF will change as well, so that the overall picture remains similar. It is similar but
not exactly the same, because a small correction will have to be considered when
going beyond the first-neighbor tight-binding model, since curvature effects gen-
erate a mini-gap opening in non-armchair SWNTs, which can be explained by the
extended tight-binding electron–phonon coupling model [117, 222].

8.4.2
Effect of Gate Doping on the G-band of SWNTs: Theory

In Figure 8.9, we show calculated results for „ωλ LO and TO phonons as a func-
tion of EF for a (10, 10) armchair nanotube generated by gate doping. Here we
take values of 1595 cm�1 and 1610 cm�1 for „ω(0)

λ , for the λ D iTO and λ D LO
modes, respectively. The energy bars in Figure 8.9 denote Γλ values for the de-
cay width, and the extended tight-binding scheme is used to calculate Ee(k), Eh(k),
and the electron wavefunction for heh(k)jHintjωλi [267]. Here the el–ph matrix el-
ement [203] was obtained using the deformation potential, derived on the basis
of density-functional theory by Porezag et al. [264]. To obtain the phonon eigen-
vector, the force constant parameters calculated by Dubay and Kresse [116] were
used for the dynamical matrix. The resulting „ωλ is shown as a function of EF

at room temperature (T D 300 K) and at T D 10 K in Figure 8.9a,b, respectively,
where EF ¤ 0 is related to gate doping with respect to the equilibrium position at
EF D 0, occurring when EF is at the band crossing point (K point in graphene). It
is seen that the iTO mode does not exhibit any energy change, while the LO mode
shows both an energy shift and broadening. As we have mentioned above, the min-
imum energy occurs at jEFj D „ω(0)/2 (� 0.1 eV). There is also a local maximum
for the spectral peak at jEFj D 0. The broadening for the LO mode occurs within
jEFj 	 „ω(0)/2 for the lower temperature (10 K), while the broadening has a tail
at room temperature for jEFj 
 „ω(0)/2 in Figure 8.9 [260]. For large jEFj values,
the Kohn anomaly effect is gone and ωLO

G > ωiTO
G , as expected in the time-inde-

pendent picture (Section 7.3.3) and is the behavior that is generally observed for
semiconducting SWNTs.

A continuum model for electrons in a carbon nanotube has been used [260] to
explain the lack of an energy shift of the iTO modes for armchair nanotubes. In this
work it is shown that the electron–phonon (el–ph) matrix element for electron–hole
pair creation by the (A 1) LO and iTO phonon modes is given by:

heh(k)jHintjωLOi D �i gu sin θ (k) ,

heh(k)jHintjωiTOi D �i gu cos θ (k) ,
(8.9)

8) In the case of polyene encapsulated in a SWNT, however, the Peierls distortion is significant [266].
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Figure 8.9 The EF dependence of the LO (gray
curve) and iTO (black curve) phonon energy
in the case of the (10, 10) armchair nanotube.
Part (a) is calculated at room temperature and

(b) is at 10 K. Only the energy of the LO mode
is shifted, with the iTO mode frequency being
independent of EF. The decay width (Γλ ) in
Eq. (8.5) is plotted as an error-bar [260].

where u is the phonon amplitude, and g is the el–ph coupling constant. Here θ (k)
is the angle for the polar coordinate around the K (or K 0) point in the 2D Brillouin
zone, in which the k D (k1, k2) point is taken to be on a cutting line for a metallic
energy sub-band. The k1 (k2) axis is taken in the direction of the nanotube cir-
cumferential (axis) direction (see Figure 8.10). Equation (8.9) shows that the matrix
element heh(k)jHintjωλi depends only on θ (k) but not on jkj, which implies that
the dependence of this matrix element on E is negligible. For an armchair nan-
otube, even when considering the curvature-induced distortions, the cutting line
for its metallic energy band still lies on the k2 axis [268]. Thus, we have θ (k) D π/2
(�π/2) for the metallic energy sub-band, which has k1 D 0 and k2 > 0 (k2 < 0).
Then, Eq. (8.9) tells us that only the LO mode couples to an electron–hole pair and
the iTO mode is not coupled to an electron–hole pair for armchair SWNTs.

In Figure 8.11a, we show calculated results for „ωλ as a function of EF for a
(15, 0) metallic zigzag nanotube [260]. In the case of zigzag nanotubes, not only the
LO mode but also the iTO mode couples to electron–hole pairs. The spectral peak
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Figure 8.10 (a) Cutting line near the K point
for an armchair nanotube. The k1 (k2) axis is
selected as the nanotube circumferential (in-
plane) direction. The amplitude for electron–
hole pair creation depends strongly on the
relative position of the cutting line from the
K point. (b) If the cutting line crosses the K

point, then the angle θ (k) (� arctan(k2/ k1))
takes π/2 (�π/2) values for k2 > 0 (k2 < 0).
In this case, the LO mode strongly couples to
an electron–hole pair, while the iTO mode is
decoupled from the electron–hole pair accord-
ing to Eq. (8.9) [260].

position for the iTO mode is upshifted for EF D 0, since Re(„ω(E )) for E < „ωiTO

contributes to a positive frequency shift. It has been shown theoretically [268] and
experimentally [269] that, even for “metallic” zigzag nanotubes, a finite curvature
opens a small energy gap. When the curvature effect is taken into account, the
cutting line does not lie on the K point, but it is then shifted from the k2 axis. In
this case, cos θ (k) D k1/(k2

1 C k2
2 )1/2 is nonzero for the lower energy intermedi-

ate electron–hole pair states since k1 ¤ 0. Thus, the iTO mode can couple to the
low energy electron–hole pair which makes a positive energy contribution to the
phonon energy shift. The high energy electron–hole pair is still decoupled from the
iTO mode since cos θ (k) ! 0 for jk2j � jk1j. Therefore, when jEFj 	 „ω(0)

iTO/2,
then „ωiTO increases by a larger amount than does „ωLO. The iTO mode for the
small diameter zigzag nanotubes couples strongly to an electron–hole pair because
of the stronger curvature effect for small diameter SWNTs. In Figure 8.11b, we
show the diameter (dt ) dependence of the „ωλ for zigzag nanotubes for EF D 0
not only for metallic SWNTs, but also for semiconducting SWNTs. In the case of
the S-SWNTs, the LO (iTO) mode appears around 1600 (1560) cm�1 without any
broadening. Only metallic zigzag nanotubes show an energy shift, and the energy
of the LO (iTO) mode decreases (increases) as compared to the semiconducting
tubes. In Figure 8.11c, we show a curvature-induced energy gap Egap as a function
of dt for metallic zigzag tubes. The results show that higher (lower) energy elec-
tron–hole pairs contribute effectively to the LO (iTO) mode softening (hardening)
in metallic nanotubes. In the case of semiconducting nanotubes, we may expect
that there is a softening for the LO and iTO modes according to Eq. (8.9). However,
the softening is small as compared with that of the metallic nanotubes because the
energy of the intermediate electron–hole pair states is much larger than „ω(0)

λ in
this case.
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Figure 8.11 (a) The calculated EF dependence
of the LO (gray symbols) and iTO (black sym-
bols) phonon frequency for a (15, 0) zigzag
nanotube. The frequency of not only the LO
mode, but also that of the iTO mode, is shift-
ed due to the curvature effect. The error bars
indicate the phonon linewidth. (b) Diameter

dt dependence of the G-band optical phonon
frequencies for zigzag nanotubes, including
zigzag semiconducting and metallic nan-
otubes as well as LO and TO modes. (c) The
diameter dependence of Egap, where Egap
denotes the curvature-induced mini-energy
gap [260].

8.4.3
Comparison with Experiments

Before the Kohn anomaly was discussed in the context of graphene and carbon
nanotubes, several experimental works had already reported the Fermi level de-
pendence of the LO and iTO modes of bundles and ensembles of carbon nan-
otubes [48, 49, 270]. These experiments showed a significant change in frequency
and linewidth of the broad feature in the G-band associated with metallic nan-
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otubes as EF was varied. Experiments varying the Fermi level of individual metallic
carbon nanotubes [261, 271, 272] later provided more insight into the behavior of
the individual modes. In Figure 8.12 we show an experimental intensity map of
the G-band spectrum of an individual metallic nanotube as a function of an elec-
trochemical gate voltage. Here there are two distinguishable peaks, a higher fre-
quency mode that does not change appreciably either in frequency or in linewidth
as a function of gate voltage, and a broad lower frequency peak, assigned to the LO
mode, that upshifts and narrows in linewidth as positive or negative charges are
induced on the nanotube.

Unlike the case of graphene, a Kohn anomaly is predicted in metallic carbon
nanotubes even in the adiabatic limit. However, use of the adiabatic approximation
misses out on key features in the energy range close to the phonon energy. The two
signatures of nonadiabatic effects in the Kohn anomaly are: (1) an energy window
EF < j„ωLOj within which the LO phonon peak is broadened due to the creation of
real electron–hole pairs, and (2) a characteristic “W” lineshape of the LO frequency
vs. EF curve caused by the two singularities located at EF D ˙„ωLO rather than
a single singularity at EF D 0, as predicted within the adiabatic approximation.
The data in Figure 8.12 exhibits the characteristic broadening window for metallic
SWNTs; however, the “W” shape from the two singularities is not resolved, most
likely because of inhomogeneous charging due to trapped charges on the substrate
which will result in a smearing of EF. A more recent experiment [273] using pris-
tine suspended nanotubes that were gated electrostatically was able to resolve this
feature in the frequency of the LO mode.

The experiment in Figure 8.12 captures the behavior of the strongly coupled LO
mode. The weakly coupled TO mode, if identified at all, is reported to exhibit a
flat frequency vs. gate voltage behavior around the Dirac point. This peak has not
received much attention, since the TO mode intensity is weak, rendering it difficult

Figure 8.12 Experimental intensity plot of the G-band spectrum of a metallic SWNT as a func-
tion of electrochemical gate voltage. The charge neutrality point corresponding to the Dirac
point is 1.2 V [261].
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to monitor, especially when the GC and G� features lie close to each other in
energy. The intensities of the LO and TO modes are known to depend on the chiral
angle, with the TO mode being completely silent in the limit of θ ! 0ı for a
zigzag nanotube [272, 274]. Nonetheless, as shown in Figures 8.9 and 8.11, Sasaki et

al. [275] predict an interesting chiral angle dependence of the TO mode softening.
Future experiments on structurally identified and truly isolated individual (n, m)
nanotubes, while challenging, will certainly shed light on this topic.

Similar experiments on semiconducting nanotubes reveal that their G-band
phonons also experience energy renormalization due to electron–phonon cou-
pling [49, 276]. Since „ωLO/TO < E S

11 for S-SWNTs, the G-band phonons are
unable to create real electron–hole excitations across the semiconducting band
gap, and as a result there is no lifetime broadening of the phonon. Nonetheless,
virtual electron–hole excitations, which do not conserve energy, do contribute to
renormalizing the phonon energy [276]. In the case of semiconducting SWNTs
both the TO and LO modes couple to intermediate electron–hole pairs with the
TO mode experiencing a greater EF-dependent frequency shift. Interestingly, this
effect becomes most significant in larger diameter nanotubes as the band gap
energy approaches the phonon energy [276]. Therefore the frequency renormaliza-
tion in semiconducting nanotubes has the opposite diameter dependence to that
of metallic SWNTs, and the effect in S-SWNTs is smaller in magnitude than in
M-SWNTs.

8.4.4
Chemical Doping of SWNTs

As discussed in Section 8.2.2, low doping levels suppress the Kohn anomaly, thus
causing an upshift in the LO G-band frequency for both p and n doping in SWNTs
(see Figure 8.12). However, for higher doping levels the structural distortions are
expected to dominate, so that p and n doping should then cause an upshift and
downshift, respectively, in the measured phonon frequencies of SWNTs (see Fig-
ure 8.4c). Such p or n doping behavior has indeed been observed experimentally
for the G-band of MWNTs and SWNTs doped chemically to higher doping lev-
els with different atoms, which behave as donors or acceptors to carbon [34, 277].
The dopant-induced interactions (whether it is an inorganic species such as an
alkali-metal donor or a halogen acceptor, or an organic polymer chain or a DNA
strand) with the sidewall of a nanotube will perturb the Fermi level of the nanotube
through charge-transfer interactions. Since electrons and phonons are strongly
coupled to each other, these perturbations will influence the various Raman modes
present in carbon nanotubes. For example, the doping with alkali metals like K,
Rb, and Cs leads to a softening (or downshift) of 35 cm�1 (saturated regime) of the
G-band frequencies, and is accompanied by dramatic changes in its lineshape. For
SWNT bundles doped with halogens (for example, Br2), an upshift in the Raman-
mode frequencies was observed relative to the corresponding frequencies in the
pristine bundles. Details about the Raman characterization of doped SWNTs can
be found in [34].
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8.5
Summary

In this chapter we addressed the effect of time-dependent perturbations to the G-
band spectra of graphene and carbon nanotubes. We showed that, when the adia-
batic approximation is not valid, electrons and phonons couple, thus changing both
the electron energies (Peierls-like effect) and the phonon energies (Kohn anomaly
effect). These effects are strongly dependent on gate voltage and temperature, thus
making the G-band work as a probe for nanocarbon doping. The Kohn anomaly
is observed in metallic systems, where real electron–hole pair creation can occur
by a phonon energy („ωG) process, thus strongly influencing the G-band frequen-
cy and linewidth of graphene and metallic SWNTs. The effects in metallic SWNTs
are stronger than in graphene because of the quantum confinement effect, and
this process depends sensitively on diameter and chiral angle. In graphene these
effects depend on the number of layers. Semiconducting SWNTs also exhibit a
phonon energy renormalization due to electron–phonon coupling, but this renor-
malization effect is weaker than for the metallic SWNTs because no real anomaly
takes place (Egap > „ωG) for S-SWNTs. Consequently, while the G-band linewidth
in graphene and metallic SWNTs is strongly sensitive to whether or not the gate
voltage matches the energy of the anomaly, in semiconducting SWNTs the G-band
linewidth is basically independent of doping. Finally, putting together the rich be-
havior of the G-band frequency and linewidth, as discussed in Chapters 7 and 8,
we conclude that the Raman G-band provides a highly sensitive probe for studying
and characterizing nanocarbons.

Problems

[8-1] Calculate the period of the oscillation for the vibration at 1580 cm�1. Also
give the frequency in THz. (Use the fact that 1 eV D 8650 cm�1.)

[8-2] Estimate the Raman spectral width in cm�1 by using the uncertainty re-
lation when the lifetime of the photoexcited carrier is 500 fs. Repeat the
calculation for 50 fs.

[8-3] A typical length of a carbon nanotube is 1 µm. How long does it take for the
light to go 1 µm. How many times do carbon atoms oscillate at the G-band
frequency during this time?

[8-4] What is the maximum velocity or acceleration of the atomic vibration for a
phonon of 1580 cm�1? In this calculation, we should consider the number
of phonons to be n.

[8-5] When we use the maximum acceleration in the previous problem, evaluate
the force that a π electron feels in this acceleration. Compare this force with
the Coulomb force in a carbon atom. You can use Z D 4 for the screened
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ion core and r D 0.5 Å for the radius. Check if the Coulomb potential is
sufficiently strong to keep the π electron bound to the carbon atom.

[8-6] (Peierls instability) Consider a linear carbon chain in which the nearest
neighbor transfer parameters have alternating values: t1, t2, t1, t2, . . .. Show
that in this case, an energy gap is opened at the zone boundary and the
value of the energy gap is proportional to t1 � t2.

[8-7] In the previous problem, let us consider the electron–phonon parameter α
such that ti D t0�α(xiC1�xi ), where xi denotes the lattice distortion. By an
alternative lattice distortion, xi D x0(�1)i , the total energy of the electron
decreases because of the opening an energy gap at the Fermi energy. On
the other hand, because of the lattice distortion, the system loses lattice
energy which is proportional to K x2

0 /2 per bond (K is the spring constant).
By minimizing the total energy, obtain the optimized x and the energy gap.

[8-8] When the temperature of the nanotubes is either high or very low, how does
the phonon softening change as a function of the Fermi energy? Using the
Fermi distribution function, and explain your result qualitatively.

[8-9] The G-band phonon becomes soft when the temperature becomes high.
Explain the mechanism of phonon softening for high temperature.

[8-10] When the Fermi energy changes, how is the electron–phonon interaction
suppressed? Explain and plot qualitatively the phonon frequency as a func-
tion of the Fermi energy.

[8-11] Show that, for metallic SWNTs, only the phonon causes an electronic gap
opening, independent of the tube chiral angle (this is shown in Figure 8.8
for an armchair SWNT). Here you should show the above result for a zigzag
and a chiral SWNT.

[8-12] The RBM (radial breathing mode) frequency can be expected to produce
phonon softening by changing the Fermi energy. However, the shift of the
RBM frequency is known not to be large (� 1–3 cm�1). Consider why the
phonon softening of the RBM is small. How about the phonon softening
for the D or G0-bands?




