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7
The G-band and Time-Independent Perturbations

With the materials science and Raman spectroscopy background now in place in
Chapters 1–6, we are now ready to start analyzing the Raman spectra of nanocar-
bons. In the next two chapters we discuss detailed aspects of the Raman G-band
(where the notation G comes from graphite). In order to understand the G-band
spectra in detail, we have to study the origin of the perturbations to the G-band,
caused first by time-independent perturbations, such as strain, which are consid-
ered in this chapter, and second by time-dependent perturbations, such as the elec-
tron–phonon coupling, which is considered in Chapter 8, where we discuss the
effect of temperature and gate voltage on the G-band spectra.

The G-band has two basic properties which make it special for studying sp2 ma-
terials:

� The G-band is present in the Raman spectra of all sp2 carbon systems, at around
1580 cm�1. It is related to the in-plane C–C bond stretching mode, which gives
rise to both the optical in-plane transverse optic (iTO) phonon and the longitu-
dinal optical (LO) phonon branches in graphitic materials.

� Due to the strong C–C bonding and small mass of the C atoms, the G-band
in sp2 carbons has a relatively high Raman frequency in comparison to other
materials, and very small perturbations to ωG can be measured.

Since the carbon atoms in sp2 carbon materials are neutral (neither positively nor
negatively charged), both the iTO phonon and the LO phonon have the same fre-
quency at the zone center of the Brillouin zone.1) Although the iTO and LO phonon
modes are degenerate at the Γ point in both graphite and graphene and are known
to comprise the Γ C

3 doubly degenerate symmetry phonon modes (E2g in point
group notation, see Section 6.3.4),2) only the LO phonon mode has a large Raman
intensity. However, in the presence of strain, such as occurs in carbon nanotubes,
the LO and iTO phonon modes are mixed with each other, so that both phonon

1) In an ionic crystal, the LO phonon has a higher frequency than the TO phonon mode since the
Coulomb interaction acts only on the LO mode.

2) Since there is another E2g symmetry mode in the acoustic phonon branch, we sometimes denote
the degenerate iTO and LO optical mode as the E2g (2) or E2g2 mode, while the degenerate acoustic
mode is denoted by the E2g (1) or E2g1 mode.
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modes become Raman-active. The iTO and LO phonon frequencies are split into
two peaks, and the splitting between the peaks is increased by increasing the strain.

Usually it is hard to observe the splitting of two phonon modes in a material
by hydrostatic pressure or by uniaxial strain. However, in the case of the G-band,
which has a high-frequency, it becomes possible to observe a clear strain-induced
splitting. In fact, while a 1% strain-induced change to a 100 cm�1 Raman feature
lies within the ˙1 cm�1 precision of most experimental set-ups, a 1% change in
the G-band frequency corresponds to � 16 cm�1, which is larger than the natural
width of � 10 cm�1 for the G-band features.3) For this reason, small changes in the
physical properties due to strain, as is produced by rolling up the graphene sheet
in forming a carbon nanotube, introduce easily measurable strain-induced changes
in the G-band feature.

In this chapter we review the detailed G-band properties as a function of strain,
which splits the iTO and LO frequencies in graphene (Section 7.1) and carbon nan-
otubes (Section 7.2). For carbon nanotubes we also consider the effect of quantum
confinement (Section 7.3), which is important in both carbon nanotubes and nano-
ribbons, although the latter will not be treated here.

7.1
G-band in Graphene: Double Degeneracy and Strain

The graphene hexagonal lattice is isotropic in two dimensions. The elastic tensor
in graphene is isomorphic to the elastic tensor of the two-dimensional full rotation
symmetry group, and this is why nowadays the soccer net is based on hexagonal
lattice symmetry.4) As a result of this symmetry, the LO and iTO phonon modes of
graphene are degenerate at the Γ point. This degeneracy is broken when moving
away from the Γ point in the Brillouin zone, since the introduction of a phase-
directional spatial modulation breaks the rotational symmetry. As a result, the con-
cepts of longitudinal (L) and in-plane transverse (iT) optical (O) modes5) are ex-
pressed with respect to the modulation direction along which the strain is applied.

3) The natural width of a Raman spectral
feature is given by the lifetime of the
phonons. This will be discussed further in
Chapter 8.

4) The hexagonal net was selected for the
1990 world cup in Italy. A hexagonal net
produces the shortest length of strings per
a unit area and is more flexible and more
isotropic than a stiff and anisotropic square
net. Since a 120ı angle in the hexagonal
net is used for the soccer goal, the net can
be expanded up to 180ı, and the soccer ball
can go deeper into the goal net. The shock

wave on the net propagates isotropically
from the ball, and the ball can be seen to
stop clearly at the goal point. The animation
can be seen in the following web site:
http://www1.gifu-u.ac.jp/~eng/ja/square/
2004syou/exciting/exciting.htm.

5) In the transverse mode for two-dimensional
materials, we have in-plane and out-of-plane
TO modes, while the longitudinal mode is
always an in-plane mode. Thus we do not
say iLO, but rather we simply say LO for the
longitudinal mode.



7.1 G-band in Graphene: Double Degeneracy and Strain 163

7.1.1
Strain Dependence of the G-band

When the bond lengths and angles of graphene are modified by strain, the hexag-
onal symmetry of graphene is broken, and this symmetry-breaking effect splits
the LO and iTO mode frequencies [198, 230, 231]. The understanding of this ef-
fect comes from elasticity theory [95], which is discussed in many textbooks on
the introduction to solid state physics. The dynamic equation for the deformation
of the lattice within the linear displacement regime is given by the equations of
motion [232]:

�M Ru i D M ω2
0u i C

X
k l m

Ki k l m�l m u k , (i, m , k, l D 1, 2) , (7.1)

where u i(i D 1, 2) is the in-plane atomic displacement, M is the mass of the carbon
atom, and ω0 is the frequency for the unstrained lattice. Here �l m denotes the strain
tensor in the in-plane coordinates which can be obtained by rotating the strain ten-
sor6) in the phonon propagating direction ` (longitudinal) and in its perpendicular
direction t (transverse), as �`` and �t t. The subscripts ` and the t denote, respective-
ly, the in-plane directions of the vibration of the LO and iTO phonon modes [232],
so that we can write the strain tensor for u1 and u2 as:

�
�11 �12

�21 �22

�
D

�
�t t cos2 θ C �`` sin2 θ sin θ cos θ (�`` � �t t)
sin θ cos θ (�`` � �t t) �t t sin2 θ C �`` cos2 θ

�
, (7.2)

where the angle θ denotes the angle between u1 and the iTO (u2 and LO) phonon
direction.

The fourth rank tensor Ki k l m gives the change in the elastic constant Ki k between
the displacements u i and u k due to �l m, which is defined as:7)

Ki k l m D @Ki k

@�l m

. (7.3)

Since both Ki k and �l m are second-rank symmetric tensors, they satisfy Ki k D Kk i

and �l m D �ml and thus several symmetry relationships for Ki k l m follow, such as:

Ki k l m D Kk i l m D Kk i ml D Ki k ml , and Ki k l m D Kl mi k . (7.4)

Here the latter condition comes from the fact that this fourth-rank tensor is sym-
metric for the interchange of two sets of two indices (i k) and (l m).

6) The rotation of a second-rank tensor is given by:�
cos θ sin θ

� sin θ cos θ

� �
�t t 0

0 �``

� �
cos θ � sin θ
sin θ cos θ

�
.

7) The reason why the other Kiklm components
vanish is given by the condition that the
tensor Kiklm should be invariant under a
2π/3 rotation. In three dimensions, we
should add K3333, K1133 and K3232 and we

then get five different force constants. For the
combined index (i j ) used to define Ki j , we
use the notation (11) D 1, (22) D 2, (33) D 3,
(32) D 4, (13) D 5, (21) D 6. In this notation,
the five independent Kiklm components are
expressed as: K1111 D K11, K1122 D K12,
K3333 D K33, K1133 D K13, and K3232 D K44.
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Further, the hexagonal symmetry restricts the number of independent compo-
nents of Ki k l m to a few, namely, K1111 and K1122 in the two-dimensional motion and
there are three different nonzero values that can be expressed in terms of these
two components, namely K1111 D K2222, K1122, and K1212 D (K1111 � K1122)/2 in
this case [232]. It is noted that K1212 is not independent of K1111 and K1122 and is
expressed as K1212 D (K1111 � K1122)/2. By defining the following QK , the motion of
the atoms 1 and 2 in the graphene unit cell is well-characterized by the following
definitions:

M QK11 � K1111 D K2222

M QK12 � K1122 D K2211

1
2

M
� QK11 � QK12

� � K1212 D K2112 D K1221 D K2121 .

(7.5)

Then Eq. (7.1) becomes as follows:
�

Λ � ( QK11�11 C QK12�22) �( QK11 � QK12)�12

�( QK11 � QK12)�12 Λ � ( QK11�22 C QK12�11)

� �
u1

u2

�
D

�
0
0

�
, (7.6)

where Λ D ω2 � ω2
0 and �i j is expressed by Eq. (7.2). In order to get the solution

of (u1, u2)t ¤ (0, 0)t (i. e., a nontrivial solution), the determinant of the matrix of
Eq. (7.6) should be zero, and this equation is known as the secular equation.

When we put Eq. (7.2) into Eq. (7.6), we get the frequency change δω � ω � ω0

due to strain as follows:8)

δω
ω0

D
QK11 C QK12

4ω2
0

(�`` C �t t) ˙
QK11 � QK12

4ω2
0

(�`` � �t t) . (7.7)

The hydrostatic component of the strain is defined by

�h D �`` C �t t (7.8)

and the shear component by

�s D �`` � �t t . (7.9)

The coefficient to �h in Eq. (7.7) is the Grüneisen parameter λ:

λ D � 1
ω0

@ω
@�h

D
QK11 C QK12

4ω2
0

, (7.10)

which describes the shift in frequency for a hydrostatic deformation (strictly speak-
ing, the deformation is hydrostatic when �`` D �t t). The coefficient to �s in Eq. (7.7)
is:

� D 1
ω0

@ω
@�s

D
QK11 C QK12

4ω2
0

, (7.11)

8) Here we use the fact that m(ω2 � ω2
0) D m(ω C ω0)(ω � ω0) � 2ω0 δω. All the sin θ and cos θ

terms in Eq. (7.2) disappear after a long calculation. The reason why this disappearance of sin θ
and cos θ terms occurs is that the graphene system is isotropic in plane.
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which describes the shift in frequency for shear stress. For a uniaxial strain, �`` and
�t t are related by the Poisson ratio, defined as:

ν D (δw/w )/(δ l/ l) , (7.12)

where l and w are, respectively, the length and width of a sheet being deformed
along length l. First principles calculations give �t t D �0.186�`` for a graphene
sheet [231].

7.1.2
Application of Strain to Graphene

Figure 7.1 shows the evolution of the G-band spectra for a graphene sheet subjected
to uniaxial strain [231]. Strain (see Figure 7.1a) causes the G-band to split into two
peaks, here named GC and G� (see Figure 7.1d). These bands are related to the
longitudinal (G�) and transverse (GC) atomic motions with respect to the strain
direction (where the eigenvectors are defined in Figure 7.1b,c). The labels iTO and
LO as used here have no relation to the concept of iLO and iTO in the graphene
phonon dispersion relations, where the modes are longitudinal and transverse with
respect to a given phonon modulation direction q. A clear picture about the phonon
eigenvectors is obtained by considering the dependence of the G-band mode inten-
sities as a function of the light polarization direction (see [198, 230, 231]).

In Figure 7.2, the measured values for the strain-dependent shifts are @ωGC /@� D
�10.8 cm�1/% strain and @ωG� /@� D �31.7 cm�1/% strain. However, these val-
ues vary from one research group to another by a factor of � 5 [198, 230, 231],
mainly due to the difficulty in performing the experiment accurately. Sample
preparation and inhomogeneous bending of the sample are examples of experi-
mental difficulties.

Having the G-band frequency shifts from Figure 7.2, one can use Eq. (7.7) by
substituting �t t D 0 and �l l D � to obtain the coefficients given in Eqs. (7.10)
and (7.11) as

λ D δωGC C δωG�

2ω0(1 � ν)�
(7.13)

� D δωGC � δωG�

ω0(1 C ν)�
. (7.14)

7.2
The G-band in Nanotubes: Curvature Effects on the Totally Symmetric Phonons

The G-band appears as multiple peaks in a SWNT, while a single peak (ωG �
1582 cm�1) is observed for a 2D graphene sheet [112, 233]. Up to six G-band
phonons are first-order Raman allowed in chiral SWNTs, although two of them
(the totally symmetric A 1 modes, see Figure 6.8) usually dominate the spectra. In
this section we discuss the effects of curvature in the A 1 symmetry modes.
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Figure 7.1 The effect of uniaxial strain on
graphene. (a) The graphene sheet is deposit-
ed on a polymer coated substrate that is bent
using the four indicated point supports. (b,c)
Eigenfunctions for GC (b) and G� (c) are
shown and are determined by density-func-
tional perturbation theory. The direction of

the strain axis is indicated for both cases. (d)
The G-band spectra thus measured for many
values of the applied strain show a splitting
into two components, GC and G� that are
clearly seen with increasing strain. Note that
each spectrum is labeled by its value of the
applied strain. Adapted from [231].

7.2.1
The Eigenvectors

In carbon nanotubes, strain exists independent of any external applied force be-
cause of nanotube curvature. The system is one-dimensional, so that a longitudi-
nal vibration means atomic motion along the tube axis and a transverse vibration
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Figure 7.2 G-band frequencies ωGC and ωG� for graphene are plotted as a function of ap-
plied uniaxial strain. The solid lines are linear fits to the data, and values for the fitted slopes are
indicated for both ωGC and ωG� . Adapted from [231].

means atomic motion perpendicular to the tube axis [234]. Ab initio calculations
have been performed for (6,6) and (10,0) achiral and (8,4) and (9,3) chiral nan-
otubes [234]. The authors found that, for achiral (armchair and zigzag) SWNTs,
the strict LO and iTO designations of the G-band phonons remain valid. For chiral
nanotubes, however, the phonon eigenvectors lie along different directions relative
to the nanotube axis, so that we cannot define strict LO and iTO modes by using
the nanotube axis direction. In Figure 7.3a we show the A 1 mode displacements
for an (8,4) tube and in Figure 7.3b we show the corresponding displacements for
a (9,3) M-SWNT [234]. In Figure 7.3 it can be seen that the displacement of the
atoms is along the circumference in the (8,4) S-SWNT, but parallel to the bonds in
the (9,3) nanotube, thus showing evidence for sensitive dependence of the atomic
displacements on the chiral angle. The smallest angle between the carbon-carbon
bonds and the circumference in the (9,3) tube is 30ı � θ D 16.1ı [234].

Of course the θ result is model-dependent and, therefore, despite the importance
and the large number of prior works devoted to Raman scattering in SWNTs [112,
233], there is still controversy about whether the many peaks within this G-band
can be assigned to (quasi) LO and iTO type mode behavior. There is also contro-
versy about which features pertain to the three different symmetry types (A 1, E1

and E2) related to phonon confinement within the first-order single resonance pro-
cess [112, 227, 233], or if all features belong to a totally symmetric irreducible rep-
resentation (A 1 symmetry) [235, 236] and originate from a defect-induced double

resonance Raman scattering process [237]. Phonon confinement will be discussed
here in Section 7.3.1, while the double resonance process in this connection will
be discussed in Chapters 12 and 13, where we then revisit the double-resonance
G-band model. For the moment, we consider only the A 1 symmetry modes with
iTO and LO character, for simplicity.
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Figure 7.3 (a) The A1 symmetry high-en-
ergy eigenvectors for an (8,4) S-SWNT. The
atomic displacements are parallel to the cir-
cumference. (b) An A1 symmetry high-energy

eigenvector for a (9,3) M-SWNT. The atom-
ic displacements are parallel to the carbon–
carbon bonds. The direction of the helix is
indicated by the gray lines [234].

7.2.2
Frequency Dependence on Tube Diameter

The most evident consequence of the strain induced by tube curvature is the ωG

dependence on tube diameter (dt). Such a dependence has already been introduced
in Chapter 4. In Figure 4.12, the filled bullets stand for ωG from semiconducting
SWNTs and the open bullets stand for ωG from metallic SWNTs. The two most
intense A 1 symmetry G peaks, named GC and G� for the higher and lower fre-
quencies, respectively, exhibit the following diameter dependence [179]:

ωG D 1591 C C/d2
t , (7.15)

where CGC D 0, C S
G� D 47.7 cm�1nm2, C M

G� D 79.5 cm�1 nm2 gives the solid,
long dashed and dashed lines in Figure 4.12c, respectively, for semiconducting and
metallic SWNTs. Such a dependence is explained as follows. In the time-indepen-
dent perturbation picture, the ωLO

G mode frequency is expected to be independent
of diameter, since the atomic vibrations are along the tube axis. In contrast, the
ωiTO

G mode has atomic vibrations along the tube circumference, and increasing the
curvature increases the out-of-plane component, thus decreasing the spring con-
stant with a 1/d2

t dependence. This picture holds for S-SWNTs, where GC stands
for the LO mode, and G� stands for the iTO mode [179]. However, for M-SWNTs
the picture is different: GC stands for the iTO mode, and G� stands for the LO
mode [124]. The G-band profile in this case is very different, as shown in the bot-
tom spectrum of Figure 4.12a, and this behavior can only be understood within a
time-dependent perturbation picture. This issue is discussed further in Chapter 8.
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7.3
The Six G-band Phonons: Confinement Effect

In Section 7.2, we neglected the fact that when rolling up the graphene sheet to
form a nanotube, the confinement along the circumferential direction generates a
larger number of first-order Raman-active modes. In Section 7.3.1 we discuss mode
symmetry and selection rules while in Section 7.3.2 we show how polarization anal-
ysis can be used to study the G-band in more depth. For a detailed discussion of
the selection rules for the first-order single-resonance Raman scattering process in
nanotubes, we direct the reader to Chapter 6.

7.3.1
Mode Symmetries and Selection Rules in Carbon Nanotubes

The A 1, E1 and E2 symmetry Raman modes exhibiting zero, two and four nodes
along the tube circumference (see Figure 6.8) become Raman-active in SWNTs.
These modes are represented using the zone-folding picture in Figure 7.4b. Con-
sidering these three symmetries combined with their LO and iTO vibrational na-
ture (displayed in Figure 7.4a), six G-band phonons can be Raman-active in chiral
SWNTs (achiral have higher symmetry and only three G-band modes are Raman
active). However, their observation depends on the direction of light polarization
and on the resonance condition, as discussed below.

Here we select the Z and Y axes as the SWNT axis direction and the photon
propagation direction, respectively. Thus we have two independent polarization di-
rections of light, namely parallel (Z) and perpendicular (X) to the nanotube axis.
Hereafter we denote a scattering event with incident polarization i and scattered
polarization s as (i s).9) Thus we have four different kinds of scattering events: X X ,

Figure 7.4 (a) Schematic picture of the G-
band atomic vibrations along the nanotube
circumference and along the nanotube axis
of a zigzag nanotube. (b) The Raman-ac-
tive modes with A1, E1, and E2 symmetries

and the corresponding cutting lines µ D 0,
µ D ˙1, and µ D ˙2 in the unfolded
2D Brillouin zone. The Γ points of the cutting
lines are shown by solid dots [80].

9) A more complete notation is pi (i s)ps , named Porto’s notation in memory of S.P.S. Porto, where
pi and ps give the propagation directions for the incident and scattered photons, respectively.
Since we only discuss backscattering here, for economy of space we do not use the full notation
for the scattering geometry.
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Table 7.1 Selection rules for polarization-
dependent G-band features and the corre-
sponding resonance conditions. The Z and Y
axes are the SWNT axis direction and the pho-

ton propagation direction, respectively. The
polarization of the incident and scattered light
are given as well as the resonance condition.
EG is the G-band phonon energy [226, 227].

Symmetry of phonon Scattering event Resonance

A1 (Z Z ) Elaser D Eii , Elaser ˙ EG D Eii

A1 (X X ) Elaser D Eii˙1, Elaser ˙ EG D Eii˙1

E1 (X Z ) Elaser D Eii˙1, Elaser ˙ EG D Eii

E1 (Z X ) Elaser D Eii , Elaser ˙ EG D Eii˙1

E2 (X X ) Elaser D Eii˙1, Elaser ˙ EG D Eii˙1

X Z , Z X and Z Z . Considering the general case of chiral SWNTs (with CN sym-
metry) [226, 227], the first-order Raman signal from isolated SWNTs can only be
seen when the excitation laser energy is in resonance with a van Hove singulari-
ty (VHS). These selection rules imply that, for isolated SWNTs: (1) A 1 symmetry
phonon modes can be observed for the (Z Z ) scattering geometry when either the
incident or the scattered photon is in resonance with Ei i , and for the (X X ) scat-
tering geometry when either the incident or the scattered photon is in resonance
with Ei,i˙1. (2) E1 symmetry modes can be observed for the (Z X ) scattering geom-
etry for resonance of the incident photon with Ei i VHSs, or for resonance of the
scattered photon with Ei,i˙1 VHSs, while for the (X Z ) scattering geometry for res-
onance of the incident photon with Ei,i˙1 VHSs, or for resonance of the scattered
photon with Ei i VHSs. (3) E2 symmetry phonon modes can only be observed for
the (X X ) scattering geometry for resonance with Ei,i˙1 VHSs. Therefore, depend-
ing on the polarization scattering geometry and resonance conditions, it is possible
to observe 2, 4 or 6 G-band peaks. A summary of the polarization dependence and
the corresponding resonance conditions is listed in Table 7.1.

7.3.2
Experimental Observation Through Polarization Analysis

First of all, there is a general and simple polarization behavior that one should
bear in mind when acquiring the Raman spectra from a sample of aligned SWNTs,
which is not accounted for in the selection rules described in Section 7.3.1. Car-
bon nanotubes behave as antennas, with the absorption/emission of light being
highly suppressed for light polarized perpendicular to the nanotube axis, because
of the depolarization effect [238, 239]. Here the depolarization effect means that
photoexcited carriers screen the electric field of the cross-polarized light [238, 239].
Therefore, if one wants to measure Raman spectra from a sample of aligned car-
bon nanotubes, the largest Raman intensity will generally be observed for light
polarized along the tube axes (Z Z ), and almost no signal will be observed for cross
polarized light [228, 235, 240], as shown in Figure 7.5a. Furthermore, when acquir-
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Figure 7.5 (a) Polarization dependence of
the G-band from one isolated semiconducting
SWNT sitting on a Si/SiO2 substrate [228].
Both incident and scattered light are polarized
parallel to each other and vary from parallel
(bottom) to perpendicular (middle) and back
to parallel (top) to the tube axis. Parts (b) and
(c) show the polarization scattering geometry

dependence for the G-band from two isolated
SWNTs. The Lorentzian peak frequencies are
given in units of cm�1. θ 0

S and θ 00
S are the in-

cident angles between the light polarization
and SWNT axis directions, not known a priori.
From the relative intensities of the polariza-
tion behavior of the G-band modes, θ 0

S � 0ı

and θ 00
S � 90ı are assigned [226].

ing polarized spectra from a single SWNT with a fixed laser energy, it is not usual to
observe Raman signals from both parallel (Z Z ) and perpendicular (Z X , X Z, X X )
polarization, since the resonance energies for the polarized light in different polar-
ization directions are different from each other (see Table 7.1). This combination of
properties make the totally symmetric A 1 mode dominant in the G-band spectra.

However, the most interesting results coming from the polarization analysis are
related to the symmetry selection rules for the different phonon/electron symme-
tries [227, 228, 241], as discussed in Section 7.3.1. Figure 7.5b shows three differ-
ent G-band Raman spectra from an S-SWNT, but with three different directions for
the incident light polarization, that is, θ 0

S , θ 0
S C40ı and θ 0

S C80ı , where θ 0
S is an an-

gle between the initial polarization directions of the light and the nanotube axis. Six
well-defined peaks associated with the G-band features are observed, with different
relative intensities for the different polarization geometries, and the symmetries of
the various peaks are assigned as follows: 1565 and 1591 ! A 1 symmetry; 1572
and 1593 ! E1 symmetry; 1554 and 1601 ! E2 symmetry. Figure 7.5c shows
two G-band Raman spectra obtained from another S-SWNT (ωRBM D 132 cm�1),
with θ 00

S and θ 00
S C 90ı. The spectra can be fit using four sharp Lorentzians, and

a broad feature at about 1563 cm�1. This broad feature (FWHM � 50 cm�1) is
sometimes observed in weakly resonant G-band spectra from S-SWNTs and they
are not discussed here.10) From previous polarization Raman studies [227], the

10) These features are likely generated by the defect-induced double resonance processes, discussed
in Section 13.5.
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sharp peaks at 1554 and 1600 cm�1 should be assigned as E2 symmetry modes,
while the 1571 and 1591 cm�1 peaks should be assigned as unresolved (A 1 C E1)
symmetry modes, their relative intensities depending on the incident light polar-
ization direction [227].

It is interesting to note the relatively high intensity of the spectra with (X X ) po-
larization observed in Figure 7.5c, indicating resonance with Ei,i˙1 optical transi-
tions. For several measured isolated SWNTs, the Raman intensities in Figure 7.5 do
not exhibit a substantial reduction for any direction of the incident/scattered light,
in contrast to other published results [228, 235, 240], which showed an intensity
ratio IZ Z W IX X � 1 W 0. From our discussion, it is clear that the so-called anten-
na effect is observed for samples in resonance with only Ei i electronic transitions,
and that is the case in Figure 7.5a and [228, 235, 240]. However, in general, the
intensity ratio ZZ:XX can assume values either larger or smaller than 1, depend-
ing on the resonance condition. The samples in [227] exhibit a very large diameter
distribution (dt from 1.3 nm up to 2.5 nm), so that Ei i and Ei,i˙1 transitions can
both occur within the resonance window of the same laser, and an average value of
Z Z W X X D 1.00 W 0.25 was then observed.

7.3.3
The Diameter Dependence of ωG

Now that the phonon confinement has been introduced, a more complete picture
for the diameter dependence of the G-band than that introduced in Section 7.2.2
can be given. Figure 7.6 shows the G-band phonon frequencies as a function of
tube diameter evaluated by zone folding of the graphene phonon dispersion re-
lations (lines) in comparison to ab initio calculations (points) [124]. The diameter
dependence of the dispersion relations based on zone folding comes from the di-
ameter dependence of the distance between adjacent cutting lines. A single A 1

mode is predicted since the phonon frequencies of the LO and iTO modes are
identical to each other at the Γ point in graphite (see Figure 7.4b). Additionally,
zone folding shows a relatively small splitting between the longitudinal and trans-
verse E1 modes, and a larger splitting between the two E2 modes. A large mode
softening is observed for small diameters as the cutting line reaches the maximum
of the phonon dispersion for the LO branch in Figure 7.4b.

The full ab initio calculations show a similar behavior, but some details are clear-
ly different. Generally, the ab initio results are lower in frequency than the zone-
folded values. The frequency softening of the ab initio points is explained by the
fact that curvature weakens the π contribution to the bonds in the circumferen-
tial direction, which also explains why the A 1(T) mode11) is affected most strongly
by curvature, whereas the A 1(L) mode is essentially independent of diameter for
semiconducting tubes. For diameters of about 1.4 nm, the E2 modes (squares at
approximately 1613 cm�1 and 1570 cm�1 in Figure 7.6) are symmetrically split by
˙22 cm�1 with respect to the central graphite frequency ωG D 1592 cm�1 (theo-

11) Here, T and L denote the iTO and LO phonon modes, respectively, as adopted in [124].
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Figure 7.6 Diameter dependence of phonon
frequencies of (n, 0) zigzag, (n, n) armchair
and (12,6) chiral SWNTs for the G-band cal-
culated by ab initio density functional the-
ory (symbols) and by zone folding (lines).
Phonons are characterized by their symmetry
and whether they are T or L modes. Here L de-

notes vibration (longitudinal) displacements
parallel to the tube axis while T denotes vibra-
tional displacements transverse or perpendic-
ular to the tube axis. The lower axis and upper
axis show the diameter and the (n, 0) index
scales for zigzag tubes, respectively. [124]

ry). Since the tube curvature shifts the E1(T) mode to lower values, the frequencies
of the E1(T) and A 1(L) modes (open triangles and asterisks) almost coincide for
S-SWNTs and are located at about 1597 cm�1, a little bit higher in frequency than
the theoretical central G-band mode of graphite. The E1(L) and A 1(T) symmetry G-
band modes (filled triangles and open circles in Figure 7.6) also have rather similar
frequencies and are found at roughly 1580 cm�1, that is, 20 cm�1 lower than the
E1(T) and A 1(L) modes. The (n, m) labeled tubes indicate a downshifted A 1(L) for
metallic SWNTs, and theseunusual results will be discussed in Chapter 8.

Further confirmation for the G-band mode assignment proposed in Section 7.3.1
comes from comparison of experimental results with ab initio calculations. Here
we focus on the spectra from semiconducting SWNTs because metallic SWNTs ex-
hibit time-dependent perturbations that will be discussed in Chapter 8. Figure 7.7
plots the G-band mode frequencies for several resonant S-SWNTs vs. the observed
ωRBM (bottom axis) and vs. inverse nanotube diameter where the relation 1/dt D
ωRBM/248 was used to label the top axis of Figure 7.7.12) The spectra are usually fit
using 6 peaks, although sometimes only 4 or 2 peaks are used, the spectra beingfit
with linewidths approaching the natural linewidth for the G-band modes [242], that
is, γG � 5 cm�1.

12) The ωRBM D 248/dt relation [176] has been broadly used in the early years of single nanotube
spectroscopy (2001–2005), although now we know it represents a special case. How to obtain
the tube diameter from the SWNT radial breathing mode frequency (ωRBM) is the subject of
Chapter 9.
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Figure 7.7 Correlation of ωG and ωRBM
shown by plotting ωG (open symbols)
vs. ωRBM (bottom axis) and vs. 1/dt (top
axis) for S-SWNTs. Experimental G-band
data obtained with Elaser D 1.58, 2.41 and

2.54 eV. Solid symbols connected by solid
lines come from ab initio calculations [124]
downshifted by 18, 12, 12, 7, 7, 11 cm�1 from
the bottom to the top of the ab initio data,
respectively [226].

The solid symbols connected by solid lines in Figure 7.7 come from calculations
by Dubay et al. (Figure 7.6). The different solid symbols indicate the different mode
symmetries: � ! A 1, N ! E1, � ! E2, in agreement with polarization results
(see Figure 7.5). The theoretical points in Figure 7.7 were downshifted by about
1% to fit the experimental data. The observed dt dependence of the frequencies
for each of the 3 higher frequency GC-band modes (A 1, E1 and E2) are in very
good agreement with theory [124], showing little dt dependence. For the 3 low-
er frequency G�-band modes, both ab initio calculations and experimental results
show a stronger dt dependence, but ab initio calculations seem to slightly under-
estimate the G�-band mode softening for lower dt values (mainly for the A 1 sym-
metry mode). The experimental data from semiconducting SWNTs can be better
fit with [226]

ωG D 1592 � C/d
�
t , (7.16)

with � D1.4, CA1 D41.4 cm�1 nm, CE1 D32.6 cm�1 nm, and CE2 D64.6 cm�1 nm.

7.4
Application of Strain to Nanotubes

Different authors have applied externally induced strain to carbon nanotubes, both
in bundles [236, 243] and as isolated tubes [244–246]. The elasticity theory present-
ed in Section 7.1.1 is also used to study strain in carbon nanotubes, and it has
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actually been initially developed for these cases [232]. Measurements on SWNT
bundles basically show an overall increase in ωG by increasing hydrostatic pres-
sure [236, 243]. This result was initially used as evidence for the absence of LO
and iTO G-band mode behavior. However, measurements on isolated tubes show a
greater richness of effects, which includes both hydrostatic and uniaxial deforma-
tion, torsion, bending, etc. Here a large downshift in the E2 modes was observed
and different pressure-induced effects for GC vs. G� were found, depending on
(n, m) [247]. For isolated S-SWNTs with uniaxial strain up to 1.65%, shifts in ωG

of up to 40 cm�1 were observed [244]. There are still some controversial results
regarding strain effects in SWNTs, mostly because of the difficulty to perform the
experiments accurately and the need for a large number of measurements to estab-
lish and understand the (n, m) dependence.

7.5
Summary

The stretching of the C–C bond in sp2 graphitic materials gives rise to the so-called
G-band. The G-band is highly sensitive to strain effects in sp2 nanocarbons, and
can be used to probe any modification in the flat geometric structure of graphene,
such as the strain that is induced by external forces, or even by the curvature when
growing a SWNT. This curvature dependence generates a diameter dependence,
thus making the G-band a probe also for the tube diameter, while its dependence
on externally induced strain is very rich and still controversial. Phonon confine-
ment in SWNTs generate complex selection rules that can be tested using light po-
larization analysis, although the antenna effect causes the totally symmetric modes
to dominate the spectra most of the time. Finally, the G-band of metallic SWNTs
is special, and this comes from electron–phonon coupling that can only be treated
within time-dependent perturbation theory. This effect generates interesting re-
sults in both graphene and carbon nanotubes, related to both temperature and
doping. These issues will be discussed in Chapter 8.

Problems

[7-1] Explain that the Coulomb interaction between positive and negative ions in
an ionic crystal changes the force constant for the LO phonon mode but not
for the iTO phonon mode.

[7-2] When we consider the frequency-dependent dielectric constant �(ω), the
ratio of the LO to the iTO phonon frequency in an ionic crystals is given by:

ωLO

ωiTO
D �(0)

�(1)
,



176 7 The G-band and Time-Independent Perturbations

which was derived by Lyddane, Sachs, and Teller (LST theory). Study the
LST theory and obtain the above formula. Check that the formula works for
some ionic crystals such as NaCl.

[7-3] The above LST relation is considered for q D 0. For a general q vector, we
can discuss how the phonon dispersion is modified by the Coulomb inter-
action by considering the coupling of Maxwell’s equations to the equation
of motions for the atoms:

Rx C ω2
iTO x � aEx D 0

Px D ar C (�(1) � 1)Ex ,

where a is given by:

a D ωiTO[�(0) � �(1)]1/2 .

Combining these two equations with Maxwell’s equations for Dx D Ex CPx

and for Hx , and considering their wave vector q, obtain and plot ω(q).

[7-4] When we pull a hexagonal net in one direction, how much percent of the
length of the net can be expanded compared with the length of an undis-
torted hexagonal net. When we rotate the pulling direction relative to the
C–C bond direction, how does the expansion ratio change? Compare these
results with the case of a square or triangular net.

[7-5] Consider two carbon atoms which are connected to each other by a spring.
Evaluate the force constant in units of eV/Å2 (use the 1580 cm�1 LO
phonon mode frequency for sp2 carbons).

[7-6] Consider a 2π/3 rotation around a carbon atom in the plane of graphene.
Make a 3 rotation matrix D(2π/3) for the 2π/3 rotation around the z axis.

[7-7] Let us consider a function f D ax C b y C cz C d. When a vector (x , y , z)
is transformed by this 2π/3 rotation into (x 0, y 0, z0) D D(2π/3)(x , y , z) and
suppose that f is invariant for the 2π/3 rotation, then show a D b D c D 0.

[7-8] Let us consider a function g D ax2 C b y 2 C cz2 C d y z C ezx C f x y .
When a vector (x , y , z) is transformed by the 2π/3 rotation as (x 0, y 0, z0) D
D(2π/3)(x , y , z) and suppose that g is invariant for the 2π/3 rotation, what
are the conditions imposed for the constants a, b, c, d, e, f .

[7-9] A second rank tensor can be defined as a 3 � 3 matrix ai j in which a is
transformed by any invariant operation (x 0, y 0, z0) D C(x , y , z), where C is
a matrix that transforms into a0 D C�1aC . Because the determinant of a

should not be changed by C, show that det(C)=1 and that ai j D a j i . Thus
a symmetric second rank tensor has six independent components.

[7-10] When we consider a fourth-rank tensor Ki k l m in three dimension
(i, k, l, m D 1, 2, 3), 81 possible variables exist. However, because of the
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relationship of Eq. (7.4), Ki k l m has only 21 independent variables even
though there is no symmetry for the system. Explain this statement.

[7-11] What is the relationship between the LO and iTO phonon mode frequencies
with the Young’s modulus and other force constants?

[7-12] In the DN symmetry, show that only A 1, E1, and E2 phonon modes are
Raman-active. If we plot the one-dimensional Brillouin zone (cutting
lines), which lines in the 2D Brillouin zone correspond to the Raman-active
modes? Answer by constructing a figure.

[7-13] Plot the X, Y, Z axes and show the scattering geometries with the corre-
sponding resonance conditions for carbon nanotubes when we put a carbon
nanotube with its axis along the Z axis and when the light is coming from
the Y (or Z) direction.

[7-14] The curvature of a nanotube is considered to have a constant strain in one
direction. Then estimate the change in the iTO and LO phonon frequencies.

[7-15] Show how to obtain Eqs. (7.13) and (7.14) from the definitions in Sec-
tion 7.1.1.

[7-16] Apply the theory developed in Section 7.1.1 for carbon nanotubes, and ob-
tain the effect of strain on the transverse and longitudinal modes. You can
use [232] as a guide.

[7-17] Study the difference between Eqs. (7.15) and (7.16). Can these two equations
be consistent?

[7-18] Make a study of the Poisson ratio and the Grüneisen parameter for
graphene, graphite and carbon nanotubes.




