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Symmetry Aspects and Selection Rules: Group Theory

Symmetry is an important concept in physics. Momentum (angular momentum)
conservation, for example, goes hand in hand with the translational (rotational)
symmetry of space, and in a periodic lattice, the same can be said for crystal mo-
mentum for an electron or phonon state. Many optical processes are governed by
conserved physical variables or selection rules that are the consequence of symme-
try requirements. The selection rules governing the Raman scattering are derived
from group theory which is the central focus of this chapter.

Group theory is a branch of mathematics whose beauty and strength, when ap-
plied to physics, resides in the transformation of many complex symmetry oper-
ations into a very simple linear algebra. A deep understanding of group theory
requires a devoted study [94] and cannot be gained on the basis of this chapter.
However, we can in this chapter provide a taste of the basic concepts, the power and
usage of group theory in the field of Raman spectroscopy, giving examples of the
useful information which comes from its application to the Raman spectroscopy
of sp2 nanocarbons. Therefore, be aware that this chapter may be difficult for a
reader without a background in group theory, but with the help of a knowledgeable
mentor, the beauty of symmetry can be introduced.

First, in Section 6.1, we briefly present the basic concepts of group theory [94]
as they are applied to Raman spectroscopy. In Section 6.2 we give a group theoret-
ical treatment of the Raman scattering selection rules. Section 6.3 summarizes a
group theory analysis of optical processes for electrons and phonons in monolayer,
bilayer and trilayer graphene, and extending all the way to N layer graphene, distin-
guishing the cases of even N, odd N and very large N, the latter corresponding to
graphite [98, 217]. The symmetry of graphene is chosen for the introduction to this
topic because the graphene family provides the fundamental building blocks for all
sp2 carbons, and monolayer graphene (1-LG) is the building block for all graphenes.
In the second half of the chapter, we summarize in Section 6.4 the symmetry prop-
erties of single-wall carbon nanotubes (SWNTs) [135, 218], including an interesting
connection given in Section 6.4.6 between the nature of the selection rules for the
scattering processes in one dimension and those pertinent to the unfolded two-
dimensional wave vector space [110].
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6.1
The Basic Concepts of Group Theory

6.1.1
Definition of a Group

The structure of sp2 nanocarbons can be constructed by considering one single C
atom and applying successively all the symmetry operations that take one atom into
another, which include rotations, reflections, inversion, translations and combined
operations. The set of symmetry operations that a molecule or crystal exhibits form
a group in the group theory sense, and a group is defined as the following. A col-
lection of elements A, B, C, . . . form a group when the following four conditions
are satisfied:

1. The product of any two elements of the group is itself an element of the group.
For example, relations of the type AB D C are valid for all members of the
group.

2. The associative law is valid, that is, (AB)C D A(B C ).
3. There exists a unit element E (also called the identity element) such that the

product of E with any group element leaves that element unchanged AE D
E A D A.

4. For every element A there exists an inverse element A�1 such that A�1A D
AA�1 D E .

As a simple example of a group, consider the permutation group for three num-
bers, P(3). Below are listed the 3! D 6 possible permutations that can be carried
out; the top row denotes the initial arrangement of the three numbers and the bot-
tom row denotes the final arrangement. Each permutation is an element of P(3).

E D
�

1 2 3
1 2 3

�
A D

�
1 2 3
1 3 2

�
B D

�
1 2 3
3 2 1

�

C D
�

1 2 3
2 1 3

�
D D

�
1 2 3
3 1 2

�
F D

�
1 2 3
2 3 1

�
. (6.1)

We can also think of the elements in Eq. (6.1) in terms of the three points of
an equilateral triangle (see Figure 6.1). Again, the top row denotes the initial state
and the bottom row denotes the final position of each number as the effect of
the six distinct symmetry operations that can be performed on these three points
(see caption to Figure 6.1). The element D is a clockwise rotation of 2π/3 and F

is a counter-clockwise rotation of 2π/3. We can call each symmetry operation an
element of the group. This group is, therefore, identical with the group P(3).
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Figure 6.1 The symmetry operations on an equilateral triangle, are the rotations by ˙2π/3
about the origin 0 and the rotations by 180ı (π) about the three two-fold axes. Here the three
two-fold axes are denoted by numbers in circles.

We illustrate the use of the notation by verifying the associative law (AB)C D
A(B C ) for a few elements:

(AB)C D D C D B

A(B C ) D AD D B . (6.2)

Point groups are groups without translations. There is at least one point which
does not move under all the operations of a point group. The groups where trans-
lations are included as elements are named space groups.

6.1.2
Representations

Two groups are isomorphic or homomorphic if there exists a correspondence be-
tween their elements, such that A ! A, B ! B and AB ! AB, where the plain
letters denote elements in one group and the other letters denote elements in the
second group. If the two groups have the same order (same number of elements,
such as P(3) and the symmetries of an equilateral triangle), then they are isomor-

phic (one-to-one correspondence). Otherwise they are homomorphic (many-to-one
correspondence).

The representation1) for an element R (e. g., R D A, B, C, . . .) denoted by D(R) is
given by a square matrix in which a set of basis functions u � (u1, u2, � � � , u m) are
transformed by R as

R u D D(R)u . (6.3)

In this way we assign a matrix D(A) to each element A of the group such that
D(R R 0) D D(R)D(R 0).

1) The representation of an abstract group is a substitution group (matrix group with square
matrices) such that the substitution group is homomorphic (or isomorphic) to the abstract group.
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Consider the following group of matrices:

E D
�

1 0
0 1

�
A D

��1 0
0 1

�
B D

 
1
2 �

p
3

2

�
p

3
2 � 1

2

!

C D
 

1
2

p
3

2p
3

2 � 1
2

!
D D

 
� 1

2

p
3

2

�
p

3
2 � 1

2

!
F D

 
� 1

2 �
p

3
2p

3
2 � 1

2

!
. (6.4)

The matrix corresponding to the identity operation is always a unit matrix. The ma-
trices in Eq. (6.4) constitute a matrix representation of the group that is isomorphic
to P(3) and to the symmetry operations on an equilateral triangle, since they obey
the same multiplication rules. The A matrix represents a rotation by ˙π about the
y axis while the B and C matrices, respectively, represent rotations by ˙π about
axes 2 and 3 in Figure 6.1. D and F, respectively, represent rotation of �2π/3 and
C2π/3 around the center of the triangle (see Section 6.1.1).

6.1.3
Irreducible and Reducible Representations

When D(R) for all the elements in a group can be blocked into similar sub-matrices
by one unitarity transformation,2) the D(A) is called a reducible representation. In
this case, the space of u can be decomposed into smaller spaces of basis func-
tions with smaller dimensions. If D(A) cannot be reduced any further into smaller
blocks, then D(A) is called an irreducible representation (IR).

Three irreducible representations for the permutation group P(3) are:

E A B

Γ1 W (1) (1) (1)
Γ10 W (1) (�1) (�1)

Γ2 W
�

1 0
0 1

� ��1 0
0 1

�  
1
2 �

p
3

2

�
p

3
2 � 1

2

!

C D F

Γ1 W (1) (1) (1)
Γ10 W (�1) (1) (1)

Γ2 W
 

1
2

p
3

2p
3

2 � 1
2

!  
� 1

2

p
3

2

�
p

3
2 � 1

2

!  
� 1

2 �
p

3
2p

3
2 � 1

2

!

. (6.5)

Γ1, Γ10 and Γ2 obey the same multiplication rules as P(3) and as the equilateral
triangle. However, Γ1 and Γ10 are one-dimensional representations having only one
and two elements, respectively, being homomorphic to P(3) and to the equilateral
triangle. The one-dimensional Γ1 is named the totally symmetric representation
and it exists for all groups. The basis function of the irreducible representation

2) A unitary transformation is an operation such as U D(R)U�1, where U is an unitary matrix.
For space symmetry operations, such transformations are equivalent to a rotation (without
deformation) of the coordinate axes.
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Γ1 does not change the form for any of the operations of the group, such as 1
or r D x2 C y 2 for a bidimensional point group using the spacial coordinates.
Thus the dimension of Γ1 is one and the matrix representation is a 1 � 1 matrix
whose matrix element is 1. For Γ10 , z is a suitable basis function. By considering the
equilateral triangle in the x y plane, the z coordinate goes into �z when applying
the symmetry operations A, B and C. Thus the dimension of Γ10 is one and the
matrix representation is a 1 � 1 matrix whose matrix element now is either 1 or
�1. The bidimensional Γ2 has six elements and is isomorphic to P(3), as stated
previously. A suitable set of basis functions (two orthogonal functions are needed)
using the spacial coordinates is (x , y ). A reducible representation containing these
three irreducible representations is:

E A B

ΓR W

0
BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CCA

0
BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

1
CCA

0
BBB@

1 0 0 0
0 �1 0 0

0 0 1
2 �

p
3

2

0 0 �
p

3
2 � 1

2

1
CCCA , etc.,

(6.6)

where ΓR is of the block form3)

0
@ Γ1 0 O

0 Γ10 O
O O Γ2

1
A . (6.7)

It is customary to list the irreducible representations (IR) contained in a reducible
representation ΓR as:

ΓR D Γ1 C Γ10 C Γ2 . (6.8)

In quantum mechanics, the matrix representation of a group, D(R), is important
for several reasons. First of all, an eigenfunction for a quantum mechanical opera-
tor is a basis function of an IR of the group of the system.4) Thus, without actually
calculating the eigenvalue problem, we can know from group theory the form of
functions which belong to each IR.5) Secondly, quantum mechanical operators are
usually written in terms of a matrix representation which is generally a reducible
representation of the group, and thus by selecting the basis function belonging to
the IR, the matrix can be put into block form. Thus matrix algebra becomes much
easier to manipulate than the original symmetry operations.

3) O indicates a null matrix.
4) Any operator of the group of the system,

A commutes with the quantum operator
O as [A,O] D 0. This is a requirement
of the group. Then the wavefunction of
AΨ has the same eigenvalue O of O for
Ψ (OAΨ D AOΨ D OAΨ ). Thus Ψ
is also an eigenfunction of A (if Ψ is not

degenerate) in the group and Ψ is the basis
function of an IR. This proof is also valid
when E is degenerate.

5) This does not mean that group theory solves
the eigenvalue problem. Group theory,
however, helps solving the eigenvalue
problem by reducing the dimensions of the
space to be considered.
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6.1.4
The Character Table

The character of the representation matrix D(R), is the trace �(R) of D(R).6) The
table of �(R) for all R and for all IRs constitutes a character table, schematically
represented in Table 6.1 in which �(R) for an IR is listed in a row. The first row
of the character table is a totally symmetric IR, denoted by Γ1 (or A, A 1, A g . . .
depending on the group and notation) in which all �(R) D 1. This row is present
in the character table for all point groups.

A column of Table 6.1 pertains to a class which is defined by a set of operations
(R1, R2, � � � , Rc) that transform into one another by any operations O j in the group
such as Ri D O�1

j R O j . For example, if three C2 rotational operators are equivalent
to one another, the three C2 belong to a class of 3C2, where 3 denotes the dimension
of the class. The characters for operators within a class are the same. Class 1 in
Table 6.1 consists of the identity element E and this element is also present in
all groups. The characters for Class 1 for an IR is the dimension of the IR since
no basis function changes under the operation E and thus the diagonal matrix
elements of D(E ) are all 1. Notice that in a group the number of IRs is equal to the
number of classes in the group.

The character table for the permutation group P(3) is shown in Table 6.2.

Table 6.1 Schematics for a group theory char-
acter table. The IR denoted by 1 represents the
totally symmetric IR, and is always present in
all character tables. �Ck

IR j represents the char-

acters for the symmetry operations in class
Ck , belonging to the IR j, where j D 1, 2, 3.
Also Nk is the number of elements in Ck .

Basis functions N1C1 N2C2 N3C3

Function 1 IR 1 1 1 1

Function 2 IR 2 �C1
I R2 �C2

I R2 �C3
I R2

Function 3 IR 3 �C1
I R3 �C2

I R3 �C3
I R3

Table 6.2 Character table for the permutation group P(3), for the symmetry operations of the
equilateral triangle or, more generally, for the so-called group D3, using the Schoenflies nota-
tion [94].

Class ! C1 3C2 2C3

IR # �(E ) �(A, B, C ) �(D, F )

Γ1 1 1 1
Γ10 1 �1 1

Γ2 2 0 �1

6) The trace of a matrix is the sum of diagonal matrix elements �(R) D Tr(R) D P
i Ri i .
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Table 6.3 Classes for group D3 or equivalently for the permutation group P(3) and for the sym-
metry operations of the equilateral triangle.

Notation for each class D3 Equilateral triangle P(3)

Class 1 E (Nk D 1) 1C1 (Identity class) (1)(2)(3)
Class 2 A, B, C (Nk D 3) 3C2 (Rotation of π about two-fold axis) (1)(23)

Class 3 D, F (Nk D 2) 2C3 (Rotation of 120ı about three-fold axis) (123)

This point group is named D3 (Schoenflies notation) [94]. In Table 6.2 the nota-
tion NkCk is used in the character table to label each class Ck , and Nk is the number
of elements in Ck . The classes for group D3 and P(3) are listed in Table 6.3, showing
different ways that the classes of a given group are presented.

6.1.5
Products and Orthogonality

When we define the inner product of characters for two IRs weighted by the di-
mension of the class divided by the normalization factor of the dimension of the
group, we get the rules for the ortho-normal conditions for IRs, which is gener-
ally referred to as the Wonderful Orthogonality Theorem for Characters. To illustrate
the meaning of the Wonderful Orthogonality Theorem for Characters, consider the
character table for the group D(3) shown in Table 6.2 or given in Table 6.4 in its
most commonly used form. Let Γ j D Γ1 and Γ j 0 D Γ10 . Then calculate:X

k

Nk �(Γ j )(Ck )
�
�(Γ j 0 )(Ck )

�� D (1)(1)(1)„ ƒ‚ …
class of E

C (3)(1)(�1)„ ƒ‚ …
class of A,B,C

C (2)(1)(1)„ ƒ‚ …
class of D,F

D 1 � 3 C 2 D 0. (6.9)

It can likewise be verified that the Wonderful Orthogonality Theorem works for all
possible combinations of Γ j and Γ j 0 in Table 6.4.

Since an eigenfunction Ψ for an electron (or phonon) state pertains to a given IR,
we identify in the character table the set of symmetry operations that Ψ exhibits,
thus describing the effect of the symmetry operations on Ψ based on the simple
linear algebra of matrices. The dimension of each IR, d, gives the degeneracy of an

Table 6.4 Character table for group D3 (rhombohedral).

D3 (32) E 2C3 3C 0

2

x2 C y2, z2 A1 1 1 1
Rz , z A2 1 1 �1

(x z, y z)
(x2 � y2, x y)

�
(x , y)
(Rx , Ry )

�
E 2 �1 0
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energy level which belongs to the IR. If the system has m IR eigenstates given by
group theoretical considerations as below, we expect to have m , d-fold eigenvalues
(this means m � d eigenfunctions). As shown later, for a chiral nanotube, we have
five doubly degenerate Raman-active phonon modes for a given IR (named E1).

6.1.6
Other Basis Functions

For each symmetry group, one can build a character table whose structure is
shown in Table 6.1. We remind readers that the basis function can be obtained by
considering the representation matrices and vice-versa. In the leftmost column,
the corresponding simple basis functions belong to the IR, such as x , y , z for
translation, Rx , Ry , Rz for rotation along the x , y , z axes, or quadratic functions
x x , y y , zz, x y , y z, zx and so on. An example is given in Table 6.4 for the D3

group. This information on the basis functions is useful for knowing which IR
belongs to the vibration along the x direction, the rotation along the x axis, and the
Raman-active modes (see Section 6.2). The known groups such as point groups,
space groups, symmetry groups, are all listed in crystallography tables and their
character tables can be found in group theory books.

6.1.7
Finding the IRs for Normal Modes Vibrations

To find the normal modes for the vibration problem, we carry out the following
steps:

1. Identify the symmetry operations that define the point group G of the crystal
unit cell in its equilibrium configuration.

2. Find the characters for the equivalence representation, Γequivalence D Γ a.s. (a.s.
stands for atom sites). These characters represent the number of atoms that
are invariant under the symmetry operations of the group. Since Γ a.s. is, in
general, a reducible representation of the group G, we must decompose Γ a.s.

into its irreducible representations (e. g., see Eq. (6.8)).
3. We next use the concept that a molecular vibration involves the transformation

properties of a vector. In group theoretical terms, this means that the molecular
vibrations are found by taking the direct product of Γ a.s. with the irreducible
representations for a radial vector (such as (x , y , z)). The representation for the
molecular vibrations Γlat. mode is thus found according to the relation7)

Γlat. mode D (Γ a.s. ˝ Γvec) . (6.10)

7) If working with molecules, Γtrans and Γrot have to be subtracted from Eq. (6.10), where Γtrans and
Γrot denote the representations for the simple translations and rotations of the molecule about its
center of mass.
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The symbol ˝ denotes the direct product of two IRs.8) The characters found
from Eq. (6.10), in general, correspond to a reducible representation of Group
G. We therefore express Γlat. mode in terms of the irreducible representations of
group G to obtain the normal modes. Each eigenmode is labeled by one of these
irreducible representations, and the degeneracy of each eigenfrequency is the
dimensionality of the corresponding irreducible representation. The characters
for Γtrans are found by identifying the irreducible representations of the group
G corresponding to the basis functions (x , y , z) for the radial vector r. The
characters for Γrot are found by identifying the irreducible representations cor-
responding to the basis functions (Rx , Ry , Rz ) for the axial vector (e. g., angular
momentum which, for example, corresponds to r � p ). Since the radial vector
r(x , y , z) and the axial vector r � p (Rx , Ry , Rz ) transform differently under
the symmetry operations of group G, every standard character table normally
lists the irreducible representations for the six basis functions for (x , y , z) and
(Rx , Ry , Rz ) (see Table 6.4).

4. From the characters for the irreducible representations for the molecular vi-
brations, we find the normal modes. The normal modes for a molecule as de-
fined by Eq. (6.10) are constrained to contain only internal degrees of freedom,
and no translations or rotations of the full molecule. Furthermore, the normal
modes must be orthogonal to each other.

5. We use the techniques for selection rules (see Section 6.1.8) to find out whether
or not each of the normal modes is Raman-active.

It is important to recall that Γvec(R) is obtained by summing the irreducible rep-
resentations to which the x , y , and z basis functions belong. If (x , y , z) are the
partners of a three-dimensional irreducible representation for T translations, then
Γvec(R) D Γ T (R). If, instead, x , y , and z belong to the same one-dimensional irre-
ducible representation A, then Γvec(R) D 3Γ A(R). If the x , y , and z basis functions
are not given in the character table, Γvec(R) can be found directly from the trace
of the matrix representation for R. All the point group operations are rotations
or combination of rotations with inversion. For proper rotations by an angle θ ,
�vec(R) D 1 C 2 cos θ , so that the trace for the rotation matrix can be always be
found directly from the rotation matrix

0
@ cos(θ ) sin(θ ) 0

� sin(θ ) cos(θ ) 0
0 0 1

1
A . (6.11)

Improper rotations consist of a rotation followed by a reflection about a horizontal
plane resulting in the character �1 C 2 cos θ where the +1 for a proper rotation
goes into �1 for an improper rotation, since z goes into �z upon reflection.

8) The direct product of two IRs means that
the characters of the two IRs for each
class are multiplied with one another. The

representation thus obtained is generally
a reducible representation which is then
decomposed into IRs.
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Considering group D3, imagine a hypothetical molecule made of three identical
atoms at the vertices of the equilateral triangle. We have

E 2C3 3σv

Γ a.s. 3 0 1 ) A1 C E

So that

Γlat. mode DΓ a.s. ˝ Γvec

Γlat. mode D(A 1 C E ) ˝ (A 2 C E ) D A 1 C 2A 2 C 3E . (6.12)

From these modes, three modes (A 2 C E ) are molecular rotations, three modes
(A 2 C E ) are molecular translations (see respective basis functions in Table 6.4)
and the other three (A 1 C E ) are vibrational modes.

6.1.8
Selection Rules

In considering selection rules we always involve some interaction matrix H0 that
couples two states ψα and ψ� . If H0 ψ� is orthogonal to ψα , then the matrix ele-
ment hψα jH0jψ�i vanishes by symmetry;9) otherwise, the matrix element need not
vanish, and the transition from state α to � may occur via H0. Group theory is of-
ten invoked to decide whether or not hψα jH0jψ�i vanishes by symmetry, and this
information can be extracted from the character tables. First, we identify the IRs
for ψα ,H0 and ψ� . Then we multiply their respective characters �H0 (R) ˝ �ψ� (R).
Such a multiplication process can be described by a linear combination of charac-
ters coming from different IRs of the group. If this linear combination contains the
IR for the ψα state,10) the matrix is nonvanishing by symmetry. Otherwise, H0 ψ�

is orthogonal to ψα . This rule is applied to obtain the selection rules for the matrix
elements occurring in Raman scattering, as discussed in this chapter.

6.2
First-Order Raman Scattering Selection Rules

In Section 4.3.2.7 we described the momentum conservation requirement (q � 0)
for first-order Raman scattering, which goes hand in hand with the translation-
al symmetry in the periodic lattice. Here we derive other symmetry requirements
for first-order symmetry-allowed Raman scattering processes for phonons related
to the other symmetry elements (rotations, reflections, etc.) of the crystal lattice.
Suppose that we have a group G with symmetry elements R and symmetry opera-

9) This means that the integrated function is an odd function of the variables so the implied
integration gives a zero value.

10) Or alternatively the representation whose character is the direct product ψα (R)˝ �H0 (R)˝ �ψ� (R)
contains the totally symmetric IR Γ1.
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tors OPR . We denote the IRs by Γn , where n labels the IR. We can then define a set of
basis functions denoted by jΓn j i, with j D 1, 2, . . . ` j , where ` j is the dimension
of the IR.

As shown in Section 5.4.1, the electromagnetic interaction for electric dipole
transitions is given by:

HeR D � e

m
p � A , (6.13)

in which p is the momentum operator of the electron and A is the vector potential
of an external electromagnetic field.11) In the dipole approximation, A (or E ) which
have a much longer wavelength than the unit cell size is considered to be a constant
vector within the unit cell, which means that A can be taken out of the matrix
element hajp � Ajii D hajp jii � A.

As discussed in the previous section (Section 6.1.8), to have a nonvanishing ma-
trix element hajp jii, we need

Γa � Γp ˝ Γi , (6.14)

where Γi , Γa and Γp are the IRs for the initial and intermediate electronic states
and for the electron radiation Hamiltonian interaction, respectively. The symbol
A � B is defined so that A is a subset of B. That is, in the reducible representation
of B, we can find the IR for A.

Similarly, the electron–phonon matrix element hbjHe-ionjai is nonvanishing if

Γb � ΓHe-ion ˝ Γa � ΓHe-ion ˝ Γp ˝ Γi , (6.15)

if we consider that state jai here was generated from jii by HeR . In sequence, the
symmetry for the final state in h f jp jbihbjHe-ionjaihajp jii has to obey

Γ f � Γp ˝ Γb � Γp ˝ ΓHe-ion ˝ Γp ˝ Γi , (6.16)

which gives the selection rules for state j f ibeing generated from state jii by the
third-order Raman scattering process. The Raman process ends with the electron
decaying back to its original state, which means the initial and final electronic states
are the same (j f i � jii). Therefore,

ΓΨi
� Γp ˝ ΓHe-ion ˝ Γp ˝ ΓΨi

, (6.17)

with ΓΨi
being the IR for the initial electronic state. This condition is the same as

saying that a Raman-active mode has to obey

Γp ˝ ΓHe-ion ˝ Γp � Γ1 , (6.18)

11) Alternatively, HeR can also be given by �er � E (see Section 5.4.1), and then r transforms as a
vector.
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where Γ1 is the totally symmetric IR. Since Γp pertains to the same IR as the basis
functions x , y and z, the condition above is valid if ΓHe-ion belongs to the same IR as
the symmetric combinations of the biquadratic basis functions x x , y y , zz, x y , x z

and y z.12) Therefore, one can identify the Raman-active modes as those pertaining
to the same IRs as the biquadratic functions, which are often listed in character ta-
bles. Furthermore, the first and second letters in the biquadratic functions denote
the polarization directions that the incident and scattered light must have, respec-
tively, in order to observe the phonon pertaining to that IR. For the hypothetical
triangular molecule discussed in Section 6.1.7, both the A 1 and E symmetry vibra-
tional modes are Raman-active (see Table 6.4). For this molecule, only the A 1 mode
can be seen for incident and scattered light polarized parallel to each other (basis
functions x2 C y 2 or z2). Only the E modes can be seen when the incident and
scattered light are cross polarized (basis functions (x2 � y 2, x y ) or (x z, y z)).

6.3
Symmetry Aspects of Graphene Systems

In this section the group theory of graphene systems is summarized to provide a
fundamental basis for using group theory to describe the electronic and vibrational
properties of sp2 carbons, previously discussed in Chapters 2 and 3, respectively.

6.3.1
Group of the Wave Vector

Figure 6.2a shows the hexagonal real space structure for monolayer graphene (1-
LG) with two nonequivalent atoms per unit cell. The origin in real space is set at
the highest symmetry point, that is, at the center of a hexagon, and Figure 6.2a
shows the unit vectors defining the rhombic in-plane unit cell, containing the two
inequivalent carbon atom sites A and B. Monolayer graphene is an isotropic planar
medium described by the 2D space group P6/mm 13) in the Hermann–Mauguin
notation.14) Electrons and phonons at the Γ point both exhibit the symmetries of
the point group D6h . The character table for group D6 is given in Table 6.5 and
D6h D D6 ˝ Ci . Here the symbol ˝ represents the so-called direct product,15)

12) The Raman tensor needs to be a symmetric
second rank tensor, and the symmetrized
forms of x y, x z and y z are here needed,
such as (x y C y x )/2, etc.

13) P6/mm denotes a primitive (or simple)
lattice, with a six-fold rotational axis, and two
mirror planes.

14) Both Hermann–Mauguin and Schoenflies
notations are used to describe point group
and space group symmetry operations [94].

15) Let GA D E , A2, . . . , A ha and GB D
E , B2, . . . , Bhb be two groups such
that all operators A R commute with
all operators BS . Then the direct
product group is written asGA ˝ GB D
E , A2, . . . , A ha , B2, A2 B2, . . . , A ha B2, . . . ,
A ha Bhb , where the elements of the direct
product group are also indicated.
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Table 6.5 Character table for group D6(hexagonal)a [94].

D6 (622) E C2 2C3 2C6 3C 0

2 3C 00

2

x2 C y2, z2 A1 1 1 1 1 1 1
Rz , z A2 1 1 1 1 �1 �1

B1 1 �1 1 �1 1 �1

B2 1 �1 1 �1 �1 1

(x z, y z)
(x , y)
(Rx , Ry )

�
E1 2 �2 �1 1 0 0

(x2 � y2, x y) E2 2 2 �1 �1 0 0

a D6h D D6 ˝ i I (6/mmm) (hexagonal).

which here indicates the direct product of the group D6 and the group Ci .16) This
is equivalent to adding a horizontal plane of symmetry.17)

Wave functions away from the Γ point exhibit symmetries lower than D6h , and
these lower symmetries are listed in Table 6.6. Character tables for the point groups
for all the high symmetry points for monolayer graphene can be found in [94]. This
reference also contains extensive information relevant to all types of graphene and
sp2 carbons. More explicitly, the point groups for electron and phonon wavefunc-
tions at other high symmetry points for monolayer graphene are: 3m 18) for K (K 0)
points, mm for M points, m for T (T 0) and Σ points, where T (T 0) and Σ points
lie on the line of Γ K (K M ) and Γ M , respectively (see Figure 6.2c), and C1 simply
denotes the point group for the general points u in the Brillouin zone that have no
special symmetry operations. The groups for wavefunctions at the k point in the
Brillouin zone are usually named the group of the wave vector (GWV).

When graphene layers are stacked in the AB Bernal structure in real space, car-
bon atoms A1 and A2 on A sites are found one above the other on adjacent layers,

Table 6.6 The space groups and the group of the wave vector point groups for monolayer, N-
layer graphene and graphite at all high symmetry points in the Brillouin zone [98].

Space group Γ K (K 0) M T (T 0) Σ u

Monolayer P6/mm D6h D3h D2h C2v C2v C1h

N even P3m1 D3d D3 C2h C2 C1v C1

N odd P6m2 D3h C3h C2v C1h C2v C1h

N infinite P63/mmc D6h D3h D2h C2v C2v C1h

16) Ci has two symmetry elements, the identity
E and the inversion i.

17) C2 i D σh , and C 0
2 i D σv , where σh and

σv are, respectively, horizontal and vertical

mirror plane operations when we put the C6

axis in the vertical direction.
18) 3m denotes three-fold rotational and mirror

plane symmetry.
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Figure 6.2 (a) The real space top-view of
the setting for the unit cell for monolayer
graphene, showing the nonequivalent A and
B atoms and unit cell vectors a1 and a2. (b)
The real space top-view of the setting for the
unit cell for bilayer graphene. Light and dark
gray dots in (a) denote A and B atoms in 1-LG.
Large gray circles represent A atoms which are

above one another in bilayer graphene. Small
black and gray dots represent B atoms on the
lower and upper layers, respectively. Thus the
A atoms are above one another on adjacent
layers, but the B atoms are instead staggered
on adjacent layers for Bernal stacking. (c) The
hexagonal reciprocal space showing high sym-
metry points and lines [98].

while the B atoms alternate between the B1 and B2 sites on adjacent layers, as seen
in Figure 6.2b.19)

The real space unit cell for bilayer graphene with AB Bernal stacking is shown
in Figure 6.2b, and this is the fundamental unit cell for all N even-layer graphenes,
including graphite in the large N limit. All N odd-layer graphenes can be considered
as having a single graphene layer, flanked by bilayer unit cells on either side. The
main symmetry operation distinguishing the point groups between even and odd
layers is the horizontal mirror plane symmetry, which is absent for N even, and the
inversion operation, which is absent for N odd. The space groups, and the group
of the wave vector for all the high symmetry points in monolayer graphene, even
and odd layer graphenes (N > 1), and for graphite in the large N limit are listed in
Table 6.6. The GWV for N-layer graphenes are subgroups of the GWV for single-
layer graphene. The direct product between the space group for N even with no
translations and the space group for N odd with no translations gives the space
group for the monolayer graphene GWV with no translations, that is,

fGevenj0g ˝ fGoddj0g D fG1�LG j0g, (6.19)

which can be seen when carrying out the direct product operations between these
groups. Graphite belongs to the P63/mmc (D6h

4) nonsymmorphic space group20)

while the space group for monolayer graphene is P6/mm and is symmorphic. For
graphite, the GWV is P63/mmc at the Γ point. However, the group of the wave
vector for graphite at high symmetry points in the BZ is isomorphic to the GWV
of monolayer graphene, but they differ fundamentally for some classes where a

19) For three layers, the B1 and B3 appear at
the same in-plane positions, while the B2

atom is in a staggered location as shown in
Figure 6.2b. Such stacking of adjacent planes
is called ABAB stacking.

20) Depending on the existence or not of a
spiral (or chiral) operation in the crystal
symmetry, the space group is divided into

nonsymmorphic and symmorphic space
groups. Most of the space groups that
we discuss in solid state textbooks are
symmorphic space groups, for which the
translation operations and the point group
operations commute. For nonsymmorphic
groups, translations and point group
operations do not commute.
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(a) (b) (c)

Figure 6.3 The electronic dispersion for the π electrons, calculated by DFT and using the irre-
ducible representations (Γπ ), are shown for (a) monolayer, (b) bilayer and (c) trilayer graphene
along the KΓ MK directions [98].

translation of c/2 is present in the symmetry operations in graphite, and in this
way graphite is homomorphic to monolayer graphene.

6.3.2
Lattice Vibrations and π Electrons

The group theoretical representations for lattice vibrations (Γlat. mode) and for π
electron states (Γπ) are given by the direct products as Γlat. mode D Γ a.s. ˝ Γ vec

and Γπ D Γ a.s. ˝ Γ z , respectively, where Γ a.s. is the atom sites equivalence rep-
resentation,21) and Γ vec is the representation for the vectors x, y and z [94].22)

For Γπ we use only Γ z , which is the irreducible representation for the vec-
tor z, since π electrons in graphene are formed by pz electronic orbitals nor-
mal to the layer planes. The irreducible representations for all high symme-
try points and lines in the first BZ for Γlat. mode are found in Table 6.7. The
corresponding results for Γπ are found in Table 6.8 (see Section 6.3.6 for the
notation conversion from space group to point group). Furthermore, Table 6.8
shows that the π electrons in monolayer graphene are degenerate at the K

(Dirac) point, as obtained by theory [31]. Figure 6.3a, b and c show the elec-
tronic structure of monolayer, bilayer and trilayer graphene, respectively, calcu-
lated via density functional theory (DFT) [98, 217]. The symmetry assignments
of the different electronic branches shown in Figure 6.3 were made according
to the symmetries of the DFT projected electronic density of states [98].

21) The atom sites equivalence representation
is a reducible representation of the point
group of the unit cell, in which each value
for Γ a.s. corresponds to the number of
atoms that do not change their position by
each symmetry operation. For the mirror
symmetry operation, the number of atoms
on the mirror corresponds to that value. For
rotational operations, the number of atoms

on the rotational axis corresponds to that
value.

22) If you look at the character table, you
sometimes see simple functions such as
x , y, z or x y , etc., which can correspond to
an irreducible representation. If this is not
the case, you need to find by yourself which
irreducible representation corresponds to
x , y and z.



136 6 Symmetry Aspects and Selection Rules: Group Theory

Ta
bl

e
6.

7
Th

e
Γ l

at
.m

od
e

w
av

e
ve

ct
or

po
in

t-g
ro

up
irr

ed
uc

ib
le

re
pr

es
en

ta
tio

ns
fo

rm
on

o-
an

d
N

-la
ye

r
gr

ap
he

ne
at

al
ld

is
tin

ct
sy

m
m

et
ry

po
in

ts
in

th
e

BZ
[9

8]
.

M
on

ol
ay

er
N

ev
en

N
od

d

Γ
Γ

� 2
C

Γ
� 5

C
Γ

C 4
C

Γ
C 6

N
(Γ

C 1
C

Γ
C 3

C
Γ

� 2
C

Γ
� 3

)
(N

�
1)

Γ
C 1

C
(N

C
1)

Γ
� 2

C
(N

C
1)

Γ
C 3

C
(N

�
1)

Γ
� 3

K
K

C 1
C

K
C 2

C
K

C 3
C

K
� 3

N
(K

1
C

K
2

C
2K

3
)

N
K

C 1
C

N
K

� 1
C

[f
(N

)C
2]

K
C 2

C
[f

(N
�

2)
]K

C
�

2

CN
K

� 2
C

(N
�

1)
K

�� 2
a

M
M

C 1
C

M
C 2

C
M

C 3
C

M
� 2

C
M

� 3
C

M
� 4

N
(2

M
C 1

C
M

C 2
C

M
� 1

C
2M

� 2
)

2N
M

1
C

(N
�

1)
M

2
C

(N
C

1)
M

3
C

2N
M

4

T
(T

0 )
2T

1
C

T
2

C
2T

3
C

T
4

3N
(T

1
C

T
2
)

(3
N

C
1)

10
T

C
C

(3
N

�
1)

T
�

Σ
2Σ

1
C

2Σ
3

C
2Σ

4
N

(4
Σ

1
C

2Σ
2
)

2N
Σ

1
C

(N
�

1)
Σ

2
C

(N
C

1)
Σ

3
C

2N
Σ

4

u
4u

C
C

2u
�

6N
u

(3
N

C
1)

u
C

C
(3

N
�

1)
u

�

a
W

he
re

f(
N

)D
P 1 m

D
0[

Θ
(N

�4
m

�2
)C

3Θ
(N

�4
m

�4
)],

in
w

hi
ch

Θ
(x

)i
s

eq
ua

lt
o

0
if

x
<

0,
an

d
eq

ua
lt

o
1

ot
he

rw
is

e.



6.3 Symmetry Aspects of Graphene Systems 137

Ta
bl

e
6.

8
Th

e
Γ π

w
av

e
ve

ct
or

po
in

t-g
ro

up
irr

ed
uc

ib
le

re
pr

es
en

ta
tio

ns
fo

r
m

on
o-

an
d

N
-la

ye
rg

ra
ph

en
e

at
al

lh
ig

h
sy

m
m

et
ry

po
in

ts
in

th
e

BZ
[9

8]
.

M
on

ol
ay

er
N

ev
en

N
od

d

Γ
Γ

� 2
C

Γ
C 4

N
(Γ

C 1
C

Γ
� 2

)
(N

�
1)

Γ
C 1

C
(N

C
1)

Γ
� 2

K
(K

0 )
K

� 3
N 2

(K
1

C
K

2
C

K
3
)

(N
�1 2

)K
C 1

C
(N

C
1

2
)K

� 1
C

g(
N

)K
C

�
2

(K
C 2

)C
g(

N
�

2)
(K

C 2
)(

K
C

�
2

)C
g(

N
)K

� 2
C

g(
N

C
2)

K
�� 2

a

M
M

C 3
C

M
� 2

N
(M

C 1
C

M
� 2

)
(N

�
1)

M
1

C
(N

C
1)

M
4

T
(T

0 )
T

2
C

T
4

N
(T

1
C

T
2
)

(N
�

1)
T

C
C

(N
C

1)
T

�

Σ
2Σ

4
2N

Σ
1

(N
�

1)
Σ

1
C

(N
C

1)
Σ

4

u
2u

�
2N

u
(N

�
1)

u
C

C
(N

C
1)

u
�

a
W

he
re

g(
N

)D
P 1 m

D
0

Θ
(N

�4
m

�2
),

in
w

hi
ch

Θ
(x

)i
s

eq
ua

lt
o

0
if

x
<

0
an

d
eq

ua
l1

ot
he

rw
is

e.



138 6 Symmetry Aspects and Selection Rules: Group Theory

Trilayer graphene with ABA Bernal stacking belongs to the D3h point group, and
Figure 6.3c shows its electronic dispersion. The group of the wave vector for the
K point of trilayer graphene is isomorphic to the point group C3h . In Tables 6.7
and 6.8, KC

2 and KC�
2 are the two one-dimensional representations comprising

the KC
2 representation, and � denotes the complex conjugate. The same applies to

the K�
2 representation. The irreducible representations for the electronic bands are

given by Γ K
π D KC

1 C 2K�
1 C KC�

2 C K�
2 C K��

2 for the K point and Γ K 0
π D KC

1 C
2K�

1 C KC
2 C K��

2 C K�
2 for the K0 point. Although time reversal symmetry can

imply degeneracy between the complex conjugate representations for cyclic groups,
in graphene the complex conjugation operation also takes K into the K 0 point and
vice versa. Consequently, there are no degenerate bands at the K (K 0) point, in
agreement with tight-binding calculations. These calculations include the γ2 and γ5

next-nearest layer coupling parameters in describing E(k) for graphite [97, 221],
which are necessary to describe the Fermi surface for graphite. An energy gap at
the K point is obtained for both DFT calculations and ab initio calculations (see the
inset of Figure 6.3c and more details in [98]).

6.3.3
Selection Rules for the Electron–Photon Interaction

In this section we discuss the selection rules for the electron–photon interaction
in the dipole approximation, with emphasis given to the high symmetry lines T

and T 0 in the electronic dispersion (see Figure 6.2c). These high symmetry T and
T 0 lines along the Γ K and KM directions in reciprocal space, respectively, are im-
portant for Raman spectroscopy.23) In fact, the light absorption up to 3 eV occurs
mostly along the T, T 0 lines but there is also some absorption at general u points
near the K (K 0) point in the case of graphene.

In Table 6.9, we show the direct products for three irreducible representations for
the final state, the electron–photon perturbation, and the initial state Γ f ˝ Γp ˝ Γi

in the column of the absorption matrix element W(k). Knowing the symmetry of
the initial and final states, and the irreducible representation that generates the
basis function of the light polarization vector (x , y or z), group theory can be used
to calculate whether W(k) is zero or not by only using the character table. The
results are summarized in Table 6.9 considering the graphene layers to be in the
(x , y ) plane and the light propagating along the z direction.

It is important to highlight some results given in Table 6.9 where the symbol
x 2 T3 tells us that x belongs to the IR for T3. The column for W(k) gives the
selection rules for the electron–photon interaction in terms of the direct products
of the relevant irreducible representations. Along the T line, absorption by visible
light has to couple T2 and T4 π electron symmetries which have the same basis
functions of x and y as for monolayer graphene (see Figure 6.3a). For the T line

23) In the Raman spectroscopy of carbon nanotubes, the Raman signal or intensity depends on
the corresponding one-dimensional Brillouin zone lying along the Γ K or KM directions. This
gives a so-called type I and II dependence for semiconducting SWNTs, respectively, for Raman
spectroscopy [222].
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Table 6.9 Selection rules for the electron–
photon interaction W(k) with Ox and Oy light
polarization in monolayer, bilayer and trilayer
graphene (see Figure 6.2c for definitions of Ox
and Oy). For N even and N odd, the selection

rules are the same as for bilayer and trilayer
graphene, respectively. T1 to T4 are IRs for
the GWV for the T point [98]. Here x 2 T3
means x transforms according to the IR T3.
For notation see Section 6.3.6.

BZ point Polarization W(k)

Monolayer T x 2 T3 T2 ˝ T3 ˝ T4 nonzero
y 2 T1 T2 ˝ T1 ˝ T4 zero

u x , y 2 uC u� ˝ uC ˝ u� nonzero

Gated T x 2 T2 T1 ˝ T2 ˝ T2 nonzero
monolayer y 2 T1 T1 ˝ T1 ˝ T2 zero

u x , y 2 u u ˝ u ˝ u nonzero

Bilayer T x 2 T2 T1 ˝ T2 ˝ T1 zero
(N-even) T1 ˝ T2 ˝ T2 nonzero

T2 ˝ T2 ˝ T2 zero
y 2 T1 T1 ˝ T1 ˝ T1 nonzero

T1 ˝ T1 ˝ T2 zero

T2 ˝ T1 ˝ T2 nonzero
u x , y 2 u u ˝ u ˝ u nonzero

Biased T x , y 2 T T ˝ T ˝ T nonzero

bilayer
u x , y 2 u u ˝ u ˝ u nonzero

Trilayer T x , y 2 T C T C ˝ T C ˝ T C nonzero
(N-odd) T C ˝ T C ˝ T � zero

T � ˝ T C ˝ T � nonzero

u x , y 2 uC uC ˝ uC ˝ uC nonzero
uC ˝ uC ˝ u� zero

u� ˝ uC ˝ u� nonzero

direction along Oy , the only allowed absorption is for light polarized along the Ox
direction (T3). For incident light polarization along the Oy direction (T1), no absorp-
tion will occur along the KΓ direction along the ky axis, giving rise to an optical
absorption anisotropy for monolayer graphene [83, 220].

Bilayer graphene contains four electronic bands along the T line, belonging to
two T1 and two T2 irreducible representations. The four possible transitions are
illustrated in Figure 6.4 (a,b). In this case, both x and y polarized light can be ab-
sorbed. Trilayer graphene will have more possibilities for light-induced transitions,
since there are more possibilities between the three π and three π*-bands. Along
the T (T 0) direction, there are two T C and four T �-bands for trilayer graphene,
giving rise to five possible transitions (see Table 6.9), as shown in Figure 6.4c.
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Figure 6.4 (a,b) Schematic electron disper-
sion of bilayer graphene along the KΓ direc-
tion showing the possible transition induced
by (a) a photon with T2 symmetry (x polariza-

tion) and (b) a T1 photon (y polarization). (c)
The electronic dispersion of trilayer graphene
showing the five possible transitions by light
absorption [98].

6.3.4
Selection Rules for First-Order Raman Scattering

The first-order Raman scattering process is limited to phonons at the center of
the BZ (Γ point) due to the momentum conservation requirement (phonon wave
vector q D 0). In monolayer graphene, although there are three optical modes
at the Γ point, two (the LO and iTO) are degenerate and one (the oTO) is not
Raman-active. The first-order Raman spectra is therefore composed of the G-band
vibrational mode, which is doubly degenerate at the Γ point with Γ C

6 (or E2g)
symmetry.24) The Raman-active modes of N graphene layers which depend on N

(N > 1) (without the acoustic modes) are:

Γ Raman D N(Γ C
3 C Γ C

1 ), for N even

Γ Raman D N Γ C
3 C (N � 1)(Γ �

3 C Γ C
1 ), for N odd. (6.20)

For an even number of graphene layers, the G-band belongs to the Γ C
3 irreducible

representation. There is a low frequency Γ C
3 mode with a frequency depending

on the number of layers (35�53 cm�1) [223]. Two new Raman-active modes near
� 80 cm�1 and � 900 cm�1 appear belonging to the Γ C

1 irreducible representa-
tions [223, 224]. For an odd number of graphene layers, the G-band is assigned
to a combination of Γ C

3 and Γ �
3 representations, and also the lower wavenumber

component is Raman-active by a Γ C
1 representation.

24) Although the space group notation, where the IRs are labeled by the BZ point label, is more
complete, it is common in the Raman spectroscopy literature to use the notation from the
isomorphic point groups, since only the Γ point (q � 0) is usually relevant. For the D6h point
group notation, Γ C

6 corresponds to the E2g IR. Information about the space group to point group
notation conversion is found in Section 6.3.6.



6.3 Symmetry Aspects of Graphene Systems 141

6.3.5
Electron Scattering by q ¤ 0 Phonons

The electron–phonon (el–ph) interaction is calculated from the coupling of the ini-
tial and final electron wave functions to the phonon eigenvector [8, 203] using a
phonon-induced deformation potential. Therefore, the selection rules for the el–ph
processes are obtained by taking the direct product of the symmetries of the initial
and final electronic states and the symmetry of the phonon involved in the el–ph
process. The allowed el–ph scattering processes for monolayer, gated monolayer,
bilayer, biased bilayer and trilayer graphene along the K Γ and K M directions (T
and T 0 lines, respectively) and at a generic u point are summarized in Table 6.10.

6.3.6
Notation Conversion from Space Group to Point Group Irreducible Representations

Here we derive the Γπ and Γlat. mode representations for the electrons and phonons
for all points in the first BZ of multi-layer graphene maintaining the notation of
the space group (SG) for the irreducible representations. The conversion to point
group (PG) representations is obtained by considering that (a) the superscript sign

Table 6.10 Allowed processes for electron–
phonon scattering for monolayer, bilayer and
trilayer graphene along the T and T 0 lines and
at a generic u point for each phonon sym-
metry. For N even and N odd graphenes, the

selection rules are the same as for bilayer and
trilayer graphene, respectively. The table also
includes entries for a gated monolayer and a
biased bilayer [98].

BZ point Phonon Allowed scattering

Monolayer T (T 0) T1 T2 ! T2, T4 ! T4

T3 T2 ! T4

u uC u� ! u�

Gated T (T 0) T1 T1 ! T1, T2 ! T2

monolayer T2 T1 ! T2

u u u ! u

Bilayer T (T 0) T1 T1 ! T1, T2 ! T2

(N-even) T2 T1 ! T2

u u u ! u

Biased bilayer T (T 0) T T ! T

u u u ! u

Trilayer T (T 0) T C T C ! T C, T � ! T �

(N-odd) T � T C ! T �

u uC uC ! uC, u� ! u�

u� uC ! u�
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Table 6.11 Example of the irreducible representation notation conversion from the Γ point
space group (SG) to the D3h and D3d point groups (PG), and from the K point space group
(SG) to the C3h and D3 point groups (PG) [98].

Γ point K point

D3h D3d C3h D3

SG PG SG PG SG PG SG PG

Γ C
1 A0

1 Γ C
1 A1g K1

C A0 K1 A1

Γ �
1 A00

1 Γ �
1 A1u K1

� A00 K2 A2

Γ C
2 A0

2 Γ C
2 A2g K2

C E0 K3 E

Γ �
2 A00

2 Γ �
2 A2u K2

C� E0�

Γ C
3 E0 Γ C

3 Eg K2
� E00

Γ �
3 E00 Γ �

3 Eu K2
�� E00�

“C” or “�” applies if the character of the horizontal mirror plane (σh) or the in-
version operation (i) is positive or negative, respectively; (b) the subscript number
is given following the order of the point group irreducible representations; (c) two
representations can only have the same subscript number if they both have super-
scripts with positive or negative signs. As an example, we give in Table 6.11 the Γ
point space group notation conversion to the D3h (N-odd) and D3d (N-even) point
groups and for the K point space group to the C3h (N-odd) and D3 (N-even) point
groups.

6.4
Symmetry Aspects of Carbon Nanotubes

The nanotube physical properties depend on how the graphene sheet is rolled up,
and from a symmetry point of view, two types of nanotubes can be formed, namely
the symmorphic achiral armchair or zigzag tubes, as shown in Figure 6.5a,b, re-
spectively, and the nonsymmorphic chiral tubes, shown in Figure 6.5c.25) Simply
put, for the symmorphic groups, the translations and rotations can be decoupled,
while for nonsymmorphic the rotations also contain translations, such as screw
rotations along the tube axis [94]. We note in Figure 6.5 that each nanotube has a
cap at either end of the nanotube. Because of the small diameter of a carbon nan-
otube (�1 nm) and the large length-to-diameter ratio (> 104), it is assumed that
the nanotube length is much larger than its diameter, so that the nanotube ends
(see Figure 6.5) can be neglected when discussing the electronic and lattice prop-
erties of the nanotubes. Thus from a symmetry standpoint, a carbon nanotube is
a one-dimensional crystal with a translation vector T along the cylinder axis and

25) If we take the smallest unit cell consisting of two carbon atoms for achiral nanotubes, we should
consider the screw rotation. In general, the symmetry selection rule depends on the shape of the
unit cell. The smallest unit cell is not always the best for understanding the relevant physics.
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(a)

(b)

(c)

Figure 6.5 Schematic theoretical model for
the three different types of single-wall carbon
nanotubes: (a) the “armchair” nanotube, (b)
the “zigzag” nanotube, and (c) the “chiral”

nanotube. The actual nanotubes shown in the
figure correspond to (n, m) values of (a) (5,
5), (b) (9, 0), and (c) (10, 5). See text for more
information [31].

a small number of carbon hexagons associated with the circumferential direction.
The nanotube structure can be considered as a folded graphene defined by the
(n, m) indices, as discussed in Section 2.3.1. In this section we give more details
that are important for the description of the eigenvectors and selection rules for
nanotubes.

6.4.1
Compound Operations and Tube Chirality

All multiples of the translation vector T will be a translational symmetry operation
of the nanotube [225]. However, to be more general, it is necessary to consider that
any lattice vector

t p ,q D p a1 C qa2, (6.21)

with p and q integers, of the unfolded graphene layer will also be a symmetry op-
eration of the nanotube. In fact, the symmetry operation that arises from t p ,q will
appear as a screw translation of the nanotube. Screw translations are combinations
of a rotation by an angle φ (Rφ) and a translation τ in the axial direction of the nan-
otube. The screw translation can be written as fRφjτg, using a notation common
for space group operations [31, 94].
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The translation vector from t p ,q can also be written in terms of components of
the nanotube lattice vectors, T and C h , as

t p ,q D t u,v D 1
N

(uC h C v T ) , (6.22)

where u and v are given by:

u D (2n C m)p C (2m C n)q
dR

(6.23)

and

v D m p � nq . (6.24)

N and dR have been defined in Section 2.3.1 (see Table 2.1). Both u and v in
Eqs. (6.23) and (6.24), respectively, are integer numbers which can assume either
negative or positive values.

The screw translation of the nanotube t u,v which is associated with the graphene
lattice vectors can then be written using the space group notation as:

t u,v D fC u
N jv T/Ng , (6.25)

where C u
N is a rotation of u by (2π/N ) around the nanotube axis, and fE jv T/Ng

is a translation of v T/N along the nanotube axis, with T being the magnitude of
the primitive translation vector T along the tube axis. It is clear that if a screw
vector fC u

N jv T/Ng is a symmetry operation of the nanotube, then the vectors
fC u

N jv T/Ngs, for any integer value of s, are also symmetry operations of the nan-
otube. The number of hexagons in the unit cell N assumes the role of the “order”
of the screw axis, since the symmetry operation fC u

N jv T/NgN D fE jv T g, where E

is the identity operator, and v T is a pure translation of the nanotube.
The nanotube structure can be obtained from a small number of atoms (between

2 and 2N ) by using any choice of two independent noncolinear screw vectors, such
as fC u1

N jv1T/Ng and fC u2
N jv2T/Ng. Here noncolinear vectors are defined such that

there does not exists a pair of integers s and l except for 1, which satisfy l u1 D
su2 C λN , and l v1 D sv2 C γ T , where λ and γ are two arbitrary integers [135].

When T is specified, a screw vector C u
N j0 for p and q which satisfies v D m p �

nq D 1 for an (n, m) nanotube, generates N carbon atoms in the 1D unit cell. This
screw vector is called a symmetry vector R [31]. To better illustrate the action of the
symmetry vector R , we show in Figure 6.6 a diagram of the screw vector applied
to the (4, 2) nanotube. The dark atoms in the bottom represent a two-atom motif.
We also show in Figure 6.6 another set of dark atoms which is equivalent to this
motif due to a rotation of 2π/d, with d D 2, around the nanotube axis. The dark
gray helix of atoms is composed of the atoms in the nanotube unit cell which can
be obtained by consecutive applications of the screw vector R to the atoms in the
motif, while the other atoms are obtained by successive operations of the screw
vector R followed by a pure translation which brings the motif back to the original
unit cell [135].
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Figure 6.6 Unit cell of the (4,2) nanotube, with its 28 atoms. The dark
gray atoms can be directly obtained by the application of the R vector,
while the other atoms can be obtained from the latter by applying other
symmetry operations, such as the translation vector T [135].

6.4.2
Symmetries for Carbon Nanotubes

The chiral nanotube symmetry operations can be separated into two sets [135].
The first set, which we shall call the symmorphic set, is formed by the translation
operations of the nanotube and the point group operations. This symmorphic set
forms a sub-group of the total space-group of the nanotube, and thus it can be used
to obtain some of the symmetry-related properties. To obtain the point group of
the nanotube, the nanotube can be rotated by an angle 2π/d (called the Cd oper-
ation) without changing its structure where d D gcm(n, m) and gcm denotes the
greatest common multiplier. Therefore, the Cd operation is a point group opera-
tion of the nanotube. Also, by choosing an axis perpendicular to the nanotube axis,
the rotation by π around this axis (C 0

2 or C 00
2 ) will also be a symmetry operation

of the nanotube, as shown in Figure 6.7a. There are two different classes of rota-
tions perpendicular to the nanotube axis (C 0

2 and C 00
2 ). For one of the classes (C 0

2),
the axis goes through the center of bonds between two equivalent atoms (shown
in Figure 6.7a). For the other class (C 00

2 ), the axis goes through the centers of the
hexagons.26) The point group of the nanotube is thus obtained as the axial point
group Dd .27) The second set of symmetry operations, which we shall refer to as
the nonsymmorphic set, is formed by the compound operations of the space group
of the nanotube, which cannot be decomposed into pure translations of multiples
of T and point group operations. All the screw vectors t u,v , with the exception of
multiples of T and C h/d, are part of this set of operations [135].

Both armchair (n, n) and zigzag (n, 0) carbon nanotubes exhibit all the sym-
metry operations that were observed for chiral nanotubes, namely the screw axes
fC u

N jv T/Ngs , where N D 2n, the rotation around the nanotube axis Cd , where
d D n, and the rotations perpendicular to the nanotube axis C 0

2 and C 00
2 . However,

achiral nanotubes also exhibit other symmetry operations, such as inversion cen-
ters as well as mirror planes and glide planes. The horizontal mirror plane σh and
one of the vertical mirror planes σ v are shown in Figure 6.7b,c, respectively. There

26) The C 00
2 axis of the nanotube corresponds to the C6 axis in the case of flat graphene.

27) The label Dd means that the group has one Cd rotational operation about the z axis and 2d C2

rotational operations in the x y plane.
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is also an inversion center at the intersection of the σh plane and the nanotube axis.
The glide planes are represented by fσ v jT/2g.

For chiral tubes, at the Γ point the GWV exhibits the symmetries of the DN point
group [135], for which the character table is shown in Table 6.12. The symmetry
properties of general nanotube wave vectors 0 < k < π/T can be fully described by
using the CN group. In Table 6.13, we show the character table for the irreducible
representations of the CN point group. There are [(N/2) � 1] representations which
are doubly degenerate due to time reversal symmetry. For k D π/T and k D
�π/T , which can be translated into each other by a reciprocal lattice vector �2 D
2π/T , the group of the wave vector is also isomorphic to DN .

For achiral tubes, at the Γ point the GWV is isomorphic to D2nh. The character
table for group D2nh is shown in Table 6.14, where the C2n classes correspond
to the screw vectors of the nanotube, while the σ0

v and σ00
v classes correspond,

respectively, to mirror and glide planes containing the nanotube axis [135]. For
0 < k < π/T the only symmetry operations which maintain k invariant are the
screw vectors and the mirror and glide planes which contain the nanotube axis (σ0

v

and σ00
v ). The GWV will then be isomorphic to the C2nv point group, for which

the character table is shown in Table 6.15. In the case of the (3,3) nanotube (see
Figure 6.7b,c), the group of the wave vector at a general point 0 < k < π/T is
isomorphic to the C6v point group, while at k D 0 and k D π/T the group of the
wave vector is isomorphic to the D6h point group [94, 135].

C2

Cd Cd

CHIRAL ACHIRAL

(4,2) (3,3)

v

(3,3)

h

'

(a) (b) (c)

Figure 6.7 (a) Unit cell of the chiral (4,2) nan-
otube, showing the Cd rotation around the
nanotube axis with d D 2, and one of the
C 0

2 rotations perpendicular to the tube axis. A
different class of rotations (C 00

2 ), which is also
present in chiral and achiral nanotubes, is not

shown here. (b) A section of an achiral arm-
chair (3,3) nanotube is shown along with the
horizontal mirror plane σh and the symmetry
operation Cd with d D 3. (c) The same (3,3)
armchair nanotube is shown along with one of
the vertical mirror planes σv [135].
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Table 6.16 Irreducible representations for the electronic conduction and valence bands of chiral
as well as armchair and zigzag achiral nanotubes [135].

VALENCE CONDUCTION

k D 0, π/T 0 < k < π/T k D 0, π/T 0 < k < π/T

CHIRAL

8̂<
:̂

µ D 0

0 < µ < N/2

µ D N/2

A1
Eµ
B1

A

E˙µ
B

A2
Eµ

2

A

E˙µ
B

ARMCHAIR

8̂<
:̂

µ D 0

0 < µ < n

µ D n

A1g

Eµg

B1g

A0
Eµ
B0

A2g

Eµu

B2g

A00
Eµ
B00

ZIGZAG

8̂<
:̂

µ D 0

0 < µ < n

µ D n

A1g

Eµu,µg
a

B1g

A0
Eµ
B0

A2u

Eµg,µu
a

B2u

A0
Eµ
B0

a For zigzag nanotubes, if µ < 2n/3, the valence (conduction) band at k D 0 belongs to the Eµg

(Eµu ) representation for µ even and to the Eµu (Eµg ) representation for µ odd, while if µ > 2n/3 it
is the opposite irreducible representations that apply.

6.4.3
Electrons in Carbon Nanotubes

Having shown the irreducible representations of the wave vector k, it is now possi-
ble to obtain the symmetries of the eigenvectors used to describe the electronic and
vibrational properties for all the points of the first Brillouin zone. The irreducible
representations of the electronic states of chiral nanotubes and achiral nanotubes
are summarized in Table 6.16. In general, what defines the symmetry of wavefunc-
tions in the quasi-one-dimensional carbon nanotubes are the number of nodes for
the wavefunction phase along the tube circumference. The A modes are totally
symmetric, while the Eµ modes exhibit 2µ nodes along the tube circumference, as
depicted in Figure 6.8.

6.4.4
Phonons in Carbon Nanotubes

The phonon symmetries also obey the general picture displayed in Figure 6.8. For
k D 0 phonons in achiral nanotubes (D2nh group), Γvec D A 2u C E1u (z and x , y ).
The Γ a.s. for zigzag SWNTs is [134, 135]:

Γ a.s.
zigzag D A 1g C B2g C A 2u C B1u C

n�1X
j D1

(E j g C E j u) , (6.26)
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Figure 6.8 Schematics showing the phase change for SWNT wavefunctions with the one-
dimensional totally symmetric A IR, and the two doubly degenerate E1 and E2 IRs.

giving rise to the following irreducible representations for the lattice modes [134,
135]:

Γ lat. mode
zigzag D 2A 1g C A 2g C B1g C 2B2g C A 1u C 2A 2u C 2B1u C B2u

C
n�1X
j D1

(3E j g C 3E j u).

(6.27)

Finding Γvec, Γ a.s. and Γ lat. mode for armchair and chiral tubes is left as a problem
for the reader.

6.4.5
Selection Rules for First-Order Raman Scattering

The optical activity of phonons in a first-order Raman scattering process is eas-
ily obtained from the basis functions in the character tables related to the irre-
ducible representations that describe each of the lattice modes. The Raman-active
modes are those transforming like symmetric combinations of quadratic functions
(x x , y y , zz, x y , y z, zx ).

The list of Raman-active modes are given below [134, 135]:

Γ Raman
zigzag D 2A 1g C 3E1g C 3E2g ! 8 modes, (6.28)

Γ Raman
armchair D 2A 1g C 2E1g C 4E2g ! 8 modes, (6.29)

Γ Raman
chiral D 3A 1 C 5E1 C 6E2 ! 14 modes. (6.30)

A more detailed analysis of the Raman-active modes for chiral and achiral nan-
otubes is provided in [31, 135].
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6.4.6
Insights into Selection Rules from Matrix Elements and Zone Folding

To illustrate the usage of the selection rules introduced by the electron–photon
and electron–phonon interaction processes, we consider the first-order resonance
Raman scattering process in carbon nanotubes. The first-order Raman scattering
process involves the following steps: creation of an electron–hole pair, scattering
by a phonon, and light emission by an electron–hole recombination process. The
Raman signal is greatly enhanced when the electron scatters between VHSs in the
valence and conduction band DOS, so that we can consider only the transitions be-
tween the two VHSs in the DOS as a first approximation. By utilizing the selection
rules introduced above, we come up with the following five cases for allowed first-
order resonance Raman scattering processes between the electronic energy VHSs
in the valence and conduction bands denoted by E

(v )
µ and E

(c)
µ0 [135, 226]:

(I) E
(v )
µ

Z�! E
(c)
µ

A�! E
(c)
µ

Z�! E
(v )
µ ,

(II) E
(v )
µ

X�! E
(c)
µ˙1

A�! E
(c)
µ˙1

X�! E
(v )
µ ,

(III) E
(v )
µ

Z�! E
(c)
µ

E1�! E
(c)
µ˙1

X�! E
(v )
µ ,

(IV) E
(v )
µ

X�! E
(c)
µ˙1

E1�! E
(c)
µ

Z�! E
(v )
µ ,

(V) E
(v )
µ

X�! E
(c)
µ˙1

E2�! E
(c)
µ�1

X�! E
(v )
µ ,

(6.31)

where A, E1, and E2 denote the symmetries of the phonon modes at k D 0, which
are associated with the µ D 0, µ D ˙1, and µ D ˙2 cutting lines (1D Brillouin
zones in 2D k space), respectively. Thus, for a transition to occur between an elec-
tron in a state Eµ1 and a state Eµ2 it is necessary for the phonon which couples the
two states to have Eµ2�µ1 symmetry. The X Z plane is parallel to the substrate on
which the nanotubes lie, the Z axis is directed along the nanotube axis, and the Y
axis is directed along the light propagation direction, so that Z and X in Eq. (6.31)
stand for the light polarized parallel and perpendicular to the nanotube axis, re-
spectively.

The five processes of Eq. (6.31) result in different polarization configurations for
different phonon modes, Z Z and X X for A; Z X and X Z for E1; and X X for
E2,28) in perfect agreement with the basis functions predicted by group theory. Al-
so, Eq. (6.31) predicts different resonance conditions for different phonon modes.
While the A and E1 modes can be observed in resonance for the E

(v )
µ ! E

(c)
µ and

the E
(v )
µ ! E

(c)
µ˙1

processes, corresponding to Ei i and Ei j ( j D i ˙ 1) transitions,

respectively, the E2 modes can only be observed in resonance for the E
(v )
µ ! E

(c)
µ˙1

process. Experimentally observed Raman scattering spectra do follow these predict-
ed polarization configurations and resonance conditions [226–228].

It is also interesting to discuss how equivalent selection rules can be derived
considering momentum conservation in the unfolded two-dimensional graphene-

28) Z X corresponds to the linear polarization directions of the incident (Z) and scattered (X) light.
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Figure 6.9 The electronic sub-bands for
zigzag M-SWNTs in the vicinity of the K and
K 0 points (near the Fermi energy) in the first
Brillouin zone. The VHSs are labeled by three
symbols: the first denotes the valence or con-
duction band (C/V), the second denotes the
VHS index counted away from the Fermi en-

ergy or the cutting line index counted away
from the K and K 0 points, and the third index
denotes the lower and upper energy com-
ponents (L/U) due to the trigonal warping
near the K(K 0) point that distort the cone
and splits the energy of the VHSs for metallic
SWNTs [229].

sheet, and considering the concepts of cutting lines. This consideration will give
insights related to the importance of dimensionality in materials science.

The optical transition in the nanotube is vertical (momentum conserving) within
the 1D Brillouin zone, that is, the electronic wave vector along the nanotube axis
(along the K2 vector in the unfolded 2D Brillouin zone) does not change. In con-
trast to the case of the graphene layer, the polarization vector can be either parallel
or perpendicular to the nanotube axis for light propagating perpendicular to the
substrate on which the nanotubes lie. The dipole selection rules tell us that the
optical transition in the nanotube conserves the electronic sub-band index (the cut-
ting line index µ) for light polarized parallel to the nanotube axis. Conservation of
both the 1D wave vector and the sub-band index implies conservation of the 2D
wave vector in the Brillouin zone of the graphene layer (unfolded Brillouin zone of
the nanotube).

As an example, we plot in Figure 6.9 the schematic band diagram of the nan-
otube in the unfolded 2D Brillouin zone. If the electron starts from the VHS in
the valence sub-band V2U (see the solid dot on the sub-band V2U in Figure 6.9),
this electron goes to the VHS in the conduction sub-band C2L, and the optical ab-
sorption is enhanced substantially because of the extremely high DOS at the VHSs
in the valence and conduction sub-bands, V2U and C2L. If an electron in the va-
lence sub-band V2U in Figure 6.9 absorbs a photon polarized perpendicular to the
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nanotube axis (i. e., polarized along the K1 vector), it can scatter to one of the two
conduction sub-bands, either C1L or C3L, depending on the photon frequency and
on the interband transition energies E2,1 and E2,3. This implies a different set of
VHSs in the JDOS for perpendicular polarization, Eµ,µ˙1, and these energies are
located between the VHSs in the JDOS for parallel polarization, Eµµ.

While the optical transition is vertical for the light polarized parallel to the nan-
otube axis, it involves a wave vector change of ˙K1 (the distance between two ad-
jacent cutting lines) for the perpendicular polarization. This wave vector change
can be understood by considering an unrolled nanotube, as shown in Figure 6.10.
When the nanotube is unrolled into the graphene layer, the light polarized parallel
to the nanotube axis transforms into light polarized parallel to the graphene layer,
as shown in Figure 6.10a. This results in a vertical interband optical transition in
the unfolded 2D Brillouin zone, which is equivalent to the optical transition within
the same sub-band µ in the folded 1D Brillouin zone of the nanotube, as is predict-
ed by the dipole selection rules.

However, perpendicular polarization in nanotubes becomes transformed into the
in-plane and out-of-plane polarizations in the unfolded graphene layer, periodically
modulated along the direction of the C h (or K1) vector with the period jC hj D πdt

(nanotube circumference), as shown in Figure 6.10b [110]. The optical transitions
induced by the out-of-plane polarization are expected to be much weaker compared
to those induced by the in-plane polarization and are usually ignored, because of
the much stronger in-plane interaction in the graphene layer [220]. This implies
that the light polarization in the unrolled nanotube shown in Figure 6.10b can be
considered, as a first approximation, to be parallel to the graphene layer, with an
additional phase factor describing oscillations of the in-plane polarization compo-
nent, arising from the rotation of the polarization vector. The phase factor is given
by cos(k � r) where the wave vector k has the direction of K1 and a magnitude of
2π/(πdt) D 2/dt, that is, k D K1. By assuming wave vector conservation in the
unfolded 2D Brillouin zone for the optical transition process, we come up with the
selection rules k c D k v ˙ K1 for light absorption and k v D k c ˙ K1 for light emis-
sion, which correspond to an electronic transition to the adjacent cutting line in the
unfolded 2D Brillouin zone, or the electronic transition to the adjacent sub-band
in the 1D Brillouin zone of the nanotube. It is interesting to note that the photon
wave vector ˙K1 in the unrolled graphene layer is much larger in magnitude than
the photon wave vector � in free space, K1 D 2/dt 	 � D 2π/λ, because the nan-
otube diameter dt is much smaller than the optical wave length λ. Therefore, an

(a) (b)

Figure 6.10 Light polarization (a) parallel and (b) perpendicular to the nanotube axis, shown for
both a rolled-up SWNT, and a SWNT unrolled into the graphene layer. The arrows show the light
polarization vector, and the dashed lines show the light propagation direction [110].
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optical photon in the unrolled graphene layer can be considered as an X-ray pho-
ton with respect to spatial considerations, yet the photon energy does not change
when the nanotube is unrolled into the graphene layer. Such a “pseudo X-ray” pho-
ton is a source of breaking the optical selection rules in the case of perpendicular
polarization.

The selection rules for the scattering of electrons by phonons can also be ob-
tained by momentum conservation in 2D graphite. Two cutting lines belonging to
the irreducible representations Eµ and Eµ0 are separated from each other in the
2D Brillouin zone by k � k0 D (µ � µ0)2π/dt, and this is the momentum that the
phonon should transfer as a result of the optical transition. As explained in Sec-
tion 6.4.4, the symmetry of the phonon with such a momentum can be obtained by
rolling up the 2D graphene layer and this will yield a phonon with Eµ�µ0 symmetry.

Problems

[6-1] Check the applicability of Eq. (6.2) for group P(3) and for the group of
symmetry operations of an equilateral triangle.

[6-2] Propose a unitary matrix and apply the unitary transformation to ΓR in
Eq. (6.7).

[6-3] Show that the traces for the IRs in Eq. (6.5) actually give the characters
for the character table in Table 6.2. Show that the Wonderful Orthogonality
Theorem works for all possible combinations of IRs. Show that a similar
theorem can be made for orthogonality between classes.

[6-4] Consider a CH4 molecule which has Td symmetry. Obtain from some text-
book the character table for Td symmetry. Which irreducible representa-
tions correspond to the vector (x , y and z)? Show the matrix for a C3 rota-
tion of this molecule.

[6-5] Which irreducible representations of the Td group correspond to rotations
around the x , y and z axes? Explain that the results do not depend on how
you select the axes.

[6-6] Obtain the atom site representation for a CH4 molecule and decompose
your atom site representations into a set of irreducible representations.

[6-7] Calculate the reducible representation for the molecular vibrations for
the CH4 molecule and decompose the reducible representation into irre-
ducible representations. How many vibrational modes are there for a CH4

molecule?

[6-8] Obtain the symmetries of the Raman and IR-active phonon modes of a CH4

molecule. In the case of a CH4 molecule, show that there is no inversion
symmetry both by plotting a model of the CH4 molecule and by showing its
atomic coordinates.
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[6-9] Now let us consider the single atomic layer of graphite which we call
graphene. Consider the character table of the point group for the hexagonal
unit cell of monolayer graphene. Obtain the atom site representation of the
two carbon atoms of graphene.

[6-10] Obtain the symmetry of the vibrations of graphene at the zone center of the
Brillouin zone for graphene.

[6-11] Obtain the symmetry of the tight-binding orbitals of graphene at the zone
center of the Brillouin zone.

[6-12] Show that an optical transition from one 2p carbon atomic orbital to anoth-
er 2p carbon atomic orbital within the same carbon atom is not allowed.
On the other hand, the optical transition from π to π� energy bands is al-
lowed. Explain what kind of matrix element contributes to such an optically
allowed transition? Expand the tight-binding wavefunctions for the optical
transition matrix.

[6-13] In the case of graphene, optical transitions occur around the hexagonal cor-
ners of the Brillouin zone (K and K 0 points). When we consider a large unit
cell, the K point can be folded into the Γ point (zone center). Plot the ex-
tended unit cell and the folded Brillouin zone. What is the point group for
the extended unit cell?

[6-14] We can consider a C2 rotation around the axis at the center of the C–C atom-
ic bond in the direction perpendicular to the bond. However, this rotation is
not included in the operations for the hexagonal unit cell of graphene. On
the other hand, when we consider the rhombic unit cell of graphene, we can
include the C2 rotation. Discuss the difference in the results of a symmetry
description for the two different shapes of the unit cell of graphene.

[6-15] Consider the point group of double layer graphene, in which the two layers
have AB stacking. Obtain the irreducible representations for the atom sites
and vibrations of bilayer graphene.

[6-16] In the case of double layer graphene with AB stacking, the interlayer in-
teraction can be treated as a perturbation to the unperturbed two graphene
layers. What is the irreducible representation describing the interlayer in-
teraction?

[6-17] For double layer graphene, we expect four energy bands derived from the π
and π� bands. Obtain the irreducible representations for the four electronic
energy bands at the zone center. Here and in the next graphene related
problems, we always consider the AB Bernal stacking.

[6-18] For double layer graphene, show by group theory that the four π bands
at the K point consist of one doubly degenerate energy state and two non-
degenerate energy states. Discuss the optical selection rules of monolayer
graphene and bilayer graphene near the K point.
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[6-19] Discuss the Raman selection rules for the vibrations occurring in monolay-
er graphene and in bilayer graphene.

[6-20] Discuss the symmetry for trilayer graphene and obtain the symmetries of
its Raman-active modes. Obtain the optical selection rules for triple layer
graphene.

[6-21] Discuss the symmetry for four layer graphene and obtain the symmetries
of its Raman-active modes. Obtain the optical selection rules for four layer
graphene.

[6-22] When we consider three-dimensional graphite with AB layer stacking, show
the point group of the graphite unit cell and discuss the IR and Raman-
active modes for graphite.

[6-23] Discuss the symmetry of a unit cell for a graphene ribbon with zigzag edges
or one with armchair edges. What is the difference in the symmetry of these
unit cells relative to the symmetry of a unit cell for monolayer graphene?

[6-24] The C60 molecule has Ih symmetry. Find the atom site irreducible repre-
sentations and symmetries of the vibrational modes for the C60 molecule.
How many Raman-active modes are there for the C60 molecule and what
are their symmetries?

[6-25] Obtain Eqs. (6.22), (6.23) and (6.24).

[6-26] Demonstrate how Eqs. (6.26) and (6.27) are obtained.

[6-27] Consider (n, n) armchair single-wall carbon nanotubes. Obtain Γ vec, Γ a.s.,
Γlat. mode and discuss their Raman-active modes.

[6-28] Consider (n, m) chiral single wall carbon nanotubes (n ¤ m). Obtain Γ vec,
Γ a.s., Γlat. mode and discuss their Raman-active modes.
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