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3
Vibrations in sp2 Nanocarbons

Although the inelastic process of Raman scattering of light can originate from the
creation or annihilation of polaritons, plasmons, magnons or any elementary exci-
tations in molecules and solids, it is the phonons, which are the quanta of atomic
vibration that are the main source of Raman spectra in the literature, and are the
focus of this chapter. In sp2 nanocarbons, the phonons, like the electrons, depend
on the atomic structure and the Raman phonon spectra can be used to study the
similarities and differences between the various materials within the sp2 nanocar-
bon family, thereby providing a sensitive tool to distinguish one member of the sp2

nanocarbon family from another.

Figure 3.1 (a) Phonon dispersion relations
for graphene and (b) the eigenvectors for the
in-plane phonons relevant to the high symme-
try Γ point and K (K 0) points of the Brillouin
zone. Each of these twelve modes is labeled
and their atom displacements are indicat-

ed [117]. i/o stands for in-plane/out-of-plane;
T/L stands for transversal/longitudinal; A/O
stands for acustic/optical. The other symbols
are symmetry assignments according to group
theory, as discussed in Chapter 6.
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Figure 3.1a shows the phonon dispersion relations ω(q) of monolayer graphene,
the building block of many of the other carbon sp2 nanostructures, calculated with-
in the so-called force constant model [31, 116].

There are six branches in these phonon dispersion relations because the crys-
tal has a unit cell with two distinct atom sites (A and B). The six eigenvectors at

the Γ point (q D 0, that is the wavelength, λ ! 1) consist of three translations
of the crystal along x , y , z, which have no restoring force and, consequently, ze-
ro frequency, plus three vibrational modes, two of which are degenerate. The Γ
point phonons shown in Figure 3.1 include the stretching of the C–C bond in the
graphene unit cell, and the phonons are denoted by LO or TO according to whether
the atomic vibrations are along or perpendicular to the direction of the wave vector
q (not shown). Graphene is a nonionic crystal, since the unit cell is formed by two
atoms of the same type, and because of the nonionic behavior of the graphene crys-
tal, the LO and TO phonon modes are degenerate at the Γ point.1) For the K point
phonons, q ¤ 0 and there is a phase factor in the phonon eigenfunctions from one
unit cell relative to the neighboring unit cell.

The brief description above introduces the picture of how to treat phonons in a
crystal, and the goal of this chapter is to describe the vibrational structure of sp2 car-
bons. Similar to what was covered in Chapter 2, we aim in this chapter to capture
the fundamental concepts for the phonon dispersion from the energy levels for a
very simple molecule and then to build the phonon dispersion structure of a crys-
tal, as presented in Figure 3.1. Therefore, we begin in Section 3.1 by briefly review-
ing some basic concepts: the harmonic oscillator, which describes the fundamen-
tal physics of molecular vibrations (Section 3.1.1); the concept of normal modes
from molecules to crystals (Section 3.1.2); the force constant model (Section 3.1.3),
in which interatomic forces are represented by spring constants to calculate the
phonon dispersion relations in crystals. With these basic concepts in place, we de-
velop the force constant model for graphene (Section 3.2). Like the tight-binding
approximation for the electronic structure (Chapter 2), the force constant model is
simple enough to be solved analytically, thus giving an understanding about how
to build the phonon structure of graphene. Again similar to electrons, phonon con-
finement takes place in carbon nanotubes and can be described, as a first approx-
imation, by the zone-folding procedure, which is developed in Section 3.4. Finally,
both the zone-folding and the force constant model have their limitations which
are discussed in Sections 3.4.2 and 3.5. The force constant model, with connec-
tions also made to 3D graphite, can be expressed quite accurately by increasing
the number of neighbors and the number of force constants, but it fails when ef-
fects like the electron–phonon coupling are important. Such a failure is actually
very important for interpreting the Raman spectroscopy of sp2 carbon nanotubes,
and is briefly discussed in this chapter. Further discussion is given in more detail
throughout the book whenever new aspects of the electron–phonon interaction are
needed to explain specific phenomena associated with the Raman spectra of sp2

1) In the case of an ionic crystal, like NaCl, the LO mode has a higher frequency than the TO mode
because of the Coulomb interaction between the ions. The LO-TO splitting is then related to the
dielectric constant through the Lydane–Sacks–Teller (LST) theory [118].
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carbons. Many basic textbooks on Raman spectroscopy are available to supplement
the presentation provided in this book which is focused on sp2 carbons [119–122].

3.1
Basic Concepts: from the Vibrational Levels in Molecules to Solids

To provide an overview of the basics, we first review the use of a harmonic os-
cillator (Section 3.1.1), which is important for defining phonons and describing
phonon amplitudes and displacements that are needed for Raman intensity cal-
culations. Then we discuss the normal vibrational modes in molecules and how
the number of normal modes evolves from small molecules to a crystal with an
“infinite” number of atoms, thereby building the phonon dispersion relations in
crystals (Section 3.1.2). Finally we describe the force constant model for vibrations
in general terms (Section 3.1.3).

3.1.1
The Harmonic Oscillator

The atomic motion in molecules and solids is described in terms of the normal
modes of vibration, which are represented by an orthogonal set of harmonic oscil-
lators. Classically, a harmonic oscillator can be described by

m
d2(x � xeq)

d t2 D �K(x � xeq) , (3.1)

where m , xeq and K are, respectively, the mass, the equilibrium position (see Fig-
ure 3.2) and the force constant for the harmonic oscillator. A solution of Eq. (3.1) is
given by

x (t) D xeq C A cos (ω t C φ), and ω �
r

K

m
, (3.2)

where A, ω and φ are, respectively, the amplitude, the frequency and the phase of
the vibration. A and φ are determined by the initial conditions at time t D 0.

However, the description above does not take into account the quantum nature
of the atoms, which can be described by solving the time-dependent Schrödinger

Figure 3.2 The potential energy for a harmonic oscillator
showing the quantized energy levels for a molecular mode
vibration. The waves associated with each energy level display
the probability to find the interatomic distance at a given x
value.
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equation for the quantum harmonic oscillator (HO)
�
� „2

2m

@2

@x2 C 1
2

K x2
�

Ψn D En Ψn , (n D 0, 1, 2, . . .) , (3.3)

in which Ψn is a wave function of the harmonic oscillator and n labels the quan-
tum state of the harmonic oscillator. The vibrational amplitude for Ψn , which is
proportional to

p
n, is quantized and the different vibrational levels are described

by the number of vibrational quanta, called phonons, and quantified by the quan-
tum number n (see Figure 3.2).

To account for the quantum nature of phonons and their energies, we introduce
the annihilation operator a and the creation operator a† which, respectively, anni-
hilates one phonon or creates one phonon of energy „ω:

a D p � i ωmxp
2„ωm

, and a† D p C i ωmxp
2„ωm

. (3.4)

The annihilation operator a lowers the quantum number of the state jni � Ψn to
jn � 1i, while the creation operator a† increases the quantum number of the state
jni to jn C 1i. Since the commutator [p , x ] D „/ i , it follows that

[a, a†] D 1 , (3.5)

so that the Hamiltonian for the harmonic oscillator in Eq. (3.3) can be written in
terms of the operators a and a† as:

H D 1
2m

�
(p C i ωmx )(p � i ωmx ) C m„ω

�
(3.6)

D „ω[a† a C 1/2] . (3.7)

Considering N D a† a to be the number operator, the Hamiltonian in Eq. (3.7) can
be written as

Hjni D „ω[N C 1/2]jni D „ω(n C 1/2)jni . (3.8)

Thus the eigenvalues for the harmonic oscillator are written as:

E D „ω(n C 1/2), (n D 0, 1, 2, . . .) (3.9)

as shown in Figure 3.2. Here n corresponds to the number of phonons with fre-
quency ω. The phonon amplitude will be related to the number of phonons n,
which depends on the phonon energy and temperature, as given by the Bose–
Einstein distribution function (see Section 4.3.2.1).

3.1.2
Normal Vibrational Modes from Molecules to a Periodic Lattice

In a molecule with N atoms, there exist 3N �6 degrees of freedom for vibrations. Of
these 3N �6 modes, 6 correspond to the degrees of freedom for the translation and
rotation of the center of mass, which either have no restoring force (zero frequency
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for translations) or have very small frequencies (rotations).2) Any atomic motion of
the molecule can be expressed by a linear combination of these 3N�6 independent,
orthogonal vibrations, which we call normal modes.

As a simple example, we discuss the molecular vibrations of the NO molecule,
which is an exception to the 3N � 6 rule, but has 3N � 5 normal modes. Having
two atoms, the NO molecule has 6 degrees of freedom for atomic motion in three
dimensions, but has only one vibrational mode. Three degrees of freedom are as-
sociated with translations of the molecule along x , y and z, and only two degrees of
freedom involve molecular rotations around the x and y axes. Rotation around the z

(N–O bond) axis does not represent motion for a linear molecule, which therefore
has 3N � 5 D 1 vibrational modes. The vibrational mode is represented by the
N–O bond stretching vibration, which is a breathing mode that does not alter the
symmetry of the molecule but only changes the bond length (dipole moment).

Increasing the size of the molecule from two to three atoms, we now consider
the CO2 molecule, which is also a linear molecule with the carbon atom at the
center and each of the oxygen atoms (along the z direction, for example) located at
distances ˙z0 from the carbon atom. In this case, there are 9 degrees of freedom,
4 of which are vibrational. This gives rise to a symmetric breathing mode with the
C atom remaining static and the oxygen moving in ˙z directions to preserve the
center of mass. A second mode is the antisymmetric stretch mode with the carbon
atom moving for example in the +z direction when the two oxygen atoms move
in the �z direction to preserve the center of mass. In addition, there is a doubly
degenerate bending mode where the two oxygen and the carbon atoms vibrate in
the directions normal to the molecular axis (i. e., the ˙x and ˙y ) directions. In this
case the bending and antisymmetric stretch modes that create a dipole moment are
infrared-active and the symmetric stretching mode that transforms as a symmetric
second rank tensor are Raman-active. These symmetry concepts behind Raman
activity can be described by group theory and will be discussed in Chapter 6.

Finally, finding the normal modes of large and complex molecules, such as pro-
teins, is not an easy task because of the large number of degrees of freedom. In cas-
es like that, it is common to find the spectral features identified with the stretching
and bending of local bonds (e. g., CDC, C�H, CDO, etc.) rather than the complete
molecular normal modes. Crystals have a large number of atoms (ideally infinite),
but periodic systems are, again, quite simple to describe in terms of molecules in
real and reciprocal space, and require the use of phonon dispersion relations, ω(q)
where q is the phonon wave vector.

The Bloch theorem developed in Section 2.1.5 for electrons can be used to de-
scribe the vibrational structure of crystalline solids. The same concepts, such as the
unit cell in real and reciprocal space, the Brillouin zone, etc., are used to describe
the vibrational structure, but the name branches is used in place of bands to desig-
nate the phonon dispersion relations. Consider N as the number of atoms in the
unit cell, and NΩ � 1023 per mole, as the number of unit cells in a mole of crystal.

2) Typical rotational energies are on the order of � 1 meV and occur at far-infrared frequencies.
The vibrational modes of molecules are observed in the mid-IR range, typically in the range
20–100 meV, and are the usual subject of study for molecular Raman spectroscopy.
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Figure 3.3 Schematic phonon eigenvector for a 1D crystal with two atoms in the unit cell. The
phonon mode is the longitudinal acoustic (LA) phonon branch with q D 8π/9a (λ D 9a/4).

There will then be 3 � NΩ � N vibrational modes, which is infinite for a crystal of
infinite size, but the quasi-infinite number of vibrational modes are grouped into
the various phonon branches. While the number of electronic bands is defined by
the number of electrons in the unit cell, the number of phonon branches is defined
by the number of atoms (N) in the unit cell. The difference between one phonon to
another within the branch is not given by the atomic motion within the unit cell,
but rather by the change in the phase of the vibration from one unit cell to the
next. A schematic phonon eigenvector for a hypothetical 1D crystal with N D 2 is
shown in Figure 3.3, which should be compared to Figure 2.5 for s and p electrons.
This difference among phonons within the unit cell is described by phonon wave
vectors, which are usually labeled q (where k is used for the electron wave vector),
and their energies are given by Eq D „ωq . A plot of ωq vs. q, such as in Figure 3.1a,
gives the phonon dispersion relations for graphene [31].

There are 3 � NΩ modes related to the translation of NΩ unit cells along the
3 directions of real space. However, only the translations along x , y and z with
infinite wavelength λ (i. e., for the null wave vector q D 0 at the Γ point) represent
a crystal translation (no restoring force, zero frequency). All the other 3NΩ � 3
modes actually have a restoring force from the neighboring unit cells, and they
are all vibrational modes grouped in three branches called acoustic branches, since
they are related to the transport of acoustic waves at long wavelengths.3) In general,
the sound velocity for longitudinal waves is faster than that for transverse waves. In
high symmetry crystals such as 2D graphene and 3D graphite we define the wave
propagation direction by the wave vector q, and for a given q we can define one
longitudinal acoustic (LA) branch, where the vibrational amplitude is parallel to
the wave propagation direction q, and two transverse acoustic (TA) branches, whose
amplitudes are perpendicular to q (Figure 3.4).

The rotation of a unit cell in a crystal is not allowed. All the other 3NΩ N � 3NΩ

modes are also vibrational modes, and they group into 3N � 3 branches named
optical branches, making reference to the fact that they are usually studied using
optics. Like for the acoustic branches, the optical branches can be classified into
longitudinal and transversal modes, using the general nomenclatures LO and TO,
respectively (with “O” for optical replacing “A” for acoustic).

3) A long wavelength phonon would have λ > 50 cm if the velocity of sound is 10 km/s and if the
highest frequency of sound is 20 kHz.
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Figure 3.4 Schematic phonon dispersion relations for a hypothetical 1D crystal made by the
repetition of two different atoms. The thicker lines indicate doubly degenerate branches for both
the acoustic and optical branches.

As an illustration, Figure 3.4 shows the phonon dispersion relations schematical-
ly for a hypothetical 1D crystal made of two different alternating atoms (Figure 3.3).
The two lower energy branches are for the acoustic phonons and two higher energy
branches are for the optical phonons. Up to six branches (3 acoustic and 3 optical)
are expected in 3D graphite, since we have two atoms unit cell. However, in the case
of the hypothetical 1D crystal, two acoustic and two optical modes are degenerate,
since atomic vibrations along x or y will have the same energies.

Another important concept is the zone boundary of the phonon dispersion, already
discussed in Section 2.1.5, which is given in Figure 3.4 by q D ˙π/a. This bound-
ary which we call the first Brillouin zone boundary is defined by the largest possible
value for q D 2π/λ D 2π/2a. Any value larger than that can be folded back inside
the ˙π/a boundaries of the first Brillouin zone. For example, if we draw in Fig-
ure 3.3 the motion for q D 0 (λ ! 1) and for q D 2π/a (λ D a), we will see that
the motion of equivalent atoms is identical.

Understanding the meaning of a phonon dispersion relation like Figures 3.1 and
3.4 is very important for Raman spectroscopy and for materials science in general,
and this is the goal of Section 3.1. In the next section we introduce a model used to
calculate such phonon dispersion relations for actual materials.

3.1.3
The Force Constant Model

In general, the equations of motion for the displacement of the ith atom measured
from the equivalent position, ui D (xi , y i , zi ) for N atoms in the unit cell is given
by

Mi Rui D
X

j

K (i j )(u j � u i ), (i D 1, . . . , N ) , (3.10)

where Mi is the mass of the ith atom and K (i j ) represents the 3 � 3 force constant
tensor4) between the ith and the jth atoms. The sum over j in Eq. (3.10) is normally

4) A second rank tensor is defined by a 3 � 3 matrix whose elements (Kx x , Kx y , . . . , Kzz ) can be
transformed as U�1K U , where U is a unitary matrix which transforms the x , y, z coordinates
into another orthogonal x 0 , y 0 , z0 coordinate system without changing the length scale.
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taken over only a few neighbor distances relative to the ith site, which for a 2D
graphene sheet has been carried out up to fourth nearest neighbor interactions
in [123]. In order to reproduce the experimental results, up to twentieth nearest
neighbor interactions have been considered [116, 124]. In a periodic system we can
perform a Fourier transform of the displacement of the ith atom with the wave
number k0 to obtain the normal mode displacements uk(i)

u i D 1p
NΩ

X
q0

e
�i(q0

�R i �ω t )u
(i)
q0 , or uq(i) D 1p

NΩ

X
R i

e i(q�R i �ω t )u i ,

(3.11)

in which the sum is taken over all (NΩ ) wave vectors q0 in the first Brillouin zone5)

and R i denotes the atomic position of the ith atom in the crystal. When we assume
the same eigenfrequencies ω for all ui , that is Rui D �ω2u i , then Eq. (3.10) can be
formally written by defining a 3N � 3N dynamical matrix D(q)

D(q)uq D 0 . (3.12)

To obtain the eigenvalues ω2(q) for D(q) and nontrivial eigenvectors uq ¤ 0, we
solve the secular equation detD(q) D 0 for a given q vector. It is convenient to divide
the dynamical matrix D(q) into small 3 � 3 matrices D(i j )(q), (i, j D 1, � � � , N ),
where we denote D(q) by

˚D(i j )(q)
�
, and from Eq. (3.12) it follows that D(i j )(q) is

expressed as:

D(i j )(q) D
0
@X

j 00

K (i j 00) � Mi ω2(q)I

1
A δ i j �

X
j 0

K (i j 0) e i q�∆R i j 0 , (3.13)

in which I is a 3 � 3 unit matrix and ∆R i j D R i � R j is the relative coordinate of
the ith atom with respect to the jth atom. The vibration of the ith atom is coupled
to that of the jth atom through the K (i j ) force constant tensor. The sum over j 00 is
taken for all neighbor sites from the ith atom with K (i j 00) ¤ 0, and the sum over j 0

is taken over the equivalent sites to the jth atom. The first two terms6) of Eq. (3.13)
have nonvanishing values only when i D j , and the last term appears only when
the j 0th atom is coupled to the ith atom through K (i j 0) ¤ 0.

In a periodic system, the dynamical matrix elements are given by the product
of the force constant tensor K (i j ) and the phase difference factor e i q�∆R i j . This
situation is similar to the case of the tight-binding calculation for the electronic
structure where the matrix element is given by the product of the atomic matrix
element and the phase difference factor (see Section 2.2.2).

5) NΩ is the number of unit cells in the solid and thus NΩ � 1023/mole.
6) These terms correspond to the diagonal block of the dynamical matrix. The last term in Eq. (3.13)

is in the off-diagonal (i j ) block of the dynamical matrix. When the ith atom has equivalent
neighbor atoms in the adjacent unit cells, the last term can appear in the diagonal block of the
dynamical matrix.
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(b)(a)

Figure 3.5 Neighbor atoms of graphene up
to fourth nearest neighbors for (a) an A atom
and (b) a B atom at the center denoted by sol-
id circles. From the first to the fourth neighbor
atoms, we plot 3 open circles (first neighbor),

6 solid squares (second), 3 open squares
(third), and 6 open hexagons (fourth), respec-
tively. Circles connecting the same neighbor
atoms are for guides to the eye [31].

3.2
Phonons in Graphene

Now we describe the force constant model applied to graphene (two-dimension-
al graphite). In graphene, since there are two distinct carbon atoms, A and B, in
the unit cell, we must consider six coordinates uk (or 6 degrees of freedom) in
Eq. (3.12). The secular equation to be solved is thus a 6 � 6 dynamical matrix D.
The dynamical matrix D for graphene is written in terms of the 3 � 3 matrices: (1)
D AA, (2) D AB , (3) D B A, and (4) D B B for the coupling between (1) A and A, (2) A

and B, (3) B and A and several (4) B and B atoms in the various unit cells

D D
�

D AA D AB

D B A D B B

�
. (3.14)

When we consider an A atom, the three nearest neighbor atoms (see Figures 3.5
and 3.6) are B1, B2, and B3 whose contributions to D are contained in D AB , while
the six next-nearest neighbor atoms denoted by solid squares in Figure 3.5a are all A

atoms, with contributions to D that are contained in D AA and so on. In Figure 3.5a,
b, we show neighbor atoms up to fourth nearest neighbors for the A and B atoms,
respectively. It is important to note that the A and B sites do not always appear
alternately for the nth neighbors. In fact the third and the fourth neighbor atoms
in Figure 3.5 belong to equivalent atoms.

The remaining problem is how to construct the force constant tensor K (i j ). Here
we show a simple way to obtain K (i j ).7)First we consider the force constant between

7) Since the determinant of the dynamical
matrix is a scalar variable, the determinant
should be invariant under any operation
of the point group for the unit cell. Thus
the proper combination of terms in the
product of the force constant tensor K (i j )

and the phase difference factor eiq�∆R i j is

determined by group theory, which gives
block-diagonalization in accordance with the
irreducible representations of the symmetry
groups of periodic structures (see Chapter 6).
Further details are given in the literature for
Si and Ge in [125], and for graphite in [126].
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Figure 3.6 Force constants between the A and B1 atoms on
a graphene sheet. Here φ r , φt i , and φto represent forces for
the nearest neighbor atoms in the radial (bond-stretching), in-
plane and out-of-plane tangential (bond-bending) directions,
respectively. B2 and B3 are the nearest neighbors equivalent to
B1, whose force constant tensors are obtained by appropriately
rotating the K (i j ) tensor for A and B1 [31].

an A atom and a nearest neighbor B1 atom on the x axis as shown in Figure 3.6
(see also Figure 2.6a). The force constant tensor is given by

K (A,B1) D

0
B@

φ(1)
r 0 0
0 φ(1)

t i 0
0 0 φ(1)

t o

1
CA , (3.15)

where φ(n)
r , φ(n)

t i , and φ(n)
t o represent the force constant parameters in the radial

(bond-stretching), in-plane and out-of-plane tangential (bond-bending) directions
of the nth nearest neighbors, respectively. Here the graphene plane is the x y plane,
the radial direction (x in the case of Figure 3.6) corresponds to the direction of
the σ bonds (dotted lines), and the two tangential directions (y and z) are taken
to be perpendicular to the radial direction. Since graphite is an anisotropic mate-
rial, we introduce two parameters to describe the in-plane (y) and out-of-plane (z)
tangential phonon mode, and the corresponding phase factor, e i q�∆R i j , becomes
exp(�i qx a/

p
3) for the B1 atom at (a/

p
3, 0, 0).

The force constant matrices for the two other nearest neighbor atoms, B2 and B3

are obtained by rotating the matrix in Eq. (3.15) according to the rules for a second-
rank tensor

K (A,B m) D U�1
m K (A,B1)Um , (m D 2, 3) , (3.16)

where the unitary matrix Um is here defined by a rotation matrix around the z axis
in Figure 3.6, taking the B1 atom into the B m atom,8)

Um D
0
@ cos θm sin θm 0

� sin θm cos θm 0
0 0 1

1
A . (3.17)

8) The formulation should be in terms of the rotation of the axes connecting an atom A to its various
equivalent neighbors. However, for easy understanding, we present in Eq. (3.16) the rotation of
atoms. The matrix for the rotation of the axes is the transpose matrix of the matrix for the rotation
of atoms.
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To make the method explicit, we show next the force constant matrix for the B2

atom at [�a/(2
p

3), a/2, 0], and U2 is evaluated assuming θ2 D 2π/3,

K (A,B2) D 1
4

0
B@

φ(1)
r C 3φ(1)

t i

p
3(φ(1)

t i � φ(1)
r ) 0p

3(φ(1)
t i � φ(1)

r ) 3φ(1)
r C φ(1)

t i 0
0 0 φ(1)

t o

1
CA , (3.18)

and the corresponding phase factor is given by exp[�i qx a/(2
p

3) C i q y a/2] .
In the case of the phonon dispersion relations calculation for monolayer gra-

phene, the interactions between two nearest-neighbor atoms are not sufficient
to reproduce the experimental results, and we generally need to consider con-
tributions from long-distance forces, such as from the nth neighbor atoms,
(n D 1, 2, 3, 4 . . .).9) To describe the twisted motion of four atoms, in which the
outer two atoms vibrate around the bond of the two inner atoms as shown in
Figure 3.7, contributions up to at least the fourth nearest neighbor interactions are
necessary [127]. Values for the force constants [123] (see Table 3.1) are obtained
by fitting the 2D phonon dispersion relations over the Brillouin zone as deter-
mined experimentally, as for example from electron energy loss spectroscopy [128],
inelastic neutron scattering [123] or inelastic X-ray scattering [129, 130].

In Figure 3.8a the phonon dispersion curves for a monolayer graphene sheet,
denoted by solid lines, are shown using the set of force constants in Table 3.1.
In Figure 3.8b the corresponding density of phonon states is plotted per C atom
per cm�1, where the energy is in units of cm�1. The calculated phonon disper-

Table 3.1 Force constant parameters for 2D graphene out to fourth neighbors in units of
104 dyn/cm [123]. Here the subscripts r, t i, and to refer to radial, transverse in-plane and trans-
verse out-of-plane, respectively. See Figures 3.5 and 3.6.

Radial Tangential

φ(1)
r D 36.50 φ(1)

t i D 24.50 φ(1)
to D 9.82

φ(2)
r D 8.80 φ(2)

t i D �3.23 φ(2)
to D �0.40

φ(3)
r D 3.00 φ(3)

t i D �5.25 φ(3)
to D 0.15

φ(4)
r D �1.92 φ(4)

t i D 2.29 φ(4)
to D �0.58

(1) (2)

(4)

(0)

(3)
(2) Figure 3.7 In order to describe the twisted motion of four

atoms, it is necessary to consider up to at last fourth-nearest
neighbor interactions. The numbers shown in the figure de-
note the nth nearest neighbor atoms from the leftmost zeroth
atom.

9) When we consider the force constant matrix
of the nth neighbor atoms, these atoms are
not always located on the x (or y) axis. In
that case it does not seem that we can build
an initial force constant matrix as given

by Eq. (3.15). This happens at the fourth
neighbor atoms in graphene. However, if we
consider a virtual atom on the x axis, and if
we then rotate the matrix, we can get the
force constant matrix without any difficulty.
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Figure 3.8 (a) The phonon dispersion curves,
plotted along high symmetry directions, for
a 2D monolayer graphene sheet, using the
set of force constants in Table 3.1 [123].

(b) The corresponding density of states vs.
phonon energy for phonon modes in units of
states/1C-atom/cm�1 � 10�2 [31].

sion curves of Figure 3.8a reproduce the experimental points obtained by electron
energy loss spectroscopy in general [127, 128], but are not very accurate for the
optical phonons near the K point (see the difference between Figures 3.8 and 3.1
and [129]). Thus, to a first approximation the inclusion of fourth-neighbor interac-
tions is sufficient for reproducing the phonon dispersion relations of 2D graphite,
but for a very accurate description of the phonon structure near the K point, other
effects have to be considered, as discussed briefly in Section 3.5.

The three phonon dispersion branches, which originate from the Γ point of the
Brillouin zone (see Figure 3.8a), correspond to acoustic modes: an out-of-plane
mode (oTA), an in-plane tangential (bond-bending) mode (iTA) and an in-plane
longitudinal (or radial, bond-stretching) mode (iLA),10) listed in order of increasing
energy, respectively. The remaining three branches correspond to optical modes:
one out-of-plane mode (oTO) and two in-plane modes (iTO and iLO).

It is noted that the oTA branch shows a q2 energy dispersion relation around
the Γ point, while the other two in-plane acoustic branches show a linear q de-
pendence, as is normally seen for acoustic modes. One reason why we get a q2

dependence for the out-of-plane mode is simply because this branch corresponds
to a two-dimensional phonon mode and because graphite has three-fold rotational
symmetry. It is clear in Eq. (3.16) that all rotations U are within the x , y plane in the
case of monolayer graphene. Thus the force constant matrix can be decomposed
into a 2 � 2 matrix of x , y components and a 1 � 1 matrix of z components. The
1�1 force constant tensor K

(i j )
z z for the nth neighbor atoms does not depend on the

coordinates, and ω(q) thus becomes an even function of k which is obtained from

10) Since the longitudinal modes are always in-plane phonon modes, we can omit “i” from iLA or
iLO.
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the sum of the differential phase factors e i q�∆R i j .11) If we consider only the three
nearest neighbor atoms, the sum of the differential phase factors is nothing but
f (k) obtained in Eq. (2.28) when discussing the electronic structure. The energy

dispersion relation thus obtained (see Eq. (2.31)) is an even function of q around
the Γ point. The optical out-of-plane transverse branch (� 865 cm�1 at the Γ point
in Figure 3.8a) shows a q2 dependence for the same reason. Thus, there is neither
a phase velocity nor a group velocity for the z component of the vibrations at the Γ
point, and the phonon density of states shows a step function which is known
as a two-dimensional van Hove singularity (see Figure 3.8b). Finally, remember
that while Figure 3.8 introduces all the basic concepts of the phonon dispersion
in graphene, it is not accurate enough for describing the experimental measure-
ments, mainly for the in-plane optical modes near the Γ and K points. This will be
discussed further in Section 3.4.2 and discussed in depth in later chapters of this
book.

3.3
Phonons in Nanoribbons

The phonon dispersion for nanoribbons consists of many one-dimensional phonon
dispersion relations which can be obtained, as a first approximation, by the zone-
folding technique that we discussed in Section 2.2.5. Like for electrons in Chap-
ter 2, we will discuss such a zone-folding procedure when applying it to carbon
nanotubes in Section 3.4, which represents a structure where such a procedure is
fully applicable because of the cyclic boundary condition. Nanoribbons are termi-
nated at their boundaries, and the zone-folding procedure has to be applied with
care.

Some special modes are of interest to Raman spectroscopy. The width breathing
phonon mode in which the ribbon width vibrates is a Raman-active phonon mode
with A symmetry. This mode originates from the LA phonon mode in graphene.

11) In general, the phase factor eiq�∆R i j goes
into its complex conjugate if we change q
to �q. Thus when we change q to �q, the
dynamical matrix for the z components
in a two-dimensional system becomes
its complex conjugate. It is clear that
jD�j D jDj for the Hermitian matrix D,
and thus the eigenvalues are even functions
of q around q D 0 (the Γ point). Even
though ω(q) is an even function of q, a term
proportional to jqj might appear in ω(q).
For example, for a one-dimensional spring
constant model with the force constant, K,
we get ω(q) D 2

p
K/M j sin qaj / jqj, for

(q � 0). The absence of a linear q term in
the phonon dispersion relations along the z

axis of graphite comes from the three-fold

rotational axis, C3 along the z direction.
Because of this symmetry, ω(qx , qy ) should
have three-fold rotational symmetry around
the C3 axis. However, no linear combination
of qx and qy , such as aqx C bqy (with
constant values for a, b), can be invariant
under a 2π/3 rotation around the qz axis.
The simplest invariant form is a constant,
and the quadratic form of q2

x C q2
y is also

invariant. This is why we get a q2 dependence
for ω(q) for the out-of-plane branch. When
the force constant matrix depends on the
atom locations, such as for the in-plane
modes, this invariant condition applies to the
product of the force constant matrix and the
phase difference factor, which generally has a
linear q term in ω(q).
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Furthermore, according to the edge structure of graphene nanoribbons, we expect
edge-localized phonon modes to appear [131]. Some calculations show that we can
see such modes at 1450 cm�1 and 2060 cm�1 for zigzag and armchair edges, re-
spectively. The reason why we get a relatively lower frequency 1450 cm�1 com-
pared to the G-band frequency of 1585 cm�1 for the zigzag edge structure is that
the edge atoms have only two chemical bonds. In the case of the armchair edge,
the dangling bonds of A and B edge atoms form another π bond which makes
the C–C bond at the armchair edge a triple bond whose optical phonon modes are
around 2000 cm�1. Similar Raman spectra are observed in the polyene CnH2, (n D
8, 10, 12) encapsulated in a SWNT in the frequency region around 2000 cm�1[4].
When the dangling bonds are terminated by hydrogen atoms, a triple bond be-
comes a double bond, whose frequency may appear at around 1530 cm�1[132]. The
downshift in frequency from 1585 cm�1 to 1530 cm�1 can be understood by con-
sidering the weight of the hydrogen atom. Since the H mass is much lighter than
the C mass and since the C–H bond is much stiffer compared with the C–C bond,
we may consider that the mass of the edge carbon atoms changes from 12 to 13.
In fact, when we multiply

p
12/13 by 1585 cm�1, we get 1530 cm�1. Thus by mea-

suring the micro-Raman modes associated with the edge, we can get information
about the edge structure of graphene and related functionalized graphene materi-
als.

3.4
Phonons in Single-Wall Carbon Nanotubes

The vibrational structure of carbon nanotubes is obtained by rolling up the
graphene nanoribbon into a cylinder. In this section, we review the zone-folding
picture for obtaining the first-approximation to the phonon dispersion relations
for nanotubes (Section 3.4.1), while the effect of nanotube curvature is discussed
in Section 3.4.2.

3.4.1
The Zone-Folding Picture

As a first approximation, the phonon structure of carbon nanotubes can be ob-
tained using a similar procedure to that used for electrons (see Section 2.3), by
superimposing the N cutting lines in the K1-extended representation on the six
phonon frequency surfaces in the reciprocal space of the graphene layer [31, 110].
The corresponding one-dimensional phonon energy dispersion relation ωmµ

1D (q) for
the nanotubes is given by:

ωmµ
1D (q) D ωm

2D

�
q

K2

jK2j C µK1

�
,

�
m D 1, . . . , 6,
µ D 0, . . . , N � 1,

and � π
T

< q � π
T

�
,

(3.19)
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where ωm
2D (q) denotes the two-dimensional phonon dispersion relations for a

monolayer graphene sheet, q is a one-dimensional wave vector, T is the magnitude
of the one-dimensional translation vector T , and µ is a cutting line index.

According to the zone-folding scheme, this procedure yields 6N phonon modes
for each carbon nanotube. The 6(N/2 � 1) pairs of the phonon modes arising from
the cutting lines of the indices µ and �µ, where µ D 1, . . . , (N/2 � 1), are expected
to be doubly degenerate, similar to the case of the electronic sub-bands, while the
phonon modes arising from the cutting lines for the indices µ D 0 and µ D N/2
are nondegenerate. The total number of distinct phonon branches is 3(N C 2).
For our prototype (4,2) nanotube, N D 28, so that there are 90 distinct phonon
branches.

Spikes appear in the phonon density of states (DOS) of the carbon nanotube,
similar to the spikes (VHSs) appearing in the electronic DOS (see Figure 3.9c), ex-
cept for the presence of a much larger number of spikes in the phonon DOS than
in the electronic DOS, due to the larger number of phonon modes relative to the
number of electronic bands, and the more complex structure of the dispersion re-
lations for phonons than for electrons in the graphene layer. However, the spikes
in the phonon DOS do not play such an important role in the experimental out-
comes as the spikes in the electronic DOS because of symmetry selection rules.
Among the large number of the phonon modes in carbon nanotubes, only a few
are Raman-active or infrared-active [134, 135]. Further details about the selection
rules for the phonon modes are discussed in Chapter 6, where the relevant group
theory discussion is presented. The phonon dispersion relations of the graphene
layer calculated by the force constant model are shown in Figure 3.9b along with
the cutting lines for our (4,2) sample nanotube in Figure 3.9a. The corresponding
phonon density of states for the (4,2) nanotube are shown in Figure 3.9c.

3.4.2
Beyond the Zone-Folding Picture

The zone-folding scheme neglects the curvature of the nanotube wall. Meanwhile,
the nanotube curvature couples the in-plane and out-of-plane phonon modes of
the graphene layer to each other, especially affecting the low frequency acoustic
phonon modes. Among the three acoustic phonon modes of the graphene layer,
only one of the two in-plane modes results in the acoustic phonon mode of the
nanotube corresponding to the vibrational motion along the nanotube axis. The
two other in-plane and out-of-plane acoustic phonon modes give rise to the twist-
ing mode (TW, the vibrational motion in the circumferential direction of the nan-
otube) and to the radial breathing mode (RBM, the vibrational motion in the radial
direction of the nanotube), correspondingly, while the two related acoustic phonon
modes of the nanotube (the vibrational motion in two orthogonal directions per-
pendicular to the nanotube axis) can be constructed as linear combinations of the
acoustic modes with wave vectors q D 2/dt [31].

The zone-folding scheme predicts zero frequencies for both the TW and RBM
phonon modes of the nanotube at the center of the Brillouin zone (q D 0, ω D 0),
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Figure 3.9 (a) The phonon dispersion rela-
tions of the graphene layer in the first Brillouin
zone calculated with the force constants fit-
ted to the Raman scattering data for various
graphitic materials [133]. Solid curves show
the cutting lines for the (4,2) nanotube in
the fully reduced representation. Solid dots

show the ends of the cutting lines in the K1-
extended representation. (b) Phonon disper-
sion relations for the (4,2) nanotube obtained
by zone-folding from (a). (c) The density of
phonon states for the phonon modes shown
in (b) for monolayer graphene [110].

since they arise from the acoustic phonon modes of the graphene layer. However,
the RBM phonon frequency cannot have a zero frequency since it is an in-plane,
bond stretching phonon mode, though the corresponding TW phonon mode is
a bond bending, in-plane phonon mode. In this sense, the RBM mode is not an
acoustic phonon mode but an optical phonon mode. The frequency of the RBM
is inversely proportional to the nanotube diameter, varying from around 60 to
450 cm�1 for typical diameters of 2.0 to 0.5 nm. This was first predicted within
the force constant model [123], and then confirmed by resonance Raman scatter-
ing measurements [136], and by ab initio calculations [137], which also revealed a
weak dependence of the RBM frequency on the nanotube chirality. The zone-fold-
ing scheme does not explain the characteristics of the RBM [123], although zone-
folding does provide better results for the high frequency phonon modes (optical
modes), as confirmed by ab initio calculations [138]. In order to avoid the limita-
tions of the zone-folding scheme for the low frequency phonon modes, the force
constant model can be used directly for the nanotube by constructing and solving
the 6N � 6N dynamical matrix for the unit cell of the nanotube, instead of using
the 6 � 6 dynamical matrix for the unit cell of the graphene layer with subsequent
zone-folding [31]. Alternatively, the first-principles methods can be used instead of
the force constant models to calculate the phonon modes [116, 124], yet the size of
the unit cell cannot be too large for ab initio methods. Therefore, ab initio calcula-
tions are presently limited to achiral nanotubes and to only a few chiral nanotubes
with relatively small unit cells. Also, the accuracy of the experiments significantly
exceeds what ab initio calculational methods can presently achieve.
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3.5
Beyond the Force Constant Model and Zone-Folding Procedure

The phonon dispersion relations of the graphene layer can be calculated within
a force constant model [31], or by tight-binding [139], or ab initio [116] methods.
In the force constant model, interactions including as many nearest neighbors in
the graphene layer can be considered in order to improve the agreement with ex-
periment. The phonon dispersion relations for monolayer graphene can be mea-
sured along high symmetry directions in the Brillouin zone by electron energy loss
spectroscopy [128], inelastic neutron scattering [123], and inelastic X-ray scatter-
ing [129, 130]. The force constants up to the fourth nearest-neighbor were fitted to
the phonon frequencies measured by inelastic neutron scattering in graphite [123].
Furthermore, the force constant model using up to 20 nearest neighbor terms were
fitted to inelastic X-ray scattering data [140].

Surprisingly, resonance Raman scattering in sp2 carbons is not restricted to the Γ
point (q D 0 selection rule), but Raman spectra are also sensitive to the regions
around the high symmetry points K (K 0) in the first Brillouin zone, and this will
be discussed in more detail in Chapters 12 and 13. Actually, Raman experiments
on sp2 carbons probing zone center modes provided evidence for a failure of all
the force constant, tight-binding and ab initio calculational methods used to de-
scribe the phonon dispersion relations around these high symmetry points, until
the phonon energy renormalization due to electron–phonon coupling was included
in the calculations [141].

In the presence of electron–phonon coupling, the phonon lifetime is no longer
infinite. When we consider the electron–phonon interaction as a perturbation, the
phonon energy can be modified by a virtual excitation of an electron and this effect
is significant both for certain Γ and K point phonons. Because of this virtual excita-
tion of an electron, the phonon lifetime becomes finite, and the phonon frequency
shows a broadening due to the Heisenberg uncertainty relation. This phenomena
generally becomes very strong for the phonon wave vector q D 2kF where kF is the
Fermi wave vector, and we call this effect the Kohn anomaly effect [141]. In the case
of graphene and carbon nanotubes, the Kohn anomaly effect occurs for Γ and K
point phonons and we will discuss the effect of the Kohn anomaly on the Raman
spectra further in Chapter 8.

Problems

[3-1] Obtain the frequencies of two atoms (of mass M), which are connected to
each other by a spring with spring constant K and also connected to the
two walls (that is, wall-atom-atom-wall geometry). Here we consider only
the longitudinal modes for which the vibration is along the bond axis. We
consider that the walls have an infinite mass. Show the two normal modes
in a figure, using arrows to show the atomic mode displacements.
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[3-2] Obtain the vibrational frequencies of three atoms in similar geometries to
the previous problem, which involves the wall-atom-atom-atom-wall geom-
etry. Show the three normal modes using arrows in the figure to denote
atom displacements. In order to solve this problem, you can use the fact
that any normal mode should be either symmetric or antisymmetric under
the inversion operation x ! �x .

[3-3] Next we consider N � 1 atoms attached between the two walls. When we
consider x0 and xn as the coordinates of the two walls, show that all the
equations of motion are expressed by the same formula. Then considering
that the Bloch theorem applies, substitute x` D A exp(i q`a � i ω t) into
the equations of motion and obtain the dispersion of the phonon frequency
ω(q). Plot the dispersion of the phonon within the first Brillouin zone.

[3-4] In the previous Problem 3-3, we can use the fixed boundary condition of
x0 D xn D 0. Obtain the N � 1 q-independent phonon frequency values
from the boundary condition.

[3-5] What happens in the previous Problem 3-3, if we adopt the periodic bound-
ary condition x0 D xn . Here we consider the center of mass motion to be
zero.

[3-6] Show that the previous results satisfy the case of N � 1 D 2 and N � 1 D 3
by comparing your results with answers to earlier questions in Chapter 3.

[3-7] The problems above describe the phonon dispersion for a one-atom per
unit cell 1D crystal. If you replace each even atom by a different atom, the
system will become a two-atoms per unit cell 1D crystal, with a doubled-size
unit cell. Show that the first Brillouin zone is reduced to half the size of the
original one and show that the phonon dispersion will be represented by a
zone-folding of the one-atom phonon dispersion.

[3-8] In Figure 3.3, choose any unit cell vibrational mode and show that the mo-
tion of the atoms for q D 0 (λ ! 1) and for q D 2π/a (λ D a) is the
same.

[3-9] Consider the phonon dispersion of a two-dimensional square lattice with
atoms of mass M and spring constant K. Plot the resulting phonon disper-
sion curve as a function of qx and q y .

[3-10] Consider the phonon dispersion of a two-dimensional honeycomb lattice
with atoms of mass M and spring constant K. In this case, we have two
atoms per unit cell. Show the first Brillouin zone and plot the phonon dis-
persion for the high symmetry directions within the first Brillouin zone.

[3-11] Consider a 2(N � 1) linear chain of atoms in which two different atoms A
and B with masses MA and MB are connected along a chain (wall-A-B-A-B-
. . . -B-wall). Obtain and plot the phonon dispersion for this configuration.



3.5 Beyond the Force Constant Model and Zone-Folding Procedure 71

[3-12] In the previous problem, show the normal modes for the Γ point and for
the zone boundary for each phonon mode.

[3-13] Consider the 2(N �1) linear chain with one type of atom (mass M) with two
different spring constants alternating in the sequence wall-(K1)-atom-(K2)-
. . . -(K1)-wall. In this case, we have two phonon branches. Plot the phonon
dispersion.

[3-14] When we consider a transverse phonon mode, how should we consider the
force constant for a linear chain of similar atoms of mass M. Show that
stretching a spring in such a linear chain does not give a deformation which
is proportional to y or z when we consider the direction along the chain as x.

[3-15] How many normal modes exist for the CH4, C2H2 and C60 molecules
which, respectively, have the shapes of a regular tetrahedron, a linear chain,
and a truncated icosahedron?

[3-16] Let us consider the H2O molecule. Solve for the phonon normal modes
by considering the spring constant K1 for the H–O bond stretching force
constant and K2 for the H–O–H bond angle force constant. Obtain these
force constants by using the experimental values for the mode frequencies.

[3-17] When we consider the two-dimensional square lattice for atoms of mass M
and force constant K between nearest neighbor atoms, write an equation of
motion for the transverse phonon mode and give a solution for its mode
frequency.

[3-18] Let us consider the phonon modes of the C60 molecule. When we consider
two spring constants for pentagonal and hexagonal C–C bonds, show how
to construct the dynamical matrix and how to calculate the phonon modes.

[3-19] Consider zigzag and armchair graphene nanoribbons which have edges
with zigzag and armchair shapes. Obtain discrete q vectors in the nanorib-
bon width direction by defining the width of the nanoribbon.

[3-20] Consider a ring which consists of N carbon atoms, each connected to its
neighboring atoms by spring constant K and consider only the radial breath-
ing phonon mode. Then show that the corresponding phonon frequency is
inversely proportional to N.

[3-21] When we consider the hexagonal corners of the two-dimensional Brillouin
zone of graphene, that is the K and K 0 points, show that the phonon eigen-
vectors have the periodicity of a

p
3 � p

3 super-cell. How many atoms exist
in this super-cell?

[3-22] Consider the previous Problem 3-21 for the case of the M point, which is
the center of the hexagonal edge of the two-dimensional Brillouin zone.

[3-23] Study the general theory of the LO and TO phonon modes whose mode
frequency ratio depends on the dielectric constant of the materials. In par-
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ticular, show that the LO and in-plane TO phonons are degenerate at the Γ
point (q D 0) in 3D graphite.

[3-24] The sound velocity of the LA phonon mode of graphite is about 21 km/s.
Estimate the spring constant of the C–C chemical bond of graphite.

[3-25] Review the principles of inelastic neutron scattering and inelastic X-ray scat-
tering. What is the merit of each of these experimental techniques for study-
ing carbon systems such as graphene and carbon nanotubes?

[3-26] In order to get momentum and energy information from inelastic neutron
scattering measurements, we need a monochromator to disperse the neu-
tron beams. How do we get a neutron beam with a fixed kinetic energy?

[3-27] When we use 10 KeV X-rays for observing 0.1 eV phonons, we need high
accuracy for observing the scattering angles. Estimate the accuracy of the
angles needed for the X-ray detector in such an experiment.




