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2
Electrons in sp2 Nanocarbons

Usually Raman spectra only involve phonons explicitly, being independent of the
laser energy used to excite the Raman spectra and the electronic transitions in the
material (to the extent that the electron–phonon interaction is weak). Furthermore,
the usual Raman scattering signal is weak. However, the scattering efficiency gets
much larger and the Raman signal much stronger when the laser energy matches
the energy between optically allowed electronic transitions in the material. This
intensity enhancement process is called resonance Raman scattering (RRS) [91].
Under the RRS regime, the resonance Raman intensity is further enhanced by the
large density of electronic states (DOS) available for the optical transitions. This
large density of states is especially important for one-dimensional systems, which
have singularities in their density of states at the energy onset of an allowed optical
transitions.

This chapter has the goal of reviewing the important concepts needed for un-
derstanding the Raman spectroscopy of sp2 nanocarbons, making a link between
molecular and solid state science. Due to the peculiar π-electron structure (delocal-
ized pz orbitals, as discussed in Sections 1.3 and 2.2.2), the Raman spectroscopic
response in sp2 nanocarbons depends strongly on their electronic structure due to
the ubiquitous resonance processes that dominate their inelastic scattering of light.
For this reason, it is important to review the electronic properties of these systems.

We start by reviewing the basic concepts relevant to the electronic energy levels
of isolated molecules and what happens when these molecules are assembled in
the solid state. In Section 2.1 we present the one-electron system for the hydrogen
atom and then move to more and more complex systems, discussing the forma-
tion of molecular orbitals and finally building the transition to solid state systems
in Section 2.1.5, and to sp2 nanocarbon systems in particular (Sections 2.2 and 2.3).
Here both the molecular orbital theory (bonding and antibonding states) and the
valence bonding theory (hybridization) are introduced and, while the discussion of
the intermixing may not be fully rigorous, it is useful for gaining an understanding
of sp2 carbon systems. In Section 2.2.1 we present the crystal structure of graphene,
which is followed by the tight-binding model for the π-band electronic structure
for monolayer graphene in Section 2.2.2. The π-bands extend over an energy range
that goes from the Fermi point up to the ultra-violet, and the π-bands are thus
responsible for all transport and optical phenomena. In Section 2.2.3 the σ-bands
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18 2 Electrons in sp2 Nanocarbons

are reviewed to yield the electronic structure for graphene which contains both π
and σ-bands. In flat graphene the σ-bands are not important for optical phenome-
na. However, when curvature is present, like in the case of carbon nanotubes, σ-π
hybridization can occur, with consequences on the optical response. The remain-
ing sections of this chapter extend the picture to few-layer graphene and then to
many-layer graphene in Section 2.2.4 and to quantum confinement phenomena
occurring in nanoribbons (Section 2.2.5). The effect of quantum confinement on
the electronic structure of nanotubes is next discussed in Section 2.3. The struc-
ture of carbon nanotubes is introduced in Section 2.3.1 followed by a discussion
of the zone-folding procedure (Section 2.3.2) and the density of electronic states
(Section 2.3.3), which is important to understand Raman spectroscopy in these
materials, as discussed in Section 2.3.4. This chapter ends with a short discussion
in Section 2.4 of the physics beyond the simple tight-binding and zone-folding ap-
proximations. This final section comes here just as a brief introduction to concepts
that will be developed in later chapters.

2.1
Basic Concepts: from the Electronic Levels in Atoms and Molecules to Solids

Before discussing the electronic properties of the crystalline sp2 systems, we re-
mind the reader about the basic concepts used to describe the electronic levels of
a mono-atomic system, the hydrogen atom in Section 2.1.1, and we then move to
molecular systems like the H2 in Section 2.1.2, to NO in Section 2.1.3, and C2H2

in Section 2.1.4, and finally leading into the electronic structure of a linear chain
of atoms in a periodic lattice in Section 2.1.5. With this procedure, we hope that
the reader will feel comfortable when looking at the electron wavefunctions for
graphene, carbon nanotubes and other sp2 carbon systems.

2.1.1
The One-Electron System and the Schrödinger Equation

We start by reviewing the most basic system, that of the hydrogen atom, with one
electron of charge �e and mass m orbiting about a nucleus with mass M. The
Schrödinger equation for the hydrogen atom [92] is written as:

�
� „2

2µ
∆ C V(r)

�
Ψ (r) D E Ψ (r) , (2.1)

where µ is the reduced mass given by

1
µ

D 1
m

C 1
M

, or µ D M

m C M
m , (2.2)

and the reduced mass is shown in Figure 2.1.
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Figure 2.1 Schematic definition of a system with masses m and M in motion (a), and the corre-
sponding reduced mass model system (b), in which a particle with a reduced mass µ is moving
around the center of mass, indicated by 1.

The Coulomb potential V(r) for the hydrogen atom has a spherical symmetry
which is represented by r D p

x2 C y 2 C z2 and

V(r) D � Z e2

4π�0r
, (2.3)

in which Z is the charge on the nucleus (Z D 1 for hydrogen), and �0 is the dielec-
tric constant of vacuum. Since the Hamiltonian has a spherical symmetry around
the center, the wavefunction Ψ of Eq. (2.1) can be written as:

Ψ (r) D R(r)Θ (θ )Φ (φ) , (2.4)

so that Eq. (2.4) can be decomposed into three partial differential equations for
R(r), Θ (θ ) and Φ (φ). Since there is no term depending on θ and φ in V(r), the
solution of Eq. (2.4) simply replaces Θ (θ ) and Φ (φ) by the solution for free space
given by the spherical harmonics Y m

` (θ , φ). As for the radial part of the wave func-
tion R(r), we can solve this by considering Laguerre polynomials. Although we do
not go into detail for this solution, the end result for the energy eigenvalues is [92]

En D � Z2

(4π�0)2
� µe4

2„ � 1
n2

(n D 1, 2, 3, . . .) , (2.5)

and R(r) for a given n is expressed by

Rn`(r) D exp
�

� Z r

na0

��
Z r

a0

�`

Gn`

�
Z r

a0

�
, (2.6)

where Gn` denotes the Laguerre polynomials depending on the variable Z r/a0

(where a0 is the Bohr radius, a0 D „2/me2). The eigenvalues are characterized by
four quantum numbers: the principal quantum number n, the angular momentum
quantum number `, the z component of the angular momentum m`, and the spin
of the electron ms , which are not explicitly written in Eq. (2.5). These quantum
numbers assume the following values:

n D 1, 2, 3, . . . (2.7)
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` D 0, 1, 2, . . . , n � 1 . (2.8)

m` D �`, �` C 1, . . . , ` � 1, ` . (2.9)

ms D 1/2, �1/2 . (2.10)

The common designations for the atomic orbitals s, p , d, . . . correspond to ` D
0, 1, 2, . . ., respectively.

For the case of carbon Z D 6, we predominantly consider the principal quan-
tum numbers n D 1, 2 where the n D 1 orbital (1s) is fully occupied with one
spin up and one spin down core electron, and n D 2 is half occupied with four
electrons with orbitals (2s, 2px , 2p y and 2pz ) having energies comparable to that
of the hydrogen atom. In the lowest energy state, these n D 2 electrons occupy the
hybridized graphene s p 2 C pz orbitals, while the four electrons in diamond occupy
a symmetric sp3 hybridized orbital, which is higher in energy at room temperature
and under ambient pressure (see also Section 1.1).

2.1.2
The Schrödinger Equation for the Hydrogen Molecule

Now we recall what happens to the electrons when the two H atoms are com-
bined into the H2 molecule. In the two-electron system of a hydrogen molecule,
the Schrödinger equation can be written in matrix form resulting in the solution
of a secular equation, written generically as:

jhΨi jH jΨ j i � EhΨi jΨ j ij D 0 , (2.11)

where hΨi jH jΨ j i and hΨi jΨ j i denote, respectively, the Hamiltonian and overlap
matrices for basis functions.1) Here we consider the hydrogen molecule H2 and
Ψi is taken as the hydrogen 1s atomic orbital for each H atom. If we adopt the
approximation that Ψ1 and Ψ2 are orthogonal to each other, then hΨ1jΨ2i D 0 and
the Schrödinger Equation (2.11) yields

(
E1s Ψ1 C V0Ψ2 D E Ψ1

V0Ψ1 C E1s Ψ2 D E Ψ2 ,
(2.12)

where E1s is the energy of an unperturbed H atom, and the Hamiltonian matrix
element is V0 � hΨ1jH jΨ2i < 0. In evaluating the Hamiltonian matrix elements,
we should also consider the Coulomb interaction between the two electrons in the
Hamiltonian.2) Here we simply consider that the Coulomb interaction is included

1) Basis functions are atomic orbitals or
molecular orbitals that are used by
variational principles to obtain the energy by
E D hΨi jH jΨ j i/hΨi jΨ j i.

2) If we use the Hartree–Fock approximation for
the Coulomb interaction [93], the interaction
further consists of a direct Coulomb term

and an exchange term. The exchange term
corrects for the overestimation of the direct
Coulomb interaction term and arises from
the fact that two electrons with the same spin
cannot be at the same location in accordance
with the Pauli exclusion principle.
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in both V0 and E1s. In matrix form Eq. (2.12) can be written as:

�
E1s V0

V0 E1s

��
Ψ1

Ψ2

�
D E

�
Ψ1

Ψ2

�
. (2.13)

Equation (2.13) can be diagonalized by solving the secular equation3) (Eq. (2.11)),

(E � E1s)2 � V 2
0 D 0 , (2.14)

which gives E D E1s ˙ V0. The diagonalization can be done by a unitary transfor-
mation of the Hamiltonian matrix H given by U† H U , where the unitary matrix U

is given by4)

U D (1/
p

2)
�

1 1
1 �1

�
. (2.15)

The resulting symmetrized eigenvectors will be two molecular orbitals formed by
a linear combination of atomic orbitals (LCAOs), given by the symmetric (S) and
antisymmetric (AS) combinations [94]

ΨS D (1/
p

2)(Ψ1 C Ψ2) (2.16)

ΨAS D (1/
p

2)(Ψ1 � Ψ2) . (2.17)

The spatial dependence of the electronic wavefunctions for the hydrogen molecule
is shown in Figure 2.2, where the symmetric combination ΨS D (1/

p
2)(Ψ1 C Ψ2)

has the lower energy (ES D E1s C V0), in which V0 has a negative value, resulting in
an enhancement in the probability for finding an electron at the center between the
two H atoms. For this reason, this state is usually called the bonding state, describing
the ground state for the H2 molecule by occupying two electrons (one spin up, one
spin down). The antisymmetric combination ΨAS D (1/

p
2)(Ψ1 � Ψ2), with energy

EAS D E1s � V0, is named the antibonding state with a node in the wave function at
the center between the two H atoms, as shown in Figure 2.2.

2.1.3
Many-Electron Systems: the NO Molecule

In this section we show how the molecular electronic complexity increases when
the number of electrons in a diatomic molecule increases. Figure 2.3 shows the
schematics of the electronic levels for the heterogeneous diatomic NO
molecule [94]. The 1s2 levels (core electrons, not shown) lie much lower in energy.
These electrons are tightly bound to their respective atoms and do not contribute

3) The secular equation is given by the
determinant of the matrix of Eq. (2.13)
when it becomes zero. If the determinant
is not zero, we get the inverse matrix
and multiplying the inverse matrix by

Eq. (2.13), we get the meaningless solution
of t (Ψ1, Ψ2) Dt (0, 0).

4) U† is the transpose and complex conjugate
of U. In the case of a unitary matrix,
U† D U�1.
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Figure 2.2 Bonding and antibonding molecular levels of the H2 molecule. The energy sepa-
ration between the bonding and antibonding orbitals for this symmetric diatomic molecule is
given by 2V0. The wavefunctions Ψ (r) for the bonding and antibonding states are also shown.

to molecular bonding and molecular properties. The 2s electrons form bonding
and antibonding states, which are fully occupied by four electrons, similar to the
discussion in Section 2.1.2. Next, considering the bonding for the p electrons,
the lowest energy is for the 2pz orbitals if we take the z-axis to be along the NO
bond direction. The diatomic potential of the NO molecule will break the atomic

Figure 2.3 Energy levels for the heterogeneous diatomic NO molecule, showing the bonding
and antibonding states filled with spin up and spin down electrons (gray).
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degeneracy between the 2pz and 2px ,y orbitals, while the NO bonding will mix
the N and O levels which have the same angular momentum L around the z axis
(L D 0 for 2s and 2pz , L D 1 for 2px and 2p y ), forming bonding and antibonding
molecular orbitals,5) as shown in Figure 2.3 [94]. The 11 electrons pertaining to
both the N and O atoms in the n D 2 atomic shell (N: 2s2, 2p 3 and O: 2s2, 2p 4) will
fill the five lowest energy levels as shown in Figure 2.3 (accounting for both spin up
and spin down states) plus one extra electron in the highest π� antibonding state.
The highest occupied molecular orbital and the lowest unoccupied molecular orbital are
often called the HOMO and LUMO levels, respectively. In the case of NO, π� is
called the singly occupied MO (SOMO). Considering a NOC ionized molecule, the
highest π� antibonding state would be empty and become the LUMO level. The
pz -based σ level would represent the HOMO level.

2.1.4
Hybridization: the Acetylene C2H2 Molecule

Now we address the problem of hybridization, whereby atomic orbitals mix with
each other within an atom to form a chemical bond in a specific direction. Con-
sidering Figure 2.3, imagine that the 2s level from one atom is closer in energy to
the 2p level of the other atom. This indeed happens in the CO molecule. Other-
wise, imagine that the bonding interaction is strong enough to mix the 2s and the
2pz orbitals which have the same symmetry. This happens in some cases where
the minimization of energy for the molecular bonding requires an elongation of
the electronic wavefunctions to the other atoms. Such an elongation can be rep-
resented by the hybridization (mixing) of different atomic orbitals from the same
atom, as occurs in the case of acetylene C2H2 [31]. Considering the bonding along
the x direction, the px electrons from the two carbon atoms will be involved in the
strongest interatomic bonding. This bonding is called σ bonding, resulting in an
elongation of the electronic wavefunctions, as shown in Figure 2.4, where we see a
mixing of j2si and j2pzi orbitals (s–p hybridization).

The two linear combinations of atomic orbitals (LCAOs) for the H2C2 acetylene
molecule will be the

js pai D 1p
2

(j2si C j2pxi) (2.18)

and the

js pbi D 1p
2

(j2si � j2px i) (2.19)

orbitals, which are elongated along the +x and �x directions, respectively (Fig-
ure 2.4), where js pai and js pbi are hybridized orbitals for the left and right atoms,
respectively. Furthermore the js pai and js pbi form the symmetric and antisym-
metric combinations js pai ˙ js pbi, respectively, and they are usually named σ and

5) We must consider hybridization of 2s and 2pz in the case of NO. This is the reason why σ of 2pz

lies higher in energy than π of 2px and 2py .
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Figure 2.4 Schematics for the s p hybridiza-
tion and bonding formation [31]. The shad-
ing represents the positive value of the wave
function js pai D j2si C j2px i, where the
bond is elongated in the positive direction
of x, while the state js pbi D j2si � j2px i

is elongated in the negative direction. The
symmetric (js pai C js pbi) and antisymmet-
ric (js pai � js pbi) combinations constitute
“bonding” and “antibonding” σ states, re-
spectively.

σ� states. The σ state is responsible for the strong covalent bonding between two
carbon atoms, while the σ� state is an unoccupied state. The two remaining p y

and pz electronic states, which are perpendicular to the bonding x direction, form
the (weak) so-called π bonds, giving rise to the symmetric and antisymmetric or-
bital combinations that occur in the acetylene molecule HC�CH [31]. While the
symmetric and antisymmetric combinations retain a similarity with the concept of
bonding and antibonding orbitals, this connection is not fully correct. In sp2 car-
bon systems, hybridization occurs by mixing 2s, 2px and 2p y orbitals which make
three hybridized orbitals which are elongated to the three nearest neighbor atoms
(sp2 hybridization). The sp2 hybridized orbitals form three σ (bonding) and three
σ� (antibonding) orbitals. The remaining 2pz form π and π� orbitals. In the case
of sp2 carbon, π and π� orbitals correspond to the HOMO and LUMO, respectively.
All these concepts are broadly used in the description of the sp2 nanocarbons.

2.1.5
Basic Concepts for the Electronic Structure of Crystals

Next, we consider the electronic structure of a crystalline solid and attempt to
make a connection to the simple concepts used in molecular electronics. The
Schrödinger equation for an electron in a crystal is written as [95]:

�
� „2

2m
r2 C V(r)

�
Ψ D E Ψ , (2.20)

where V(r) is now a periodic potential. Since the crystal has a quasi-infinite number
of atoms, the number of electronic levels is also quasi-infinite. This generates a
quasi-infinite secular equation if we solve for the electronic states by the molecular
orbitals method. However, in the case of a crystal, we can use the fact that the
crystal is a periodic structure based on a unit cell that repeats itself under the lattice
vectors labeled by

R D na1 C ma2 C l a3 , (2.21)
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where a1, a2, and a3 are the primitive vectors of the crystal lattice, and n, m, and
l are integers. Since the potential V(r) is periodic under an R translation (V(r) D
V(r C R)), the solutions to Eq. (2.20) are wave functions that can be written as:

Ψk (r) D e i k�r u k (r) , (2.22)

where

u k (r) D u k (r C R) , (2.23)

is periodic in accordance with Bloch’s Theorem [31, 95]. Figure 2.5 illustrates the
formation of Bloch states for a linear chain of atoms, and these Bloch states are
defined by the unit cell wavefunction u k (shown as s and p states in Figure 2.5) and
e i k r term, which modifies the sign and amplitude as a phase factor. Here k is the
wavevector whose length is given by

k D 2π/λ , (2.24)

where λ is the wavelength of the wavefunction.
Since k is a good quantum number (or a variable that is conserved under trans-

lation by R), the electronic structures of crystals are displayed in a plot of the
electron energy Ek vs. electron wavevector k, called the energy dispersion relations,
which consist of quasi-continuous states within a finite region of energy called
electronic energy bands. From an atomic orbital in a unit cell, we can make a Bloch
function and thus produce an energy band which can occupy two electrons per
unit cell. Being quasi-continuous, these energy bands account for a quasi-infinity
of electronic levels.

The real coordinate space (x , y , z) is the space where the atoms are displayed
(Figure 1.2), and where the probability for finding an electron with a wave func-
tion Ψ is given by taking the square of Ψ , shown in Figure 2.5. The so-called

Figure 2.5 Schematic 1D Bloch orbitals formed by s (a) and pz (b) atomic orbitals. The top
shows the wavefunction of each atom, the middle shows the phase of the Bloch orbital eikr , and
the bottom shows the amplitudes of the Bloch orbitals.
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reciprocal space (kx , ky , kz ) is the space of the wavevectors k for the wavefunctions,
and the electronic dispersion relations are representations of the electron energy
in reciprocal space.

Consider a hypothetical one-dimensional (1D) crystal made of a quasi-infinite
repetition of –N–O–N–O– atoms. Considering a–N–O as the primitive translation
vector in real space, given by the distance between –N–O units, the allowed val-
ues for λ (or k, see Eq. (2.24)) are a–N–O, 2a–N–O, 3a–N–O, . . . , N a–N–O, where N
is the number of –N–O units in this 1D crystal (N � 1023). Compared to the NO
molecule in Section 2.1.3, instead of having the 11 electronic levels made of combi-
nations of the N: 2s2, 2p 3 and O: 2s2, 2p 4 electrons, there will be 11 �N electronic
levels. The energy dispersion relation (Ek vs. k plot) in reciprocal space will then be
made of 11 energy bands, where the number of energy bands is given by the total
number of atomic orbitals in the unit cell. Each energy band accepts 2N electrons
or 2 electrons per unit cell. While there will be 11 energy bands (similar to the 11
levels of the NO molecule), the lower 5 energy bands of the 11 energy bands are
fully or partially occupied.

Like in the case of molecules, the electronic levels will be filled from the lowest
to the highest energy. Because of the odd number of electrons in the unit cell, we
expect metallic behavior in which the highest occupied energy band is half occu-
pied. The electronic wavefuction can now change phase when moving along the
one-dimensional crystal, with N wavevectors associated with each electronic band.
The energy defining the boundary between the occupied and unoccupied levels is
called the Fermi energy. If the Fermi energy falls within an electronic band, no en-
ergy will be required to take an electron from the occupied to the unoccupied state,
and the material is therefore metallic.6) If the Fermi energy falls within an energy
gap between the valence (the highest occupied) and the conduction (the lowest un-
occupied) energy bands, then the material will be semiconducting (with an energy
gap on the order of 1 eV) or an insulator (gap on the order of 10 eV).7) Graphene is
an interesting system where the energy separation between the valence and con-
duction bands is zero, imposed by crystal symmetry. Therefore, graphene is a zero
gap semiconductor (or metal) with a symmetry-imposed degeneracy between the
valence and conduction bands at specific points in two-dimensional (kx , ky ) recip-
rocal state [94].

Finally, we define the so-called Brillouin zone, which is a symmetry-based unit
cell in reciprocal space providing a representation for a wavevector appropriate to
a given crystal. The number of allowed k wavevectors inside a Brillouin zone is al-
ways limited by the number N of unit cells in the crystal, where �π/a � k � π/a

defines the so-called bounding region of the Brillouin zone. Figure 2.5 displays the
case for λ D 2a–A–B, where k D π/a–A–B at the boundary of the first Brillouin zone.
Outside the first Brillouin zone (kout > π/a, or λ < 2a–A–B) the electronic struc-
ture repeats the electronic levels inside the first Brillouin zone with k D kout � K ,

6) This would likely happen to this hypothetical NO crystal, since there is one electron in the π�
state in the molecule (see Section 2.1.3).

7) This would likely happen to the hypothetical NOC crystal, since the LUMO is empty in the NOC
molecule (see Section 2.1.3).
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where K D 2π/a–A–B gives the reciprocal lattice vector in what is called the extend-
ed Brillouin zone [95]. This periodicity in reciprocal space is equally applicable to
phonons, and we use this periodicity for phonons in Chapter 3. All the concepts
briefly summarized in this section are broadly used in the study of sp2 nanocar-
bons, as shown in the next sections and chapters. The reader who is not familiar
with solid state physics may want to consult a more tutorial solid state physics pre-
sentation, such as the introductory text by Kittel [95].

2.2
Electrons in Graphene: the Mother of sp2 Nanocarbons

The discussion of Section 2.1.5 is now applied to sp2 nanocarbons. Graphene pro-
vides a simple illustration showing that the number of branches in the dispersion
relations corresponds to the number of electrons in the unit cell. Graphene has two
C atom sites per unit cell, which means 2 sets of 2s and 2p states (a total of 8 states
per unit cell), so that there will be eight electronic energy bands, derived from the
3σ, 3σ�, 1π and 1π� levels. The 8 electrons per unit cell will fill the 4 lower 3σ and
1π bonding energy bands with spin up and spin down electrons, and the 4 higher
3σ� and 1π� energy bands will be unoccupied.8)

2.2.1
Crystal Structure of Monolayer Graphene

The fundamental crystal structure that constitutes the basis for sp2 carbon nano-
structures is graphene, which is a two-dimensional (2D) planar structure based on
a unit cell containing two carbon atoms A and B, as shown by the unit vectors a1

and a2 in Figure 2.6a. The carbon atoms in monolayer graphene are located at the
vertices of the hexagons where a1 and a2 are unit vectors.

Figure 2.6 (a) The unit cell and (b) Brillouin
zone of monolayer graphene are shown as the
dotted rhombus and the shaded hexagon, re-
spectively, while a i , and b i , (i D 1, 2) are the
real space unit vectors and reciprocal lattice

vectors, respectively. Energy dispersion rela-
tions are usually displayed along the perime-
ter of the dotted triangle connecting the high
symmetry points, Γ , K and M (see inset to
Figure 2.7).

8) The electronic energy bands of monolayer graphene are displayed in Figure 2.10.
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As shown by Figure 2.6a, the real space unit vectors a1 and a2 of the hexagonal
lattice are expressed in Cartesian coordinates as:

a1 D
 p

3
2

a,
a

2

!
, a2 D

 p
3

2
a, � a

2

!
, (2.25)

where a D ja1j D ja2j D 1.42 � p
3 D 2.46 Å is the lattice constant of mono-

layer graphene. Likewise, the unit cell in reciprocal space is shown by the shaded
hexagon in Figure 2.6b and is described by the unit vectors b1 and b2 of the recip-
rocal lattice given by

b1 D
�

2πp
3a

,
2π
a

�
, b2 D

�
2πp
3a

, � 2π
a

�
, (2.26)

corresponding to a lattice constant of length 4π/
p

3a in reciprocal space. The unit
vectors b1 and b2 of the reciprocal hexagonal lattice (see Figure 2.6b) are rotated
by 30ı from the unit vectors a1 and a2 in real space, respectively. The three high
symmetry points of the Brillouin zone, Γ , K and M are the center, the corner, and
the center of the edge of the hexagon, respectively. Other high symmetry points or
lines are along Γ K (named T), KM (named T0) and Γ M (named Σ ).

In monolayer graphene, three of the electrons form σ bonds which hybridize
in a sp2 configuration, and the fourth electron of the carbon atom forms the 2pz

orbital, which is perpendicular to the graphene plane, and makes π covalent bonds.
In Section 2.2.2 we use the tight-binding approximation to treat the covalent π
energy bands for graphene which are the simplest for determining the solid state
properties of graphene, reflecting the strong coupling of the in-plane carbon atoms.
In Section 2.2.3 we review the σ-bands which, together with the π-bands, give the
electronic structure of graphene.

2.2.2
The π-Bands of Graphene

In this section we review the derivation of the electronic π-bands of graphene
based on the tight-binding model which is used here to provide an approximate
description of the π-bands of monolayer graphene because of the very strong in-
plane bonding between the carbon atoms in graphene. For a more detailed develop-
ment of the tight-binding model applied to graphene and other sp2 carbon systems,
see [31, 32].

Within the tight-binding method, the unperturbed eigenvectors are represented
by atomic orbitals, and the crystalline potential is treated as a perturbation, thus
forming the crystalline electronic states which are represented by Bloch states.
Two Bloch functions (ΦA and ΦB), constructed from pz atomic orbitals (', with
ΦA,B / P

R eik�R'(r � R)) for the two nonequivalent carbon atoms at A and B sites
in Figure 2.6a, provide the basis functions for describing the electronic structure of
monolayer graphene (1-LG). The secular equation is derived from a 2 � 2 Hamilto-
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nian matrix, Hi j D hΦi jH jΦ j i, containing four matrix elements coupling ΦA and
ΦB. When we consider only nearest neighbor interactions, then HAA D HBB D �2p

for the diagonal matrix elements where �2p is the atomic 2p level energy of an
isolated carbon atom. For the off-diagonal matrix element HAB, we must consider
the three nearest neighbor B atoms relative to an A atom, which are denoted by
the vectors R1, R2, and R3 connecting the A atom to its three nearest neighbor B
atoms to obtain:

2HAB D t
�

e i k�R1 C e i k�R2 C e i k�R3
�

D t f (k) , (2.27)

where t is the nearest neighbor transfer integral (h'AjHj'Bi) which is often called
�γ0 (t D �γ0) in the literature, where γ0 is given a positive value. The function
f (k) in Eq. (2.27) is a function of the sum of the phase factors of e i k�R j ( j D

1, � � � , 3). Using the x , y coordinates of Figure 2.6a, f (k) is given by

f (k) D e i kx a/
p

3 C 2e�i kx a/2
p

3 cos
�

ky a

2

�
. (2.28)

Since f (k) is a complex function, and the Hamiltonian forms a Hermitian matrix,
we write HBA D H�

AB in which � denotes the complex conjugate. Using Eq. (2.28),
the overlap integral matrix, Si j D hΦAjΦBi is given by SAA D SBB D 1, and SAB D
s f (k) D S�

BA, with the nearest neighbor overlap integral for pz wavefunctions,
s D h'Aj'Bi. The explicit forms for H and S can be written as:

H D
�

�2p t f (k)
t f (k)� �2p

�
, S D

�
1 s f (k)

s f (k)� 1

�
. (2.29)

Solving the secular equation det(H � ES) D 0 (where “det” denotes the deter-
minant) and using H and S as given in Eq. (2.29), the eigenvalues E(k) for the
graphene π-bands are obtained as a function k D (kx , ky ):

E(k) D �2p ˙ tw (k)
1 ˙ sw (k)

, (2.30)

where the C signs in the numerator and denominator go together giving the bond-
ing π energy band, and likewise for the � signs, which give the antibonding π*-
band as symmetric and antisymmetric combinations of ΦA and ΦB, respectively,
(see Section 2.1.2), while the function w (k) is given by

w (k) D
q

j f (k)j2 D
s

1 C 4 cos

p
3kx a

2
cos

ky a

2
C 4 cos2

ky a

2
. (2.31)

In Figure 2.7, the electronic energy dispersion relations for the π-bands of mono-
layer graphene are shown throughout the two-dimensional first Brillouin zone and
the inset shows the energy dispersion relations along the high symmetry axes along
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Figure 2.7 The energy dispersion relations for
2D graphite are shown throughout the whole
region of the first Brillouin zone [31]. The
valence and conduction bands of graphene
touch at the points K and K 0, which are re-

lated by time reversal symmetry [94]. The in-
set shows the energy dispersion E(k) along
the high symmetry directions of the triangle
Γ M K , shown in Figure 2.6b.

the perimeter of the triangle shown in Figure 2.6b. Here we use values of the pa-
rameters �2p D 0, t D �3.033 eV, and s D 0.129 in order to reproduce the first
principles calculation of the graphite energy bands [16, 96]. The upper half of the
energy dispersion curves describes the π�-energy “antibonding” band, and the low-
er half is the π-energy bonding band9). Since there are two π electrons per unit cell,
these two π electrons fully occupy the lower π-band. Therefore, the π-band is filled
by spin up and spin down electrons, while the π*-band is empty. The upper π*-
band and the lower π-band are degenerate at the K (K 0) points through which the
Fermi energy passes for an undoped monolayer graphene sample.

The existence of a zero gap at the K (K 0) points comes from the symmetry re-
quirement that the two carbon sites A and B in the hexagonal lattice are distinct
but equivalent to each other by symmetry. If the A and B sites had different atoms,
such as B and N, then the site energy �2p would be different for B and N, and there-
fore the calculated energy dispersion would show an energy gap between the π
and π*-bands (Eg D 3.5 eV D �B

2p � �N
2p for BN).

When the graphene overlap integral s becomes zero, the π and π*-bands be-
come symmetrical around E D �2p , which can be understood from Eq. (2.30). The
energy dispersion relations in the case of s D 0 are commonly used as a simple
approximation for the electronic structure of a graphene layer near E D �2p :

E(kx , ky ) D ˙t

(
1 C 4 cos

 p
3kx a

2

!
cos

�
ky a

2

�
C 4 cos2

�
ky a

2

�)1/2

.

(2.32)

In this case, the electronic energies have values of ˙3t, ˙t and 0, respectively, at

9) The bonding and antibonding assignment is not strictly correct for graphene because of the
hexagonal symmetry.
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the high symmetry points, Γ , M and K in the Brillouin zone, and the band width
is 6t, which is consistent with the three π bonds per atom.

It should be noted that the valence and conduction bands come into the K (K 0)
point with a linear E(k) relation. The E(k) relation about the K and K 0 points was
already shown to have a linear dependence of E(k) in the early work of Wallace [53].
Most of the graphene literature makes use of the relation Eq. (2.32) for s D 0, and
uses the lowest order term in the expansion of this equation around the K and K 0
points in the Brillouin zone, which are related by time inversion symmetry. This
yields

E˙(k) D ˙„vFjkj , (2.33)

where vF is the Fermi velocity of π electrons (� 106 km/s) given by

vF D p
3(γ0a/2„) , (2.34)

and a D p
3aC–C is the lattice constant of graphene and aC–C D 1.42 Å is the

nearest neighbor carbon–carbon distance [53].
It is interesting to point out that the linear dispersion given by Eq. (2.33) is the

solution to the massless Dirac Hamiltonian at the K(K 0) point [97]:

H D „vF (σ � �) , (2.35)

where � D �ir, and the σ are the Pauli matrices operating in the space of
the electron wave function amplitude on the A,B sublattices of graphene (pseu-
do spin). Equation (2.35) gives a “chiral” nature to the quasi-particles defined by
Eq. (2.33) [52]. The Dirac Hamiltonian of Eq. (2.35) (or the effective mass ap-
proximation model) gives good insights into the relativistic nature of electrons in
monolayer graphene, and has been important for describing transport effects near
the Fermi level. However, its accuracy is limited to low energies and care should be
taken when using this expression to analyze optical phenomena. Nevertheless, in
the visible range the linear k dispersion relation (see Figure 2.7) is usually accurate
enough to explain most experimental results.

2.2.3
The σ-Bands of Graphene

Let us next consider the σ-bands of graphene. There are three atomic orbitals of
sp2 covalent bonding per carbon atom, 2s, 2px and 2p y . We thus have six Bloch
orbitals in the 2 atom unit cells, yielding six σ-bands for the 6 � 6 Hamiltonian
matrix. We calculate the electronic structure for these six σ-bands using this 6 � 6
Hamiltonian and the corresponding (6 � 6) overlap matrix, and we then solve the
secular equation for each k point. Since the planar geometry of graphene satisfies
the even symmetry of the Hamiltonian H and of the symmetry operators 2s, 2px

and 2p y upon mirror reflection about the x y plane, and the odd symmetry of the
operator 2pz , the σ and π energy bands can be solved separately, because the ma-
trix elements of different symmetry types do not couple in the Hamiltonian. For
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the eigenvalues thus obtained, three of the six σ-bands are bonding σ-bands which
appear below the Fermi energy, and the other three σ-bands are antibonding σ*-
bands which appear above the Fermi energy.

The calculation of the Hamiltonian and overlap matrix is performed analytically,
using a small number of parameters. Hereafter we arrange the matrix elements
in accordance with their atomic identity for the free atom: 2sA, 2p A

x , 2p A
y , 2sB, 2p B

x ,
2p B

y . Then the matrix elements coupling the same atoms (for example A and A)
can be expressed by a 3 � 3 small matrix, which is a sub-matrix of the 6 � 6 ma-
trix. Within the nearest neighbor site approximation, the small Hamiltonian and
overlap matrices are diagonal matrices as follows:

HAA D
0
@�2s 0 0

0 �2p 0
0 0 �2p

1
A , SAA D

0
@1 0 0

0 1 0
0 0 1

1
A , (2.36)

where �2s and �2p denote the orbital energy of the 2s and 2p levels.
The matrix element for the Bloch orbitals between the A and B atoms can be

obtained by taking the components of 2px and 2p y in the directions parallel or
perpendicular to the σ bond. In Figure 2.8, we show how to rotate the 2px atomic
orbital and how to obtain the σ and π components for the rightmost bonds of this
figure.10) In Figure 2.8 the wavefunction of j2pxi is decomposed into its σ and π
components as follows:

j2px i D cos
π
3

j2pσi C sin
π
3

j2pπi . (2.37)

This type of decomposition is called the Slater–Koster method [94].
By rotating the 2px and 2p y orbitals in the directions parallel and perpendicu-

lar to the desired bonds, the matrix elements appear in only 8 patterns as shown
in Figure 2.9, where shaded and nonshaded regions denote positive and negative

2p x
2p σ

2p π

1

3

2

2

Figure 2.8 The rotation of 2px . The figure shows how to project 2px into its σ and π compo-
nents in the direction of the right C–C bond. This method is valid only for p orbitals [31].

10) Here the π component (in-plane) has nothing to do with the π orbital (out-of-plane) discussed
in Section 2.2.2. The π component is named π because it is perpendicular to the considered σ
orbital.



2.2 Electrons in Graphene: the Mother of sp2 Nanocarbons 33

S ss

H sp

S

H

S σ

Hσ

H π

S π

ss

sp

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 2.9 The band parameters for σ-bands. The four cases from (a) to (d) correspond to
matrix elements having nonvanishing values and the remaining four cases from (e) to (h) corre-
spond to matrix elements with zero values [31].

amplitudes of the wavefunctions, respectively. The four cases from Figure 2.9a to
d correspond to nonvanishing matrix elements and the remaining four cases from
Figure 2.9e to h correspond to matrix elements that vanish because of symmetry.
The corresponding parameters for both the Hamiltonian and the overlap matrix
elements are also shown in Figure 2.9.

When all the matrix elements of the 6 � 6 Hamiltonian and overlap matrices
are calculated [31, 96], the energy dispersion of the σ-bands can be obtained from
solution of the secular equation. Since the analytic solution of the 6 � 6 Hamilto-
nian is too complicated for practical use, we solve the Hamiltonian numerically by
using, for example, the Lapack software package.11) The results thus obtained for
the calculated σ and π energy bands are shown in Figure 2.10, which result from a
fit of the functional form of the energy bands imposed by symmetry to the energy
values obtained from the first principles band calculations at the high symmetry
points [31, 96].

2.2.4
N-Layer Graphene Systems

When joining graphene layers to form N-layer graphene (N-LG) with the Bernal
AB stacking structure, the unit cell will be formed by 2N atoms. Consequently,
the π and π*-bands will split into symmetric and antisymmetric combinations of
the graphene states. Figure 2.11a,b shows the unit cell for N D 2, that is, bilayer
graphene (2-LG), and Figure 2.11c shows its π-band electronic structure. For 3-LG

11) Lapack is a linear algebra package written using Fortran or C languages. You can download the
library as free software and the programs have been used and checked to be correct by many
groups. We do not need to use a sub-program for matrix calculations but just call this library. For
further details, search for “LAPACK” on the Internet. There are several versions of the Lapack
library. The Intel compiler supports Lapack under the name of Math Kernel Library.
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Figure 2.10 The energy dispersion relations along high symmetry directions for σ and π-bands
of monolayer graphene [31]. The Fermi level (EF) was chosen as the zero energy.

Figure 2.11 (a) The real space top-view of the
setting for the unit cell for bilayer graphene
(2-LG) with AB Bernal stacking, showing the
non-equivalent A1 and B1 carbon atoms in the
first layer and the A2 and B2 carbon atoms in
the second layer. The unit cell vectors a1 and
a2 are shown, considering the origin to be half
way between atoms A1 and A2. The A atoms

are above one another on adjacent layers, but
the B atoms are staggered on adjacent layers,
as shown in a 3D view in panel (b). (c) The
electronic dispersion for the 2-LG π electrons
calculated by DFT (density functional theory)
along the KΓ MK directions. The energy band
labeling comes from group theory and will be
discussed in Chapter 6 [98].

with AB stacking, atoms A3 and B3 would be placed on top of A1 and B1 in the
top-view of Figure 2.11a and it would exhibit 3π and 3π*-bands. The stacking of
4-LG would look exactly like two 2-LG blocks on top of each other, and so on. The
electronic structure of 2-LG can be described by the phenomenological Slonczews-
ki–Weiss–McClure (SWM) model [16, 99, 100]. Since the unit cell of 2-LG with the
Bernal AB stacking structure is the same as for graphite, which also has the same
layer stacking structure, we can denote the electronic spectrum of bilayer graphene
in terms of a model closely related to the SWM model for graphite. A larger set
of parameters (γ0, γ1, γ3, and γ4),12) that are associated with overlap and transfer
integrals calculated for nearest neighbors atoms up to adjacent layers will be need-

12) γ2 and γ5 are transfer integrals for next-nearest layers.
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ed to describe the electronic structure (more about this in Section 11.3). However,
even in 3D graphite, the interaction between two adjacent layers is small compared
with intralayer interactions, since the layer-layer separation of 3.35 Å is much larg-
er than the nearest neighbor distance between two carbon atoms, aC–C D 1.42 Å.
Thus the electronic structure of graphene provides a building block for the elec-
tronic structure for N-LG and 3D graphite.

One important fact for N-LG is that the linear energy dispersion of 1-LG appears
for odd-number LG near the Fermi energy, while parabolic energy dispersion ap-
pears for even-number LG. Koshino and Ando [101] explain this fact by showing
that the Hamiltonian can be decoupled into 2 � 2 sub-matrices if we consider only
γ1 for the interlayer interaction [101]. Thus depending on whether we have an odd
or even number of graphene layers, the effective mass of the carriers of N-LG be-
comes zero or finite, respectively, which is analogous to elementary particle physics
in which two kinds of particles exist, such as massless (photon, neutrino) Bosons,
and finite mass (electron, proton) Fermions depending on symmetry. When we
consider the Fermi velocity vF D 1 � 106 m/s, which is � c/300 as the velocity of
light, we can make an analogy between graphene and particle physics.

2.2.5
Nanoribbon Structure

When going from a bulk material to a low-dimensional structure, the electronic
states are constrained by quantum effects in the nanoscale directions. If the low-di-
mensional system has the same crystal structure as the parent higher-dimensional
material, the electronic states of the low-dimensional system can be considered as
a subset of the electronic states of the bulk material. When we move from the two-
dimensional graphene sheet to the one-dimensional carbon nanoribbon (or nan-
otube), the wave vector components in the nanoscale directions can only take on
discrete values in order to maintain an integral number of wave function nodes,
that is, these wave vector components then become quantized. The number of
quantized states for a given orbital of each atom (such as 2s, 2px . . .) is equal to the
number of unit cells of the parent higher-dimensional material in the nanoscale
directions of the lower-dimensional structure.

The general procedure for confining the two-dimensional electronic structure of
graphene into a one-dimensional structure will be discussed in detail for carbon
nanotubes in Section 2.3. But before discussing nanotubes in detail, let us briefly
mention graphene nanoribbons. Such nanoribbons consist of graphene with a fi-
nite width and infinite length, as shown in Figure 2.12. Thus the unit cell of a
nanoribbon consists of 2N carbon atoms13) in the direction of the width, while
periodicity appears in the length direction. The wavevectors are quantized in the
direction of the width, and 2N 1D energy sub-bands for the π (2pz ) band appears
if we simply adopt the zone-folding method (see Figure 2.13).

13) Here N is the number of CC dimers along the ribbon width. Here we use N (italic font) for the
number of graphene layers.
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Figure 2.12 (a,b) The network skeleton of two
nanoribbons. (a) N D 10 lines of C atoms
from one edge to the other, and an armchair-
like edge structure. (b) N D 5 and a zigzag-
like edge structure. The arrows indicate the

translational directions of the graphene rib-
bons. Unit cells in real space (c) and recip-
rocal space (d) of 2D graphite. The vectors a
and a� (z and z�) relate to armchair (zigzag)
ribbons [102].

The method of constructing 1D electronic energy sub-bands by cutting the 2D
electronic dispersion relations with these lines is known as the “zone-folding
scheme” [31]. The cutting lines represent the allowed k vectors for the 1D nanorib-

Figure 2.13 Band structure E(k) of graphene nanoribbons of various widths obtained from the
zone-folding procedure. Armchair nanoribbons with N D 4 (a), N D 5 (b) and N D 6 (c), and
zigzag nanoribbons with N D 4 (d), N D 5 (e), and N D 6 (f) [102].



2.3 Electrons in Single-Wall Carbon Nanotubes 37

bon represented in the 2D Brillouin zone of graphene, which are continuous along
the ribbon axis and discrete along the tube width. The length of each cutting line is
2π/T , where T is the 1D unit vector in the translational direction of the nanoribbon
or nanotube axis. The separation between two adjacent cutting lines is inversely
proportional to the nanoribbon width (nanotube diameter). The orientation of the
cutting lines in 2D reciprocal space is determined by the cutting direction, that is,
the relative orientation of the nanoribbon axis with respect to the principal axes
of graphene (the unrolled flat layer of the 2D parent graphene material [31]). The
structure of the edges is very important. We can consider two possible edges, arm-
chair and zigzag edges, which are more stable than the other shape of edges [103]
and whose structures are shown in Figure 2.12. The nanoribbons with armchair
and zigzag edges are called, respectively, armchair nanoribbons (A-NR) and zigzag
nanoribbons (Z-NR). For both cases, the edge carbon atoms have two σ bonds and
one π bond, while the remaining σ bonds exist as either being terminated by H
atoms or by dangling bonds.

We see that for the π-band for nanoribbons, a flat energy band appears around
the Fermi energy in the electronic energy dispersion from the K to M points for Z-
NRs (see Figure 2.13d–f), while no edge states appear for A-NRs (see Figure 2.13a–
c). Thus the density of states near the Fermi energy is singular for Z-NRs. In the
case of A-NRs, the energy gap is oscillating as a function of N, and for N D 3n � 1
the A-NRs become metallic, while they are semiconducting in the other cases (see
Figure 2.13a–c).

While the zone-folding procedure works as a first approximation to the electronic
structure for nanoribbons, the presence of edge states can significantly alter their
fundamental electronic properties. For example, different from what is shown in
Figure 2.13, ab initio calculations [104] and experiments [105] show that because
of the localized edge states, all nanoribbons are semiconducting materials with an
energy gap magnitude depending on the ribbon width, which depends on N. The
electron amplitude ratio between sites A and B is expressed by the pseudo-spin, and
the edge states in Z-NRs can be understood as pseudo-spin polarized states. From
this we can derive many interesting physical phenomena, such as half-metallicity
(only one of two spin currents exist at the Fermi energy) and the occurrence of
magnetism at the zigzag edges [104, 106]. Once you close the ribbon structure into
a carbon nanotubes, this complex edge physics is gone, as discussed in the next
section.

2.3
Electrons in Single-Wall Carbon Nanotubes

In this section we review the structure of carbon nanotubes (Section 2.3.1), their
electronic dispersion relations (Section 2.3.2), and their density of electronic states
(Section 2.3.3). In Section 2.3.4 we explain the importance of both the carbon nan-
otube electronic structure and the laser excitation energy on the details of the ob-
served Raman spectra.
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2.3.1
Nanotube Structure

A single-wall carbon nanotube (SWNT) is constructed starting from a graphene
layer by rolling it up into a seamless cylinder [31]. The graphene layer is oriented
with respect to the coordinate system in such a way that the armchair direction lies
along the x-axis and the zigzag direction is along the y-axis, as shown in Figure 2.14.
The nanotube structure is uniquely determined by the chiral vector C h which spans
the circumference of the cylinder when the graphene layer is rolled up into a tube.
The chiral vector can be written in the form C h D na1 C ma2, where n and m are
integers and where the vectors a1 and a2 bounding the unit cell of the graphene
layer with the two distinct carbon atom sites A and B are shown in Figure 2.14. In
the shortened (n, m) form, the chiral vector is written as a pair of integers, and the
same notation is widely used to characterize the geometry of each distinct (n, m)
nanotube.

The nanotube can also be characterized by its diameter dt and chiral angle θ
from a zigzag direction, which determine the length Ch D jC hj D πdt of
the chiral vector and its orientation on the graphene layer (see Figure 2.14).
Both dt and θ are expressed in terms of the indices n and m by the relations
dt D a

p
n2 C nm C m2/π and tan θ D p

3m/(2n C m), as one can derive from
Figure 2.14, where a D ja1j D ja2j D p

3aC–C D 0.246 nm is the lattice con-
stant for the graphene layer and aC–C D 0.142 nm is the nearest neighbor C–C
distance [31]. As an example, the chiral vector C h shown in Figure 2.14 is given
by C h D 4a1 C 2a2, and thus the corresponding nanotube can be identified by
the integer pair (4, 2). Due to the six-fold symmetry of one graphene layer, all non-
equivalent nanotubes can be characterized by the (n, m) pairs of integers where
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Figure 2.14 An unrolled nanotube projected
on the graphene layer. When the nanotube
is rolled up, the chiral vector C h turns into
the circumference of the cylinder, and the
translation vector T is aligned along the cylin-
der axis. R is the symmetry vector and θ is

the chiral angle (see text). The unit vectors
(a1, a2) of the graphene layer are indicated.14)

The non-equivalent A and B sites within the
unit cell of the graphene layer are shown at
the top [31].

14) Notice the origin of the (a1, a2) in this figure are chosen differently from that described in
Figure 2.6a.
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0 � m � n. The nanotubes are classified as chiral (0 < m < n) and achiral (m D 0
or m D n), which in turn are known as zigzag (m D 0) and armchair (m D n)
nanotubes. A (4, 2) chiral nanotube is one of the smallest diameter nanotubes ever
synthesized [107], requiring special calculational treatment because of its large
curvature [108].

The unit cell of an unrolled nanotube on a graphene layer is a rectangle bound-
ed by the vectors C h and translational vector T (see the rectangle shown in Fig-
ure 2.14 for the (4, 2) nanotube). T is given by t1a1 C t2a2, where integers t1

and t2 are obtained by C h � T D 0 and gcm(t1, t2) D 1. Here gcm is an inte-
ger function of the greatest common multiplier of (n, m). The area of the nan-
otube unit cell can be easily calculated as a vector-product of these two vectors,
jC h � T j D p

3a2
�
n2 C nm C m2

�
/dR , where dR D gcm(2n C m , 2m C n). Us-

ing dR , then t1 and t2 are given by t1 D (2m C n)/dR and t2 D �(2n C m)/dR .
Dividing the cross product jC h � T j by the area of the unit cell of a graphene

layer ja1 � a2j D p
3a2/2, one can get the number of hexagons in the unit cell of

a nanotube, N D 2
�
n2 C nm C m2

�
/dR . For the (4, 2) nanotube we have N D 28,

so that the unit cell of the (4, 2) nanotube (see the rectangle shown in Figure 2.14)
contains 28 hexagons, or 2 � 28 D 56 carbon atoms (see Table 2.1) [31].

The unit cell of a graphene layer is defined by the vectors a1 and a2. The
graphene reciprocal lattice unit vectors b1 and b2 can be constructed from a1 and
a2 using the standard definition a i � b j D 2πδ i j , where δ i j is the Kronecker
delta symbol. The resulting reciprocal lattice unit vectors, b1 D bx C b y and

b2 D bx � b y , where bx D 2π Ok x /
�p

3a
�

and b y D 2π Ok y /a, form the unit vectors

for the hexagonal reciprocal lattice, as shown in Figure 2.15. Note the rotation of
the hexagons in real space (Figure 2.14) and in reciprocal space (Figure 2.15).

In a similar fashion, the reciprocal space of a nanotube can be constructed [31].
The unrolled unit cell of the nanotube on a graphene layer is defined by the vectors
C h and T , and therefore the reciprocal space vectors for the nanotube, K1 and K2,
can be constructed using the standard definition, C h � K1 D T � K2 D 2π and
C h � K2 D T � K1 D 0. The vector K1 can be written in the form K1 / t2b1 � t1b2 to
provide its orthogonality to the vector T , taking into account that a i � b j D 2πδ i j .
Similarly, K2 / mb1 � nb2 is orthogonal to C h . The normalization conditions
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Figure 2.15 Reciprocal space of the graphene
layer. Parallel equidistant lines represent the
cutting lines for the (4, 2) nanotube, labeled
by the cutting line index µ, which assumes
values from 1 � N/2 D �13 to N/2 D 14. The

reciprocal lattice unit vectors (b1, b2) are in-
dicated in this figure along with the (zoomed)
reciprocal lattice unit vectors (K 1, K2) of the
nanotube [31].
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C h �K1 D T �K2 D 2π are used to calculate the proportionality coefficients, yielding
the magnitudes of the reciprocal space vectors, jK1j D 2/dt and jK2j D 2π/ jT j.
This results in the following expressions for the reciprocal space vectors, K1 D
� (t2b1 � t1b2) /N and K2 D (mb1 � nb2) /N (see Table 2.1). Using the reciprocal
space vectors K1 and K2, we can now construct the cutting lines for the nanotube
as shown in Figure 2.15. The vectors K1 and K2 are orthogonal, and K2 is directed
along the nanotube axis, so that the cutting lines are also aligned along the tube
axis.

The unrolled nanotube is extended in the direction of the translation vector T
and has a nanoscale size in the direction of the chiral vector C h (see Figure 2.14).
Since the translation vector T is collinear with the wave vector K2, and the chiral
vector C h corresponds to the wave vector K1, the unrolled reciprocal space of the
nanotube (see Figure 2.15) is quantized along the K1 direction and is continuous
along the K2 direction.

Consequently, the N wave vectors µK1, where µ is an integer number varying
from (1 � N/2) to N/2 (note that N is always even), form the N quantized states in
the direction K1 of the unrolled reciprocal space of the nanotube. Each of these N

quantized states gives rise to a line segment of length K2 D jK2j along the direc-
tion K2 in the unrolled reciprocal space of the nanotube. These N line segments,
defined by the wave vectors K1 and K2, represent the cutting lines in the unrolled
reciprocal space of the nanotube. The length and orientation of each cutting line in
reciprocal space is given by the wave vector K2, while the separation between two
adjacent cutting lines is given by the wave vector K1. In the case of our model (4, 2)
nanotube, the N D 28 cutting lines are shown in Figure 2.15 numbered by the
index µ varying from 1 � N/2 D �13 to N/2 D 14, where the middle cutting line
µ D 0 crosses the Γ point, the center of the first Brillouin zone of the graphene
layer. In the case of an ideal infinitely long nanotube, the wave vectors along the
nanotube axis (along the K2 vector) would be continuous. If the nanotube length L

is small enough, yet still much larger than the unit cell length T D jT j, the wave
vector along the nanotube axis also becomes quantized,  (T/L)K2, where  is an
integer number ranging from (2T � L)/(2T ) to L/(2T ). Such quantization effects
in short carbon nanotubes have been observed experimentally [109]. The SWNT
parameters are summarized in Table 2.1.

2.3.2
Zone-Folding of Energy Dispersion Relations

The electronic structure of a single-wall nanotube can be obtained simply from
that of two-dimensional graphite. By using periodic boundary conditions in the cir-
cumferential direction denoted by the chiral vector C h , the wave vector associated
with the C h direction becomes quantized, while the wave vector associated with
the direction of the translational vector T (or along the nanotube axis) remains
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Table 2.1 Parameters for single-wall carbon nanotubes.a

Symbol Name Formula

a Graphene lattice constant a D p
3aC–C D 0.246 nm

a1, a2 Graphene unit vectors
�p

3
2 , 1

2

�
a,
�p

3
2 , � 1

2

�
a

b1, b2 Graphene reciprocal
�

1p
3

, 1
�

2π
a

,
�

1p
3

, �1
�

2π
a

lattice vectors

C h Nanotube chiral vector C h D na1 C ma2 � (n, m)
Ch Length of C h Ch D jC h j D a

p
n2 C m2 C nm

dt Nanotube diameter dt D Ch /π

θ Nanotube chiral angle tan θ D
p

3m
2nCm

d gcd(n, m)b

dR gcd(2n C m, 2m C n)b dR D
(

d if (n � m) is not a multiple of 3d

3d if (n � m) is a multiple of 3d

N Number of hexagons in N D 2(n2Cm2Cnm)
dR

the nanotube unit cell
T

	
Translational vector T D t1 a1 C t2 a2

t1, t2 along nanotube axis t1 D 2mCn
dR

, t2 D � 2nCm
dR

T Length of T T D jT j D
p

3Ch
dR

R
	

Symmetry vector R D p a1 C qa2

p , q of the nanotube t1 q � t2 p D 1, 1 � m p � nq � N

τ Pitch of R τ D (m p�nq)T
N

D M T
N

ψ Rotation angle of R ψ D 2π
N

M Number of T in N R N R D C h C M T , M D m p � nq

K 1
	

Nanotube reciprocal K 1 D � (t2 b1 � t1 b2) /N

K 2 lattice vectors K 2 D (mb1 � nb2) /N

K1 D jK 1j D 2/dt K2 D jK2j D 2π/T

K 1 k C h

K 2 k T
Translational vectors 9>>>=

>>>;

N K1 D �t2 b1 C t1 b2

for the K1-extended K 2 � M K1 D mCM t2
N b1 � nCM t1

N b2

representation of the

cutting lines

Translational vectors 9>>>=
>>>;

(N/Q)K2 D m
Q b1 � n

Q b2

for the K2-extended QK1 � W K2 D r1 b1 C r2 b2

Q representation of the Q D gcd(M, N )b

W cutting lines W D r2 t2 � r1 t1

r1, r2 nr1 � mr2 D Q , 1 � t2 r2 � t1 r1 � N
Q

a In this table n, m, t1, t2, r1, r2, p , and q are integers and d, dR , N, M, Q, and W are integer
functions of these integers.

b gcd(n, m) denotes the greatest common divisor of the two integers n and m.
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continuous for a nanotube of infinite length.15) Figure 2.16 shows the reciprocal
space of the (4,2) nanotube (�1 D 28K 1 and �2 D K2 � 6K1) as compared to the
graphene reciprocal space. The first Brillouin zone, which is shown in dark gray,
can be translated to the adjacent Brillouin zones, shown in light gray, by applying
reciprocal lattice vectors, as shown in Figure 2.16. Thus the energy bands consist
of a set of one-dimensional energy dispersion relations which are cross-sections of
those for two-dimensional graphite (see Figure 2.17a).

When the energy dispersion relations of two-dimensional graphite are folded,
N pairs of 1D energy dispersion relations Eµ(k) are obtained (see Figure 2.17b).

2

1

K1

K2

Figure 2.16 Reciprocal space of the graphene
layer, showing the K 1 and K2 reciprocal lattice
vectors. Parallel equidistant lines represent
the cutting lines for the (4, 2) nanotube. The

first Brillouin zone is shown in dark gray. The
light gray rectangles are the Brillouin zones
obtained by the unit vector �2 of the recipro-
cal space structures [110].
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Figure 2.17 (a) The conduction and valence
bands of the graphene layer in the first Bril-
louin zone calculated according to the π-band
nearest neighbor tight-binding model [31].
Solid curves show the cutting lines for the
(4, 2) nanotube in the fully reduced represen-

tation. Solid dots show the ends of the cutting
lines in the fully K1-extended representation.
(b) Electronic energy band diagram for the
(4, 2) nanotube obtained by zone-folding from
(a). (c) Density of electronic states for the
energy band diagram shown in (b) [110].

15) For real carbon nanotubes, if the length of a nanotube (LCN) is on the order of a micrometer or
less, discrete k vectors (∆ k D 2π/LCN) can be expected.
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These 1D energy dispersion relations are given by

Eµ(k) D Eg2D

�
k

K2

jK2j C µK1

�
,

�
µ D 0, � � � , N � 1, and � π

T
< k <

π
T

�
,

(2.38)

corresponding to the energy dispersion relations of a single-wall carbon nanotube,
where Eg2D comes from Eq. (2.30). The N pairs of energy dispersion curves giv-
en by Eq. (2.38) correspond to the cross-sections of the two-dimensional energy
dispersion surface shown in Figure 2.17a, where cuts are made on the lines of
k K2/jK2j C µK1.

If for a particular (n, m) nanotube, a cutting line passes through a K point of the
2D Brillouin zone, where the π and π� energy bands of two-dimensional graphite
are degenerate by symmetry, then the one-dimensional energy bands have a zero
energy gap, and are metallic. If, however, no cutting line passes through a K point,
then the carbon nanotube is expected to show semiconducting behavior, with a
finite energy gap between the valence and conduction bands.

The condition for obtaining a metallic energy band is that the ratio of the length
of the vector YK to that of K1 in Figure 2.18 is an integer.16) Since the vector YK is
given by

YK D 2n C m

3
K1 , (2.39)

the condition for metallic nanotubes is that (2n C m) or equivalently (n � m) is a
multiple of 3.17) In particular, the armchair nanotubes denoted by (n, n) are always

Γ

Y

K1

K2

kx

kyK

Μ

W K

Μ

W

K

Figure 2.18 The condition for metallic energy bands: if the ratio of the length of the vector YK
to that of K 1 is an integer, metallic energy bands are obtained [31].

16) There are two non-equivalent K and K 0 points in the Brillouin zone of graphite as is shown in
Figure 2.18 and thus the metallic condition can also be obtained in terms of K 0. However, the
results in that case are identical to the case specified by YK in Figure 2.18, since K and K 0 are a
time-reversal pair in the k space.

17) Since 3n is a multiple of 3, the two remainders of (2n C m)/3 and (n � m)/3 are identical.
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metallic, and the zigzag nanotubes (n, 0) are only metallic when n is a multiple
of 3.

The cutting lines in the vicinity of the K point are shown in Figure 2.19 for three
different cases, n � m D 3`, n � m D 3` C 1, and n � m D 3` C 2, where ` is an
integer. The first case n � m D 3` corresponds to the cutting line crossing the K

point, resulting in metallic behavior, as discussed above. The other two cases n �
m D 3`C1 and n�m D 3`C2 (or, equivalently, 2nCm D 3`C2 and 2nCm D 3`C
1, respectively, using a different notation) correspond to the K point being located
at one third and at two thirds of the distance between two adjacent cutting lines,
resulting in semiconducting behavior, since the cutting lines do not go through the
K and K 0 points. We thus conclude that the number of semiconducting nanotubes
is roughly twice that of metallic nanotubes.

The two cases of semiconducting nanotubes, n�m D 3`C1 and n�m D 3`C2,
are also different from each other, depending on which side of the K point in the
unfolded two-dimensional Brillouin zone of the nanotube the first van Hove sin-
gularity (vHS) in the electronic density of states (DOS) appears, as discussed fur-
ther in Section 2.3.3. We classify these two types of semiconducting nanotubes
as mod1 and mod2, in accordance with the number (n � m � 3`) being equal
to either 1 or 2, respectively. In the other notation, for 2n C m D 3` C 1 and
2n C m D 3` C 2, we call respectively, type I and type II (or S1 and S2). We
must be careful for different notations used in the literature [110] where mod 1
(mod 2) corresponds to S2 (S1). In a similar fashion, we can classify metallic nan-
otubes by the ratio that the K point divides the cutting line in the K1-extended
representation.

2.3.3
Density of States

As shown in the previous section, when 1D nanotubes are rolled up from 2D sheets
of graphene, different sub-bands in the 1D reciprocal space of the nanotube can be

Figure 2.19 Three different configurations
of the cutting lines in the vicinity of the K
point. (a) Configuration n � m D 3` cor-
responds to the case of metallic nanotubes of
both M1 and M2 types. (b, c) Configurations

n � m D 3` C 1 and n � m D 3` C 2
correspond to the case of semiconducting
nanotubes of types mod 1 (or type 2 S2) and
mod 2 (or type 1 S1), respectively [110].
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extended into the 2D reciprocal space of a single sheet of the parent bulk layered
material as a set of parallel equidistant lines or cutting lines. This procedure is
shown in Figure 2.20a for states near the K point.

Figure 2.20b shows the electronic density of states (DOS) related to the nan-
otube electronic band structure plotted schematically in Figure 2.20a (see also Fig-
ure 2.17c). Each of the cutting lines in Figure 2.20a (except for the one that crosses
the degenerate K point) gives rise to a local maximum in the DOS in Figure 2.20b,
known as a (one-dimensional) van Hove singularity (vHS), given by

g(E ) D 2
N

NX
µD1

ˆ �
@Eµ(k)

@k

��1

δ[Eµ(k) � E ]dk . (2.40)

The four vHS in Figure 2.20b are labeled by E
(v )
i and E

(c)
i for the electronic sub-

bands in the valence and conduction bands, correspondingly. The presence of vHSs
in the DOS of 1D structures makes these structures behave differently from their
related 3D and 2D materials, as can be seen in Figure 2.21.

More generally, the DOS profiles for systems of different dimensionality (3D, 2D,
1D, and 0D) are very different from one another, as shown in Figure 2.21. The typ-
ical DOS dependence on energy near an energy band extremum, g(E ) is given by
g / (E � E0)[(D/2)�1], where D is an integer, denoting the spatial dimension and D
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Figure 2.20 (a) The energy-momentum con-
tours for the valence and conduction bands
for a 2D system, each band obeying a linear
dependence for E(k) and forming a degen-
erate point K where the two bands touch to
define a zero gap semiconductor. The cutting
lines of these contours denote the disper-
sion relations for the 1D system derived from
the 2D system. Each cutting line gives rise to
a different energy sub-band. The energy ex-
tremum Ei for each cutting line at the wave
vector ki is known as the van Hove singulari-
ty. The energies E (v)

i and E (c)
i for the valence

and conduction bands and the corresponding

wave vectors k(v)
i and k(c)

i at the van Hove
singularities are indicated on the figure by the
solid dots. (b) The 1D density of states (DOS)
for the conduction and valence bands in (b)
corresponding to the E(k) dispersion rela-
tions for the sub-bands shown in (a) as thick
curves. The DOS shown in (b) is for a metallic
1D system, because one of the cutting lines
in (a) crosses the degenerate Dirac point (the
K point in the graphite Brillouin zone). For a
semiconducting 1D system, no cutting line
crosses the degenerate point, which results in
a band gap opening up in the DOS between
the van Hove singularities E (v)

1 and E (c)
1 [110].
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Figure 2.21 Typical electronic density of states for (a) 3D, (b) 2D, (c) 1D and (d) 0D sys-
tems [90].

assumes the values 1,2, and 3, respectively, for 1D, 2D, and 3D systems [90]. Here
E0 denotes the energy band minimum (or maximum) for the conduction (valence)
energy bands. For a 1D system, E0 would correspond to a vHS in the DOS occur-
ring at each sub-band edge, where the magnitude of the DOS becomes very large.
One can see from Figure 2.21 that 1D systems exhibit DOS profiles, which are quite
similar to the case of 0D systems, with both 0D and 1D systems having very sharp
maxima at certain energies, in contrast to the DOS profiles for 2D and 3D systems,
which show a more monotonic increase with energy (see Figure 2.21). However,
the 1D DOS is different from the 0D DOS (δ function at energy levels) in that the
1D DOS has a sharp threshold and a decaying tail, so that the 1D DOS does not go
to zero between the sharp maxima, as the 0D DOS does (see Figure 2.21). The ex-
tremely high values of the DOS at the vHS allow us to observe physical phenomena
for individual 1D objects in various experiments, as discussed in Section 2.3.4.

For metallic nanotubes, a cutting line crosses the Fermi level at the K point.
It follows that the density of states per unit length along the nanotube axis is a
constant given by

N(EF) D 8p
3πajtj , (2.41)

where a is the lattice constant of the graphene layer and jtj is the nearest neigh-
bor C–C tight-binding overlap energy usually denoted by γ0 in the graphite litera-
ture [111].

For semiconducting nanotubes the DOS is zero up to the first van Hove sin-
gularities, and their energy gap depends roughly on 1/dt, the reciprocal nanotube
diameter dt

18)

Eg D jtjaC–C

dt
, (2.42)

where aC–C D a/
p

3 is the nearest neighbor C–C distance on a graphene sheet.

18) The energy gap also has a weak dependence on the chiral angle of the semiconducting nanotube.
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2.3.4
Importance of the Electronic Structure and Excitation Laser Energy to the Raman
Spectra of SWNTs

Figure 2.22a–c shows the density of electronic states (DOS) for three different
SWNTs, and since SWNTs are one-dimensional (1D) systems, their DOS is char-
acterized by their van Hove singularities (vHSs). The sharp vHSs define narrow
energy ranges where the DOS intensity becomes very large. Therefore, in practice,
a single carbon nanotube exhibits a “molecular-like” behavior, with well-defined
electronic energy levels at each vHS. The three DOS curves in Figure 2.22a–c come
from different SWNTs as labeled by their (n, m) indices [112] (see figure caption).
An observable Raman signal from a carbon nanotube can be obtained when the
laser excitation energy is equal to the energy separation between vHSs in the va-
lence and conduction bands (e. g., see E S

11, E S
22 and E M

11 in Figure 2.22), but restrict-
ed to the selection rules for optically allowed electronic transitions (see Chapter 6).
A plot of the density of valence-conduction states fulfilling these selection rules that
are available for optical transitions as a function of the excitation photon energy is
called a joint density of states (JDOS) plot.

For the characterization of nanotubes by Raman spectroscopy, it is useful to
consider plots of the energies Ei i vs. the nanotube diameter, dt, as shown in Fig-
ure 2.22d [113]. Each point in this plot represents one optically allowed electronic
transition energy (Ei i) from a given (n, m) SWNT. Crosses come from semicon-
ducting SWNTs, and circles from metallic SWNTs. This plot should be considered
as a guide for answering the question “if I use a given Elaser to excite my sample,
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Figure 2.22 Density of electronic states for (a)
an armchair (10, 10) SWNT, (b) a chiral (11, 9)
SWNT, and (c) a zigzag (22, 0) SWNT ob-
tained with the tight-binding model from [31].
(d) A plot (called a Kataura plot [113]) of the
electronic transition energies Ei i for all the
(n, m) SWNTs with diameters from 0.4 nm

to 3.0 nm using a simple first-neighbor tight-
binding model [31]. Deviations from this sim-
ple one-electron model are expected for the
lower energy transitions E S

11 and for SWNTs
with dt . 1 nm. Other corrections due
to many-body interactions are also impor-
tant [112].
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which (n, m) carbon nanotubes can be in resonance with my laser line?” In other
words, since the observable Raman spectra come predominantly from tubes in res-
onance with Elaser, Figure 2.22 specifies the nanotubes that will be observable for a
given laser line.

Because of this resonance process, Raman spectra at the single nanotube level
allow us to study the electronic and phonon structure of SWNTs in great detail. The
Ei i vs. dt plot shown in Figure 2.22d is called the “Kataura plot” in the literature
(from [113]), and the early plots were made using a first-neighbor tight-binding
model and the zone-folding procedure described in this chapter [31]. As we will
see later, resonance Raman spectroscopy shows that the general trends seen in
Figure 2.22d are correct, but for an accurate determination of the Ei i for each (n, m)
SWNT, other effects must also be considered, as discussed briefly in Section 2.4,
and in more detail in Chapter 10.

2.4
Beyond the Simple Tight-Binding Approximation and Zone-Folding Procedure

The simple tight-binding method used to describe electrons in a sp2 system is ped-
agogic and gives a very good first-order approximation for the electronic structure
of graphene and the other sp2 nanocarbons. However, for an accurate description
of the physical properties, other effects also have to be considered:

� Many-body effects, like electron–electron (e-e) and electron–hole (e–h) interac-
tions have to be considered to describe the energy of excited states of graphene.

� These many-body effects such as excitonic (electron–hole) interactions become
extremely important when one-dimensional quantum confinement takes place,
thus having a strong influence on the optical properties and Raman spectra of
carbon nanotubes and nanoribbons.

� Curvature in nanotubes and edge effects in nanoribbons will substantially
change the electronic properties of these materials when their dimensions
(diameter for tubes, width for ribbons) reach the nanometer scale.

These concepts will be discussed in detail elsewhere in the book. Here we expand
briefly on the failure of the description given in Section 2.3 for small diameter
SWNTs such as the (4, 2) carbon nanotube. Beyond this simple description, devia-
tions from the simple linear approximation for the electronic dispersion relations
of the graphene layer arise from the σ � π hybridization of the electronic orbitals
caused by the curvature of the nanotube wall [114]. Curvature-related effects in-
troduce a band gap in the electronic dispersion relations at the Fermi level near
the K and K 0 points in the Brillouin zone and this band gap affects the electronic
band structure and physical properties in many ways. The curvature effect scales in-
versely with the square of nanotube diameter, being especially important for small
diameter nanotubes, such as for the (5, 0) nanotube which becomes metallic. The
simple π-band nearest neighbor tight-binding approximation used in Figure 2.17
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is not able to describe curvature effects, since the description of nanotube curva-
ture requires at least four orbitals per carbon atom, 2s, 2px , 2p y , 2pz , as discussed
in Chapter 10. Furthermore, next-nearest neighbor interactions also affect the elec-
tronic band structure of a graphene layer, not only in the vicinity of the K and K 0
points, as shown by comparing the nearest neighbor and the third nearest neighbor
approximations with the results of ab initio electronic structure calculations [115].
Thus, Figure 2.17 does not reflect the real electronic band structure of a (4, 2) nan-
otube which still remains semiconducting, being a lowest order approximation in
the limit of small diameter SWNTs where more detailed calculations are necessary.
Ab initio calculations for a (4, 2) nanotube [108] yield an electronic band structure
that is substantially different from the results obtained by the zone-folding scheme,
as discussed in Chapter 10.

Problems

[2-1] Using Eq. (2.5), estimate the 1s energy of B, C and N atoms. In order to ob-
serve the core state energy, we usually use XPS (X-ray photoelectron spec-
troscopy) measurements. Explain how to measure 1s states for these atomic
species by XPS with some illustrative figures.

[2-2] An electronic p orbital has angular momentum ` D 1. Obtain the spheri-
cal harmonic Y`m (θ , φ) for ` D 1 and m D �1, 0, 1. By combining these
three functions, construct the px , p y and pz functions. Plot the shape of the
px , p y and pz functions in three dimensions.

[2-3] Plot the rough shape of Rn`(r) in Eq. (2.2) for 1s, 2s and 2p states as a
function of r. Explain how these functions are orthogonal to each other.

[2-4] When we change Z to Z � 2 in Eq. (2.5) for expressing the screening be-
tween two 1s electrons, estimate the 2s energy of B, C and N atoms.

[2-5] In order to solve Eq. (2.1), express the wavefunction as Ψ (r) D R(r)Θ (θ )
Φ (φ) and obtain the equations for the variables of r, θ , and φ. Explain
qualitatively why 2p orbitals have a higher energy than 2s orbitals. It is only
for the case of the hydrogen atom that the 2s and 2p levels have an identical
energy.

[2-6] Using the unitary matrix U in Eq. (2.16), diagonalize the Hamiltonian in
Eq. (2.14).

[2-7] Solve the Schrödinger equation for the H molecule for the case that s D
hΨ1jΨ2i is not zero. Obtain both eigenvalues and wavefunctions.

[2-8] Use the tight-binding model to obtain the electronic band structure for π
electrons in polyacetylene. In the case of polyacetylene, there are two kinds
of structures, the cis- and trans-structures (see Figure 2.23). In the case of
trans-polyacetylene, the transfer integral t for π electrons should have two
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Figure 2.23 The structure of trans-polyacetylene, with alternative C–C bonds in the trans-
configuration. In cis-polyactylene (not shown), an armchair edge shaped C–C chain appears.

values t1 and t2 depending on the double and single bond nature. Show that
an energy gap which is proportional to jt1 � t2j appears in the case of trans-
polyacetylene.

[2-9] Obtain the coordinates in k space for the K, M, and Γ points and obtain the
energy values for the simplest tight-binding energy for graphene at these
high symmetry points in the Brillouin zone (Eq. (2.32)).

[2-10] Obtain Eqs. (2.33) and (2.34). Evaluate the value of the Fermi velocity.

[2-11] Show that the density of states is proportional to E when the energy disper-

sion is E D a
q

k2
x C k2

y in two-dimensional materials. How about for the

linear dispersion in one-dimensional materials?

[2-12] Plot the density of states for the parabolic energy band, E D a(k2
x C k2

y ).

[2-13] By expanding f (k) of Eq. (2.28) near the K point, show that the Hamiltonian
matrix is written by Eq. (2.35).

[2-14] Explain how to obtain the density of states for the cosine energy band, E D
a(cos(kx a) C cos(ky a)) numerically.

[2-15] Calculate the diameter for an (n, m) SWNT. What are the values of the di-
ameters for (5,5), (9,0), (10,5) SWNTs? What are possible (n, m) values for
SWNTs having a 1.5 ˙ 0.02 nm diameter?

[2-16] For a given (n, m) SWNT, show the expression of T D (t1, t2) as a function
of n, m. What is the length of T ?

[2-17] Show that ja1 � a2j D p
3a2/2 and that the number of hexagons in the

nanotube unit cell is N D 2
�
n2 C nm C m2

�
/dR .

[2-18] Show the relation for an (n, m) SWNT jC h � T j D p
3a2

�
n2 C nm C m2

�
/

dR , where dR D gcm(2n C m , 2m C n) and gcm is an integer function of
the greatest common multiplier.

[2-19] Show the reciprocal lattice unit vectors (K1, K2) as a function of n, m in 2D
reciprocal space.

[2-20] Show that jK1j D 2/dt and jK2j D 2π/ jT j.
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[2-21] Give the 1D electronic structure for the (10, 10) and (18, 0) SWNTs. Plot the
cutting lines (1D Brillouin zone of SWNTs) in the 2D reciprocal space of
the 2D Brillouin zone of graphene for these two SWNTs.

[2-22] Show that in Figure 2.18, YK D [(2n C m)/3]K1, which is Eq. (2.39).

[2-23] Plot the cutting lines for type-I, type-II semiconducting and metallic SWNTs
and show which cutting lines correspond to E S

11, E S
22, E S

33, and E M
11 transi-

tions for each case.




