
299

13
Disorder Effects in the Raman Spectra of sp2 Carbons

In general, disorder-induced symmetry-breaking plays a very important role in the
determination of several materials properties such as transport properties and the
relaxation of photoexcited carriers. In particular, sp2 carbons which have high sym-
metry are sensitive to symmetry-breaking defects. Disorder and symmetry-break-
ing are observed sensitively by spectroscopy which depends strongly on crystal
symmetry [95, 118]. The presence of disorder in sp2 hybridized carbon systems,
leads to rich and intriguing phenomena in their resonance Raman spectra, thus
making Raman spectroscopy one of the most sensitive and informative techniques
to characterize disorder in sp2 carbon materials. Raman spectroscopy has thus be-
come a key tool and is widely used to identify disorder in the sp2-network of dif-
ferent carbon structures, such as diamond-like carbon, amorphous carbon, nanos-
tructured carbon, as well as carbon nanofibers, nanotubes and nanohorns [20, 168,
394].

Figure 13.1a shows the Raman spectra of crystalline graphene, exhibiting the
first-order Raman-allowed G-band. When graphene is bombarded by a low dose of
ArC ions (1011 ArC/cm2), point defects are formed and the Raman spectra of the
disordered graphene exhibit two new sharp features appearing at 1345 cm�1 and
1626 cm�1 for Elaser D 2.41 eV, as seen in Figure 13.1b. These two features have
been called the D and D0-bands, respectively, to denote disorder. These bands are
dispersive, and they are observed at these special frequencies when excited with
a 514 nm wavelength (2.41 eV) laser. Finally, when the periodic system is strongly
disordered by a large ion dose (1015 ArC/cm2), the Raman spectrum resembles
the profile of the density of states for the higher-energy optical phonon branch
(Figure 13.1c) [194, 195].

The basic description of disorder-induced peaks in the Raman spectra of sp2 car-
bons comes from the double resonance model discussed in Chapter 12, and is asso-
ciated with the following considerations. The requirement that only phonons at the
center of the Brillouin zone are first-order Raman-allowed1) (q D 0) by symmetry
comes from momentum conservation, and momentum conservation is associated
with translational symmetry. The effect of breaking the translational symmetry of

1) Not all zone-center phonons are Raman-allowed. Only phonons which behave like a symmetric
second-order rank tensor, such as x y, x2 � y2, can be Raman-active modes (see Chapter 6).
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Figure 13.1 The first-order Raman spectrum of (a) crystalline graphene, (b) defective graphene,
(c) and fully disordered single-layer graphene deposited on a SiO2 substrate. These spectra are
all obtained with Elaser D 2.41 eV [195].

crystals by introducing disorder into the lattice is the breakdown of momentum
conservation, through the activation of phonons at interior k points of the Brillouin
zone. Disorder-induced lattice distortions could also lead to a break down of oth-
er symmetry-based selection rules, thus also activating q D 0 phonons that are
forbidden by the symmetry of the unperturbed crystal structure. For example, the
out-of-plane TO phonon mode at 850 cm�1, which is not Raman-active but is in-
stead IR (infrared)-active, can be observed as a weak feature in Raman spectra in
the presence of defects. Usually the effect of disorder on the Raman spectra of crys-
talline materials is a broadening of the Raman-allowed peaks (e. g., G and G0), the
observation of new features (e. g., D and D0) related to symmetry forbidden scatter-
ing processes and, at high disorder levels, the observation of a phonon-density-of-
states like spectra. These changes are all related to the turning on of new scattering
processes by the progressive break-down of symmetry and by the introduction of
new wave vectors to conserve momentum.

This chapter starts, in Section 13.1, with a brief taste of what would be a gen-
eral quantum mechanical description of a defect-induced Raman effect. In Sec-
tion 13.2 the defect-induced double resonance scattering processes are considered
in detail, which describes, based on the electron and phonon dispersion relations,
the frequencies of the disorder-induced Raman peaks and their dependence on
Elaser. In Section 13.3, the D and D0 peak intensities are discussed, that is, how
they evolve with increasing amounts of disorder. We address two systems, ion-
bombarded graphene and nanographite, where disorder is represented by point
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defects and by boundaries, respectively. In Section 13.4 we show that the zigzag
edge has a special symmetry so that the D-band double resonance process is for-
bidden, although the D0 feature can be seen in the zigzag edge spectra. This is the
first attempt [161] to use Raman spectroscopy to study the “atomic structure” of the
defect and these results can be used to differentiate between zigzag and armchair
graphene edges and grain boundaries. In sequence, Section 13.5 discusses spe-
cific details regarding the disorder found in one-dimensional carbon nanotubes,
which includes multiple features in the G-band arising from disorder. Finally, in
Section 13.6 a different concept is discussed, that is the effect that defects cause on
Raman-allowed peaks, due to local electron and phonon energy renormalization.
This effect has been observed by near-field optical measurements on the G0 feature
in doped SWNTs and represents a new route for future research [191]. Section 13.7
summarizes the main points discussed in this chapter.

13.1
Quantum Modeling of the Elastic Scattering Event

For a full quantum description of the disorder-induced effect in the Raman spectra
of SWNTs, it is necessary to calculate the Raman intensity I(ω, Elaser) of a disorder-
induced band, which is due to a double resonance scattering process [80], given by:

I(ω, Elaser) D
X

i

ˇ̌̌
ˇ̌̌ X

a,b,c,ωph

Mop(k, i c)Mdef(�q, cb)Mep(q, ba)Mop(k, ai)
∆Eai(∆Ebi � „ωph)(∆Eci � „ωph)

ˇ̌̌
ˇ̌̌
2

(13.1)

where ∆Eai D (Elaser � (Ea � Ei) � i γr) and γr denotes a broadening factor. Here
subscripts i, a, b, and c, respectively, denote the initial state, the excited state, the
first scattered state of an electron by a phonon, and the second scattered state of
an electron by a defect. Mop, Mep and Mdef denote the electron–photon, electron–
phonon and electron-defect scattering matrix elements, respectively. We use the
fact that Eb D Ec since the scattering from b to c is an elastic scattering process in-
duced by the defect. Therefore, the new feature of Eq. (13.1) is the presence of the
Mdef matrix element, which describes the elastic scattering by defects. As previous-
ly discussed, in quantum mechanics the scattering processes can occur in different
orders and, for example, the process in which elastic scattering occurs first in the
double resonance process is also possible and has to be considered. For a given
initial and final state i, all intermediate states are added before taking the square in
Eq. (13.1).

An elastic electron scattering from electron state k to k0 can be expressed by the
matrix element [395]

Mk 0k D hΨ c(k0)jV jΨ c(k)i , (13.2)
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in which Ψ c(k) is the conduction-band wavefunction of two-dimensional (2D)
graphite (or monolayer graphene) at wave vector k, and V D V0 C Vdef is the poten-
tial term of the Hamiltonian with crystal potential (V0) and a defect perturbation
potential (Vdef). Here Ψ (k) is expanded by the Bloch wavefunction Φs , and Φs is
expressed in terms of the atomic wavefunction, φ(r � Rs) (see Chapter 2), thus
giving:

Mk 0k D 1
Nu

X
s,s0

C�
s0 (k0)Cs(k)

X
Rs ,Rs0

exp
��i k0Rs0 C i k Rs

�
Vs0 s , (13.3)

where Vs0 s is the atomic matrix element of V defined by hφ(Rs0)jV jφ(Rs)i. When
V D V0, then Vs0 s depends only on Rs0 � Rs , and also Mk 0k has a nonvanishing
value only for k0 D k 2) which implies crystal momentum conservation. If we re-
move a carbon atom from the site s0, the atomic tight-binding matrix elements
hφ(Rs0 )jV jφ(Rs)i containing s0 become zero and then elastic scattering from k to
k0 occurs. When we consider the tight-binding method within the nearest neighbor
interaction, then the tight-binding γ0 parameter becomes zero for the atoms that
are nearest neighbors to the site s0. This means that we add �γ0 parameters for the
three nearest s sites as tight-binding parameters for Vdef, and Eq. (13.3) for k0 ¤ k

then becomes:

Mk 0k D � γ0

Nu

C�
s0 (k0)Cs(k)

X
Rs

exp
��i k0Rs0 C i k Rs

�
, (13.4)

where a summation on Rs is taken only for the three nearest neighbor atoms to the
s0 atom.

However, this expression for Mk 0k is too simple and a fundamental correction
to this expression is necessary. Since the impurity potential for the missing atom
(�γ0) is of the same order as for the tight-binding parameter of the electronic struc-
ture (γ0), the matrix element cannot be expressed within the lowest order of per-
turbation theory and we must consider higher-order terms. In order to obtain such
higher-order terms, we consider the correction to the wavefunction Ψ c(k) due to
the presence of such defects. In fact, the perturbation to Ψ c(k) as an electron is
scattered around the defect mixes many Ψ c(k0) wave functions for different wave
vectors with Ψ c(k) for k0 ¤ k. The perturbed wavefunction Φ in the presence of an
impurity potential Vdef which is defined by the difference between the unperturbed
potential and the potential after adding the defect, is given by:

Φ (k) D Ψ c(k) C
X

k 0

hΨ c(k0)jVdefjΨ c(k)i
E(k0) � E(k) C i γ

Ψ c(k0) , (13.5)

where γ is a broadening factor due to the finite lifetime of carriers due to the
defect scattering (introduced by the uncertainty relation). It is noted that k in Φ (k)
no longer has the meaning of “as a function of k” but rather is modified by the

2) The umklapp scattering process k0 D k C G (where G is a reciprocal lattice vector) also occurs.
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correction to Ψ c(k). Thus, when we put Eq. (13.5) into Eq. (13.2) to redefine Mk 0k ,
we now obtain:

Mk 0k � hΦ (k0)jVdefjΦ (k)i
D hΨ c(k0)jVdefjΨ c(k)i

C
X
k 00

hΨ c(k0)jVdefjΨ c(k00)ihΨ c(k00)jVdefjΨ c(k)i
E(k00) � E(k) C i γ

. (13.6)

Equation (13.6) then gives the next order correction to the matrix element for elas-
tic scattering. Since we consider the elastic scattering E(k00) D E(k), in Eq. (13.6),
the value of γ can not be neglected. Using the Fermi Golden rule for a second-
order time-dependent perturbation, γ is proportional to the sum of jMk 0k j2 which
is inversely proportional to the lifetime of the k state, and the γ values are deter-
mined self-consistently. When we substitute Φ (k0) for Ψ c(k0) in the last term of
Eq. (13.5), we can iteratively obtain the expansion of the perturbation series. The
corresponding Mk 0k is defined iteratively. An infinite series for this expansion of
the scattering matrix elements is called the T-matrix [396, 397]. Here we do not go
into detail regarding the quantum theory of the T-matrix, but rather we point out
that the calculation of the T-matrix is necessary for discussing elastic scattering.

An important fact is that the Fourier transform of Vdef(r) to q space to obtain
Vdef(q) determines the range of the defect potential. When Vdef is a short-range
potential such as a point defect, a dominant contribution to Vdef(q) comes from a
large range of q values since intervalley scattering from the K to K 0 valley (or vice
versa) is important. On the other hand, when Vdef is a long-range potential, then
intravalley scattering is dominant. In the case of intravalley scattering, then back-
ward scattering is absent for the quantum interference effect, which is significant
in the case of single-wall carbon nanotubes [396, 397].

Figure 13.2 shows the calculated spectral D-band Raman intensity for a nanorib-
bon with an armchair edge, for three different laser energies of 1.90 eV (solid line),
2.30 eV (dashed line) and 2.70 eV (dotted line), as described in [395]. The defects
here are the edges with an armchair atomic structure, and the sp2 periodicity is
broken by the missing atoms at the edge bonds. The elastic matrix elements are
taken in the calculation at the lowest order of Mk 0k as in Eq. (13.2), which is here
given analytically [395]. When the armchair edge exists in the direction of x, then
the kx component of k conserves momentum, while ky changes its sign (by reflec-
tion), which corresponds to intervalley scattering. The Mk 0k matrix element for the
zigzag edge does not contribute to intervalley scattering,3) which means the D-band
should be absent when measuring zigzag edges, as observed experimentally (see
Section 13.4).

When comparing the results in Figure 13.2 with experiment, the frequency de-
pendence of the D-band feature on Elaser is well described (see inset to Figure 13.2).
The D-band peak come from the iTO phonon dispersion branch near the K point
for which q � 2k, as dictated by the double resonance process [159, 160], and this

3) In the case of the zigzag edge, kx changes its sign and this corresponds to intravalley scattering (K
to K, or K 0 to K 0).
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Figure 13.2 The calculated Raman spectra
of the D-band for Elaser D 1.90 eV (solid
line), 2.30 eV (dashed line), 2.70 eV (dot-
ted line) considering a nanoribbon with an
armchair edge [395]. The inset shows a com-

parison of ωD vs. Elaser between various
works [159, 395, 398–400], where crosses
represent the calculated results discussed
here [395].

topic is discussed more fully in Section 13.2. However, an accurate description of
the scattering intensity behavior (e. g., its dependence on both Elaser and ribbon
width, and the matrix element dependence on q generating an asymmetric D-band
lineshape) has still not been fully achieved. This is not only because the T-matrix
was not considered correctly, but because other aspects such as the phonon co-
herence length and the resonance window width γ have not been considered self-
consistently. Therefore, while the present section gives a taste on how to fully treat
the process quantum mechanically, and indicates an accurate description of disor-
der-induced Raman features, for an accurate quantum mechanical description of
the Raman intensities, more work is still needed.

13.2
The Frequency of the Defect-Induced Peaks: the Double Resonance Process

Defects break the momentum conservation requirement q D 0 for the first-
order Raman-allowed phonons, so that, in principle, any scattering event involving
phonons in the interior of the Brillouin zone (q ¤ 0), would then be allowed. How-
ever, as discussed in Chapter 12, in sp2 carbon materials the resonant electron–
phonon scattering processes connecting real electronic states (see Figure 13.3a)
minimize the denominators in Eq. (13.1), that is, these resonant processes are
privileged and have much higher probabilities, so that the spectra are dominated
by the double resonance scattering processes. While momentum conservation in
a perfect lattice can only be fulfilled by q D 0 phonons or two-phonon scattering
processes with q � q D 0, as discussed in Chapter 12, in the presence of disorder
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Figure 13.3 (a) Schematics showing the elec-
tronic dispersion near the Fermi level at the
K and K 0 points in the hexagonal Brillouin
zone of graphene. The light-induced electron–
hole formation is indicated by a gray arrow.
The two resonant electron–phonon scattering

processes associated with the D (intervalley)
band and the D0 (intravalley) band are indi-
cated by the black arrows. The dashed arrows
indicate elastic scattering induced by defects.
(b) Laser energy dependence or dispersion of
the frequency of the D, D0 and G0-bands [394].

the momentum conservation can be satisfied through an elastic scattering process
by a defect, as represented by dashed arrows shown in Figure 13.3a.

Therefore, the frequencies of the defect-induced peaks are well explained by the
double resonance processes discussed in Chapter 12, although some special de-
tails have to be taken into account. For example, from a frequency analysis, we
see that both the D and D0-band scattering events shown in Figure 13.3 are the
one-phonon processes that are related to the two-phonon processes observed at
2700 cm�1 (G0 � 2D) and at 3240 cm�1 (G00 � 2D0) in Figure 4.14. The disper-
sions of the frequencies of the D, D0 and G0-bands are shown in Figure 13.3b by
plotting their frequency dependence on Elaser. The slope associated with the G0-
band is about 100 cm�1/eV and is two times larger than the slope of the D-band
(50 cm�1/eV). The D0-band also exhibits a weak dispersive behavior, the slope be-
ing about 10 cm�1/eV [394]. However, there is no exact matching between the D
and G0-bands (i. e., ωG0 ¤ 2ωD) because their physical processes have some differ-
ences. As discussed in Section 12.2.1, different q vectors give rise to different dou-
ble resonance processes in the Stokes (S) and anti-Stokes (aS) processes (qS ¤ qaS).
The same applies to the disorder-induced bands and more: within a one-phonon
Stokes double resonance process, different wave vectors q will be introduced if
we consider the elastic scattering taking place either before or after the inelastic
phonon scattering (see Figure 13.4) [80, 367].

The D and D0-bands are not the only disorder-induced one-phonon peaks in the
Raman spectra for disordered sp2 materials (see Figure 12.10). Similar to the two-
phonon processes discussed in Section 12.3, which can occur through any com-
bination or overtone of the six dispersive phonon energy branches in graphene,
the disorder-induced Raman frequencies can be related to any of the six phonon
branches of 2D graphite with the appropriate wave vector which fulfills the double
resonance condition. The intravalley and intervalley double resonance processes
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Figure 13.4 Four different one-phonon in-
travalley second-order double resonance
Stokes processes. For each process, the
dashed lines denote an elastic scattering pro-
cess and black dots are shown for the reso-
nant points. For the two-phonon second-order

processes, the dashed line of each figure is
changed to be an inelastic phonon emission
process and thus only the (a) and (d) pro-
cesses are possible for two-phonon scattering
processes [160] (see the (a) and (d) panels in
Figure 12.3).

are mediated by phonons near the Γ and K (or K 0) points, respectively, and we
can change both the resonant k and q values by changing Elaser, as determined by
Eq. (12.8). Thus by using electronic structure information, we can determine the
phonon dispersion relations around the K and the Γ points, by considering inter-
valley and intravalley processes, respectively. For both intervalley and intravalley
processes, the fitting between the observed Raman frequencies and the dispersion
relations depend upon the different possibilities for second-order double resonance
processes. Four of them are exemplified in Figure 13.4 for the intravalley Stokes
Raman scattering process, as is for example pertinent to the D0 band.

Figure 13.5a plots the Elaser dependence of the disorder-induced double reso-
nance peaks, as obtained considering a linear electronic dispersion (see Chap-
ter 2) and the phonon dispersion in Figure 13.5b. The lower horizontal axis of
Figure 13.5a correlates the Elaser values with the phonon wave vectors q indicated
in the upper horizontal axis for Γ to K/4 and for 3K/4 to K. These q values are also
shown in Figure 13.5b and are related to intravalley and intervalley processes obey-
ing q � 2k (see Eq. (12.8)) [160]. It is noted that the linear relationship between
Elaser and k, and consequently between Elaser and q is valid for Elaser < 3.0 eV (see
Figure 2.10 in Chapter 2), and the vertical dotted lines in Figure 13.5b show limits
for the q wave vectors imposed by Elaser < 3.0 eV. By comparing Figure 13.5a,b, it is
easy to correlate the double resonance peaks with the six different phonon branches
in graphite. Solid and open circles correspond to the phonon modes around the K

and the Γ points, respectively. Nondispersive features are also seen in Figure 13.5a,
and they come from the q � 0 double resonance condition (see Eqs. (12.6) and
(12.7), and related text).

Finally, by using the Elaser vs. q relations given in Figure 13.5a, we can take exper-
imental values from several published papers giving Raman frequencies observed
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Figure 13.5 (a) Calculated Raman frequen-
cies for the double resonance condition in
2D graphite as a function of Elaser (bottom
horizontal axis) and the corresponding q vec-
tor along Γ -K (top horizontal axis). Solid and
open circles correspond to phonon modes
around the K and the Γ points, respectively.

The qK K vectors from Γ to K/4 are shown by
open circles and the qK K 0 vectors from 3K/4
to K are shown by solid circles. (b) The six
graphite phonon dispersion curves (lines) and
experimental Raman observations (symbols)
consistent with double resonance theory [160].

using different laser lines for various sp2 carbons (e. g., Figure 12.10) and plot all
these data points in Figure 13.5b. Notice that in the Raman spectra there is no in-
formation on whether the peak comes from an intravalley or intervalley process,
and on obeying the q � 0 or q � 2k resonance conditions. We choose among
these possible scattering assignments by considering where the experimental data
would best fit in the phonon dispersion in Figure 13.5b. The discrepancies can be
due to wrong scattering assignments or inaccurate phonon dispersion relations. In
fact, these double resonance peak assignments have been largely used to improve
the theoretical modeling of phonons in sp2 nanocarbons [366].

13.3
Quantifying Disorder in Graphene and Nanographite from Raman Intensity Analysis

As discussed in Section 13.2, the frequencies of the disorder-induced features in
the Raman spectra for sp2 carbons are well-explained by the double resonance mod-
el. What remains to be established for making Raman spectroscopy a powerful
tool to characterize disorder in sp2 materials is how to relate specific defects to
their corresponding disordering processes, and how to obtain quantitative infor-
mation about the amount of such defects in the lattice. As briefly discussed in Sec-
tion 13.1, more experimental and theoretical work is still needed for an accurate
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quantum mechanical description of disorder-induced Raman processes. However,
some work has already been done and phenomenological models have been devel-
oped, as described below.

Extensive work in the field of amorphous carbon leads to a description of the
amorphization trajectory for carbon materials (see Figure 4.7c in Section 4.4.1).
However, to achieve a quantitative description of these phenomena, the effects of
disorder on the electron and phonon properties have to be probed in both momen-
tum space (k-space) and real space (r-space), which means Raman spectroscopy has
to be combined with microscopy experiments. For example, transmission electron
microscope (TEM) or scanning tunneling microscopy (STM) can characterize dis-
order in the crystal r-space by probing the local surface density of electronic states,
with atomic-level resolution. Simultaneous in-situ TEM and Raman measurements
are, in principle, possible. However, a special experimental set up and special sam-
ple preparation methods would be needed. Usually, STM and Raman spectroscopy
cannot be easily correlated with each other, since optical spectroscopy probes a vol-
ume that is limited by the light penetration depth, while STM is mostly sensitive to
surfaces. In this context, the possibility of exfoliating graphite to pull out a single
graphene sheet, provides an ideal situation in which microscopy and spectroscopy
can be correlated to probe disorder effects in both r-space and k-space. The initial
efforts in this research direction are now discussed.

13.3.1
Zero-Dimensional Defects Induced by Ion Bombardment

The controlled use of ion implantation to study defects in sp2 carbons is a well
established technique [401]. These experiments are normally carried out as a func-
tion of ion dose and for different ion species and different ion energies. Low mass
ions at low ion fluence introduce point defects. Increasing the ion dose causes an
increasing density of point defects and eventually causes the damaged regions to
overlap. In this section we discuss effects from ArC implantation as a function of
ion dose and the resulting damage to HOPG [402] and graphene [194, 195].

Consecutive ArC ion bombardment and Raman spectroscopy experiments were
performed on monolayer graphene samples [194]. Low energy ions (90 eV), exper-
imentally confirmed to barely exceed the threshold value for the displacement of
surface C atoms, were used to produce structural defects in the graphene layer,
thereby avoiding cascade effects.4) The bombardment ion doses span the typical
values that are used for ion implantation studies, starting with 1011 ArC impacts
per cm2, which corresponds to one defect per 4 � 104 C atoms, and going up to
1015 ArC/cm2, denoting the onset of full disorder in graphene. STM images show
that for up to 1012 ArC/cm2, the ion bombardment-induced defects are isolated
from each other, with each defect causing a rather large disordered area in the STM
images (� 1 nm radius). Near a 1013 ArC/cm2 dose, the disordered areas start to

4) Cascade effects are effects whereby a scattered C atom with a large energy hits another C atom
iteratively. Similar phenomena can be seen in the chain reaction of dominos.
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coalesce and the surface exhibits a mixture of ordered and disordered regions. At a
1014 ArC/cm2 dose and above, the hexagonal crystalline pattern can no longer be
observed by probing the local density of electronic states by STM. Analysis of the
STM images at each ion dose gives the defect concentration from which we can
extract the average distance between defects, LD D σ�1/2, where σ is the density
of defects. Therefore, the σ and LD values can be obtained from the STM images
by the direct counting of defects [194]. For the highest ion doses of 1015 ArC/cm2,
when the effect of defects start to coalesce, we consider that the defect density in-
creases linearly with bombardment time.

Figure 13.6 shows the Raman spectra of a graphene monolayer subjected to the
ion bombardment procedure as described above. From the pristine sample (bot-
tom spectrum) to the lowest bombardment dose in Figure 13.6 (1011 ArC/cm2),
the D-band process is activated, showing a very small intensity relative to the G
peak. Within the bombardment dose range 1011–1013 ArC/cm2, the intensities of
the disorder peaks increase. A second disorder-induced peak around � 1620 cm�1

(the D0-band) also becomes evident, but we do not focus on this feature here. Above
1013 ArC/cm2, the Raman spectra start to broaden significantly and end up exhibit-
ing a profile similar to the graphene phonon density of states (PDOS). From the
1014 (top spectrum) to 1015 ArC/cm2 (not shown) dose, the Raman scattering re-
sponse develops its PDOS-like profile, showing a lineshape broadening with no
change in peak frequencies.

Quantifying the development of disorder in a graphene monolayer can be
achieved by plotting the ID/IG data as a function of the average distance be-
tween defects LD, as shown in Figure 13.7. The ID/IG ratios are here obtained

Figure 13.6 Evolution of the first-order Ra-
man spectra using a λ D 514 nm laser of
a graphene monolayer sample deposited
on an SiO2 substrate, subjected to ArC ion

bombardment. The ion doses are from the
bottom to the top, 0, 1011, 1012, 1013 and
1014 ArC/cm2. The spectra in this figure are
also displaced vertically for clarity [194].
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Figure 13.7 The ID/IG data points from three
different monolayer graphene samples as a
function of the average distance LD between
defects, induced by the ion bombardment
procedure. The solid line is a modeling of the
experimental data with Eq. (13.7). The inset

shows a plot of ID/IG vs. LD on a log scale
for two samples: (i) a � 50-layer graphene
sample; (ii) a 2 mm-thick HOPG sample,
whose measured values are here scaled by
(ID/IG) � 3.5 [194].

by considering the peak intensity at the fixed D-band (1345 cm�1) and G-band
(1585 cm�1) frequencies. The ID/IG ratio has a nonmonotonic dependence on LD,
increasing initially with increasing LD up to LD � 3.5 nm where ID/IG has a peak
value, and then decreasing for LD > 3.5 nm. This result is similar to the proposed
amorphization trajectory for graphitic nanocrystallites (see Section 4.4.1), and such
a behavior suggests the existence of two disorder-induced competing mechanisms
contributing to the Raman D-band. These competing mechanisms are the basis for
a phenomenological model for the LD dependence of ID/IG that is now described
(Section 13.3.2).

13.3.2
The Local Activation Model

The results in Figure 13.7 are modeled by assuming that a single impact of an ion
on the graphene sheet causes modifications on two length scales, here denoted by
rA and rS (with rA > rS ), which are the radii of two circular areas measured from
the impact point (see Figure 13.8). Within the shorter radius rS , structural disorder
from the impact occurs. We call this the structurally-disordered or S-region. For
distances larger than rS but shorter than rA, the lattice structure is preserved, but
the proximity to a defect causes a mixing of Bloch states near the K and K 0 valleys
of the graphene Brillouin zone, thus causing a break-down of the selection rules,
and leading to an enhancement of the D-band. We call this the defect activated
or A-region. In qualitative terms, an electron–hole excitation will only be able to
“see” the structural defect if the electron–hole pair is created sufficiently close to
the defect and if the excited electron (or hole) lives long enough for the defective
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Figure 13.8 (a) Definition of the “activated”
A-region (darkest gray) and “structurally disor-
dered” S-region (dark gray). The radii are mea-
sured from the impact point which is chosen
randomly in our simulation. Parts (b–e) shows
55 nm � 55 nm portions of the graphene sim-

ulation cell, with snapshots of the structural
evolution of the graphene sheet for different
defect concentrations: (b) 1011 ArC/cm2;
(c) 1012 ArC/cm2; (d) 1013 ArC/cm2; (e)
1014 ArC/cm2, like in Figure 13.6 [194].

region to be probed by Raman spectroscopy. If the Raman scattering process occurs
at distances larger than ` D rA � rS from the defective region, the wave vector k is
a good quantum number for analyzing the scattering selection rules and those re-
gions that remain well ordered will only contribute significantly to the G-band. Our
phenomenological model for the ID/IG ratio is given as a function of the average
distance between two defects, LD:

ID

IG
(LD) / ID(LD) D CA f A(LD) C CS f S (LD) , (13.7)

where IG is considered as constant (independent on LD), and f A and f S are simply
the fractions of the A and S areas in the sheet, respectively, with respect to the
total area. Although both the A and S regions can break momentum conservation,
giving rise to a D-band, the A-regions will contribute most strongly to the D-band,
while the S-regions will make less contribution to the D-band due to the breakdown
of the lattice structure itself.

We now describe stochastic simulations (see Figure 13.8b–e) used to implement
the phenomenological model for the ID/IG ratio. The structurally-disordered (S)
region is shown in light gray in Figure 13.8a and the activated (A) region is shown
in dark gray in Figure 13.8a. The structural evolution of a graphene sheet under ion
bombardment was simulated by randomly choosing a sequence of impact positions
on a (50 nm � 50 nm) sheet. The following set of rules for each event was defined:
(1) pristine regions (white area in Figure 13.8b–e) may turn into S (light gray) or A

(dark gray) regions, depending on the proximity to the impact point; (2) similar-
ly, A-regions may turn into S (light gray); (3) S-regions always remain S regions.
Then, the initially pristine sheet evolves, as the number of impacts increase, to be-
come mostly activated, leading to an increase of the D-band, and later the mostly
structurally-disordered regions become increasingly widespread, leading to a de-
crease of the D-band. Snapshots of this evolution are shown in Figure 13.8b–e for
the same argon ion concentrations as in Figure 13.6. The stochastic simulations of
the bombardment process, with the impact points for the ions chosen at random,
combined with Eq. (13.7) with parameters CA D 4.56, CS D 0.86, rA D 3 nm and
rS D 1 nm, give the full line curve in Figure 13.7, which is in excellent agreement
with the experimental results (points) in this figure [194].
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The nonmonotonic behavior in Figure 13.7 can be understood by considering
that, for low defect concentrations (large LD), the total area contributing to scatter-
ing is proportional to the number of defects, giving rise to a ID/IG D (102 ˙ 2)/L2

D
dependence that works well for LD > 2rA. Upon increasing the defect concentra-
tion, the activated regions start to overlap and these regions eventually saturate.
The D-band intensity then reaches a maximum and a further increase in the defect
concentration decreases the D-band intensity because the graphene sheet starts to
be dominated by the structurally-disordered areas.

The length scale rS D 1 nm, which defines the structurally-disordered area, is
in perfect agreement with the average size of the disordered structures seen in
the STM images. This parameter should not be universal, but it is specific to the
bombardment process. The Raman relaxation length ` for the defect-induced res-
onant Raman scattering in graphene for a laser energy of 2.41 eV, is found to be
` D rA � rS D 2 nm.5)The CA parameter in Eq. (13.7) is a measure of the maximum
possible value of the ID/IG ratio in graphene, which would occur in a hypothetical
situation in which K � K 0 wave vector mixing would be allowed everywhere, but
no damage would be made to the hexagonal network of carbon atoms. CA should
then be defined by the electron–phonon matrix elements, and the value CA D 4.56
is then in rough agreement with the ratio between the electron–phonon coupling
for the iTO phonons evaluated between the Γ and the K points [366]. The CS pa-
rameter is the value of the ID/IG ratio in the highly disordered limit, which has not
yet been addressed theoretically.

Finally, for practical use, it is important to have an equation relating ID/IG to LD,
and such an equation can be obtained by solving rate equations for the bombard-
ment process (see problem set). The entire regime (0 ! LD ! 1) can be fitted
using:

ID

IG
D CA

r2
A � r2

S

r2
A � 2r2

S

�
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��πr2
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�
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��π(r2
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C CS

�
1 �

��πr2
S
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D

��
. (13.8)

Fitting the data in Figure 13.7 with Eq. (13.8) gives CA D (4.2 ˙ 0.1), CS D
(0.87 ˙ 0.05), rA D (3.00 ˙ 0.03) nm and rS D (1.00 ˙ 0.04) nm, also in excellent
agreement with experiment and consistent with the parameters obtained within
the computational modeling [194].

The present model provides a method to accurately quantify the density of de-
fects σ or, equivalently, the average distance between defects (LD D σ�1/2) in
graphene. Before the defects start to coalesce (LD > 6 nm in the present case),
the expected behavior occurs, that is, ID/IG D A/L2

D, where A D (102 ˙ 2) nm2

was found. When the defects start to coalesce there is a competition between two
disorder mechanisms, and Eq. (13.8) can be used for a quantitative analysis to de-
termine the relative importance of each mechanism. The present results discussed

5) Here we discuss the relaxation length for the excited electron, and this should not be confused
with the relaxation length for the phonons.
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for graphene are similar to what has been observed in ion bombarded HOPG [402],
although some details are different. First, for HOPG a larger G-band is always
observed due to the contribution from the undisturbed under-layers. Second, for
graphene, above 1015 ArC/cm2, the spectra show a decreased intensity, indicating
full amorphization or partial sputtering of the graphene layer. For HOPG, above
1015 ArC/cm2, ID/IG saturates and no further change is observed in the Raman
spectra because of the large number of layers that have been amorphitized and/or
sputtered. This behavior is seen in the inset to Figure 13.7, which shows the ID/IG

evolution for two HOPG samples of different thicknesses. Despite differences in
absolute values, which depend on the number of undisturbed under-layers (the di-
amond data in the inset to Figure 13.7 coming from a thicker HOPG sample was
scaled by �3.5), the ID/IG values increase and saturate when increasing the ion
dose.

A study of the ID/IG evolution as a function of LD depending on the number of
layers N has also been developed [195]. The ID/IG behavior was observed to scale
with N, clearly demonstrating the lower energy ions (90 eV) used in the experiment
were not able to do cascade effects, but the process is limited generally to one defect
per bombarding ion. For few-layer graphene samples (N D 1, 2, 3), the normalized
evolution of ID/IG increases with increasing the number of defects (increasing the
“activated area”[194]), and further saturates and decreases. This decrease is due to
the take-over of the activated area by the “disordered area”, as introduced previously
for 1-LG [194]. However, the decrease in ID/IG for larger ion doses is less evident
the larger the N. For many-layers graphene (� 50 and higher), the normalized
evolution of ID/IG with increasing number of defects is a monotonic increase,
since there are always more graphene layers to be bombarded.

In summary, this section gives a clear picture of the basic mechanisms behind
the evolution of the disorder-induced D-band for point defects, which is given by a
competition between the structurally-damaged area, and the D-band-activated area
relative to the total area. Since this is basically a geometric interplay, different re-
sults will be obtained when moving from the “zero-dimensional” defects caused by
ion bombardment in graphene, and the “one-dimensional” defects represented by
the boundaries of a nanocrystalline graphene sample or a graphite crystal. These
nanocrystalline systems actually represent an extensively studied system, usually
formed by the annealing of diamond-like carbon films formed by sputtering [168],
and are discussed in the next section.

13.3.3
One-Dimensional Defects Represented by the Boundaries of Nanocrystallites

In 1970, Tuinstra and Koenig [148, 149] performed systematic Raman and X-ray
diffraction studies of many graphitic samples with different in-plane crystallite
sizes La. These authors concluded that the ratio of the D and G-band intensities
(ID/IG) is inversely proportional to La, which was determined from the width of
the X-ray diffraction peaks. After this pioneering work, the ratio ID/IG was used for
many years to estimate La in disordered carbon materials. Knight and White [403]
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Figure 13.9 (a) G-band and (b) D-band con-
focal (300 nm resolution) Raman images of a
graphite crystallite deposited on a glass sub-
strate. In (c) the Raman spectra obtained in

regions 1 and 2 (white circles depicted in pan-
el (b)) are shown. The laser excitation comes
from a HeNe (λ D 633 nm) laser using an
experimental setup described in [394].

later summarized the Raman spectra of various graphitic systems measured using
the λ D 514.5 nm (Elaser D 2.41 eV) laser line, and they derived an empirical ex-
pression which allows the determination of La from the (ID/IG) ratio [403]. Later,
a general formula was developed giving ID/IG vs.La for nanographite systems for
any excitation laser energy in the visible range, as presented below [404].

Figure 13.9a,b show two confocal Raman images of a 6 nm-high HOPG crystal-
lite deposited on a glass substrate. Figure 13.9a shows a Raman image of the crys-
tallite, obtained by plotting the spatial dependence of the G-band intensity, while
in Figure 13.9b the spatial dependence of the intensity of the disorder-induced D-
band is shown and here the boundary of the crystallite is highlighted. Figure 13.9c
shows two Raman spectra, one taken at an interior point of the crystallite, and the
other at the edge. It is clear from Figure 13.9a–c that the G-band intensity is uni-
form over the whole graphite surface, while the D-band intensity is localized where
the crystalline structure is not perfect, mostly at the edges of the crystallite. Notice
also that the D-band intensity varies from edge to edge, and this D-band intensity is
dependent on the light polarization direction and the atomic structure at the edge,
as is discussed in Section 13.4.

For evaluation of the ID/IG dependence on the crystallite dimensions, one can
consider a square of side La, for which the intensity of the G-band will vary as
IG / L2

a. The intensity of the D-band will, however, depend on the width δ of the
“border” where the D-band is activated, given by ID / L2

a �(La�2δ)2. The intensity
ratio will then be given by:

ID

IG
D α

�
4

�
δ
La

� δ2

L2
a

��
, (13.9)

where α is dependent on the appropriate matrix elements [394].
In the limit La � δ, Eq. (13.9) can be simplified to yield the famous Tuinstra–

Koenig relation

ID

IG
D C(Elaser)/La , (13.10)
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(a) (b)

Figure 13.10 Scanning tunneling microscopy
(STM) images with atomic resolution ob-
tained from the surface of a nanographite
crystallite of a sample with La D 65 nm. (a)

A Moire pattern at the crystallite surface is
observed. (b) Magnification of the region de-
lineated by the white square in part (a) [405].

where the values of the empirical constant C(Elaser) change from paper to paper in
the literature. One could then expect that, once the relaxation length and matrix el-
ement ratio were measured for the D-band scattering in ion-bombarded graphene
(Section 13.3.2), these values could just be transferred here to obtain α and δ.
However, these factors depend on the structurally-disordered area (SS ), which is
not well defined for the nanographite. Figure 13.10 shows two scanning tunnel-
ing microscopy (STM) images with atomic resolution obtained from the surface
of a crystallite in a sample with L a D 65 nm. The atomic arrangement of the car-
bon atoms observed in these pictures indicates that the samples are formed by
nanographitic crystallites, but with a clearly disordered grain boundary between
crystallites [405]. Variability associated with these grain boundaries may be respon-
sible for the different ID/IG vs. La results observed in the literature.

Furthermore, the empirical constant C(Elaser) has been known to depend on Elaser

since 1984 [152], but C(Elaser) has been quantitatively developed only more recent-
ly [404], using experimental results from nanographites with different La values
prepared from diamond-like carbon (DLC) films heat treated at different temper-
atures Thtt [404]. Before heat treatment, the sp3 and sp2 carbon phases coexist in
the samples, but the sp3 phases completely disappear for Thtt > 1600ıC [406].
STM images of the samples obtained at different heat treatment temperatures
Thtt � 1800ıC show that these samples correspond to aggregates of nanographite
crystallites, and show increasing La with increasing Thtt. The evolution of the (100)
X-ray diffraction peak obtained using synchrotron radiation, for the samples heat
treated at different Thtt also give a measure of the crystallite sizes, by evaluating La

from the Scherrer relation La D 1.84λ/� cos θ , where λ is the synchrotron radia-
tion wavelength (0.120 nm), θ is the position of the (100) diffraction peak, and � is
the half-height width of the (100) peak of graphite in 2θ (rad) units [404]. The mean
crystallite sizes obtained by X-ray diffraction range from 20 to 500 nm in size, and
the X-ray values are in good agreement with the La values obtained directly from
the STM images [376, 404, 405].
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(a) (b)

Figure 13.11 The first-order Raman spectra
of (a) the nanographite sample heat treated
at 2000ıC (La D 35 nm), for five different
laser energy values (1.92 eV, 2.18 eV, 2.41 eV,

2.54 eV, and 2.71 eV). (b) Nanographite sam-
ples with different crystallite sizes La (in mm)
using 1.92 eV laser excitation energy [404].

Shown in Figure 13.11a are results from Raman scattering experiments per-
formed at room temperature with different Elaser values, showing spectra of the D,
G, and D0-bands for the Thtt D 2000ıC sample (L a D 35 nm) for five different Elaser

values (1.92 eV, 2.18 eV, 2.41 eV, 2.54 eV, and 2.71 eV). The spectra are normalized to
the G-band intensity, and clearly the (ID/IG) ratio is strongly dependent on Elaser.
Figure 13.11b shows the Raman spectra using Elaser D 1.92 eV for samples with
different Thtt values, thereby giving rise to samples with different crystallite sizes
La [404].

Figure 13.12a shows a plot of (ID/IG) vs. 1/La for all samples and using the five
different Elaser values from Figure 13.11. Noting that ID/IG for a given sample is
strongly dependent on Elaser, we see that all these curves collapse on to the same
curve in the (ID/IG)E 4

laser versus La plot shown in Figure 13.12b, demonstrating
that the ratio ID/IG is inversely proportional to the fourth power of Elaser. Thus, a
general equation is obtained for the determination of the nanographite crystallite

(b)(a)

Figure 13.12 (a) The intensity ratio ID/IG for nanographite samples is plotted versus 1/La
using five different laser excitation energies. (b) All curves shown in part (a) collapse onto the
same curve in the (ID/IG)E4

L vs. (1/La) plot where EL � Elaser [404].
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size La using any laser line in the visible range [404]

La(nm) D 560
E 4

laser

�
ID

IG

��1

D (2.4 � 10�10)λ4
laser

�
ID

IG

��1

, (13.11)

where the laser excitation is given in terms of both Elaser (eV) or wavelength (nm).

13.3.4
Absolute Raman Cross-Section

Measuring the absolute cross-section for the Raman scattering processes is not
trivial, since the Raman signal depends strongly on the specific setup (specific op-
tics), on alignment, excitation wavelength. This is the reason why the intensity
ratio ID/IG has been used systematically for quantifying disorder. Some argue that
the intensity ratio ID/IG 0 should be chosen because both the D-band and G0-band
involve a very similar phonon (intervalley iTO, q � 2k). However, the D and G0-
bands differ strongly in energy, and different Raman setups would give different
responses.

However, Cançado et al. [405] have done all the calibration procedures for mea-
suring the absolute Raman cross-section of the D, G, D0 and G0-bands (see Sec-
tion 5.5). In this work, the dependence of ID/IG on L a was shown to come from
ID, while IG was found to be independent of L a within the measured L a range
(from 20 to 500 nm). For the Elaser dependence, the double resonance features were
shown to be Elaser independent, while the IG shows the E 4

laser dependence expected
from scattering theory (see Section 5.5 and [405]). It is not yet known if the E 4

laser
dependence will be also observed for zero-dimensional (e. g., ion-induced) defects.
Actually, one of the open fields in the Raman spectroscopy of sp2 carbons is what
rules determines intensity of the double resonance features. Sato et al. (see Sec-
tion 13.1 and [395]) and Basko [370] have done some theoretical work on this topic,
but the results are still not at the level of explaining experimental observations.

13.4
Defect-Induced Selection Rules: Dependence on Edge Atomic Structure

Besides defect quantification, it is important to discuss how disorder depends on
the specific defect. An example of a result that was successful in distinguishing
different defects from one another is the study of the edge of a graphite sample,
analyzing the orientation of the carbon hexagons with respect to the edge axis,
thereby distinguishing the so-called zigzag edge arrangements from the armchair
or random atomic edge structures [161]. As discussed here, the armchair (zigzag)
edge structure can be identified spectroscopically by the presence (absence) of the
D-band. This effect can be understood by applying double resonance theory to a
semi-infinite graphite crystal and by considering the one-dimensional character of
the defect, as discussed below.
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The most common case of disorder-induced features in the Raman spectra of
graphite-related materials occurs in samples formed by aggregates of small crystal-
lites. In this case, the crystallite boundaries form defects in real space. Since the
crystallites have different sizes and their boundaries are randomly oriented, the de-
fect wave vectors exhibit all possible directions and values. Therefore, the existence
of a defect with momentum exactly opposite to the phonon momentum is always
possible, giving rise to double resonance processes connecting any pair of points
on the circles around the K and K 0 points. In this case, the intensity of the D-
band is isotropic and does not depend on the light polarization direction. However,
in the case of edges, the D-band intensity is anisotropic because the double reso-
nance process cannot then occur for any arbitrary pair of points. Since, the edge
defect in real space is well localized in the direction perpendicular to the edge, it is
completely delocalized in this direction in reciprocal space and, therefore, the wave
vector of such a defect assumes all possible values perpendicular to the step edge.
Hence, the defect associated with a step edge has a one-dimensional character and
it is only able to transfer momentum in the direction perpendicular to the edge.

Figure 13.13a shows the edges with zigzag (top) and armchair (bottom) atomic
structure, separated from each other by 150ı . The wave vectors of the defects asso-
ciated with these edges are represented by d a for the armchair edge and d z for the
zigzag edge. Figure 13.13b shows the first Brillouin zone of 2D graphite oriented
according to the lattice in real space, as shown in Figure 13.13a. Note that for in-
tervalley scattering, only the armchair d a vector is able to connect points belonging
to circles centered at two nonequivalent K and K 0 points. Considering usual laser
energies (< 3 eV), the radius of the circles around the K 0 and K points are not large

(a) (b)

Figure 13.13 (a) Schematic illustration of the
atomic structure of edges with the zigzag and
armchair orientations. The boundaries can
scatter electrons with momentum transfer
along d z for the zigzag edge, and d a for the
armchair edge. (b) First Brillouin zone of 2D

graphite, showing defect-induced intervalley
and intravalley scattering processes. Since
d z cannot connect the K and K 0 points, the
defect-induced double resonance intervalley
process is forbidden at zigzag edges [161].
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enough to allow the connection of any k0 and k states by a zigzag d z vector. There-
fore, the intervalley double resonance process associated with this defect cannot
occur for a perfect zigzag edge. The mechanism depicted in Figure 13.13b thus
shows that the D-band scattering process is forbidden in a zigzag edge [161].

On the other hand, the D0-band, around 1620 cm�1, is given by an intravalley
process, which connects points belonging to the same circle around the K (or K 0)
point (see K point in Figure 13.13b). Therefore, the intravalley process can be satis-
fied by both d a and d z vectors and, for this reason, the observation of the D0-band
should be independent of the edge structure.

Finally, when measuring an armchair edge, the D-band intensity will depend
strongly on the light polarization direction with respect to the edge direction. The
D-band intensity will be a maximum when the light is polarized along the edge,
and zero when the light polarization is crossed with respect to the edge direction.
This result is related to the theoretical calculations that predict an anisotropy in
the optical absorption (emission) coefficient of 2D graphite (see Eq. (11.30) in Sec-
tion 11.6.1), given by [220]:

Wabs,ems / jP � kj2 , (13.12)

where P is the polarization of the incident (scattered) light for the absorption (emis-
sion) process, and k is the wave vector of the electron measured from the K point.
Correlating Eq. (13.12) with the D-band intensity dependence on the light polar-
ization direction with respect to the edge is one of the problems at the end of this
chapter.

In summary, the one-dimensional edge defect selects the direction of the electron
and phonon wave vectors associated with the disorder-induced Raman process, and
causes a dependence of the Raman D-band intensity on the atomic structure of the
edge (strong for an armchair edge and weak for a zigzag edge). This discussion,
therefore, represents an effort to improve our understanding of the influence of
the defect structure on the Raman spectra of sp2 carbon systems, which may be
very useful to characterize defects in nanographite-based devices. The first experi-
mental evidence for the selection rules discussed here was developed for a graphite
boundary [161]. However, similar results have already been shown for monolay-
er graphene [407, 408]. Interestingly, up to now variations in the D-band intensity
have been observed, but never a complete absence of the D-band together with the
presence of the D0-band. This result indicates that, up to now, no perfect zigzag
structure has been measured by Raman spectroscopy. It should be emphasized
that Raman spectroscopy provides one easy method for distinguishing between
armchair and zigzag edges. Of course, high resolution transmission electron mi-
croscopy provides another experimental method.
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13.5
Specificities of Disorder in the Raman Spectra of Carbon Nanotubes

When moving to carbon nanotubes, the quantum confinement of the electronic
structure will constrain the double resonance processes, similar to what has been
discussed for the G0-band. A multi-peak structure [409] and an oscillatory disper-
sive behavior [410] can be observed for the D-band in SWNT bundles. For isolat-
ed tubes, unusually sharp features can be seen (a D-band with a FWHM down
to 7 cm�1 [242]) due to quantum confinement effects. Furthermore, the D-band
frequency also depends on the nanotube diameter, with the following result for
514 nm (2.46 eV) laser excitation:

ωD D 1354.8 � 16.5/dt , (13.13)

which is in rough agreement with the D-band being a one-phonon process related
to the G0-band (see Eq. (12.11)).

Some efforts have been made to quantify disorder in SWNTs, by studying irradi-
ated samples [411], and SWNTs cut to different lengths [412]. Clear enhancement
of the D-band is observed with increasing defect density or with reducing nan-
otube lengths. However, because of the lack of direct real-space characterization,
the results are not as quantitative as the results obtained in graphene [194] and in
nanographite [404], as discussed in Section 13.3.

Some aspects are still unclear such as why the D-band in metallic SWNTs is
usually more intense than in semiconducting tubes. Although some theoretical ef-
forts based on the double resonance process have addressed this problem [413], the
predictions are still incomplete. It is also important to mention that the double res-
onance process could give rise to a multi-peak structure in the G-band of SWNTs. It
was then proposed that the several peaks in the G-band spectra of defective SWNTs
could originate from the double resonance process [237, 414], as discussed below.

Figure 13.14 shows the G-band Raman spectra obtained from a SWNT fiber at
two different locations, as shown in the inset of Figure 13.14a [415]. The upper
spectrum comes from location 1, at the center of the fiber. Figure 13.14b shows the
G-band spectrum from location 2, which is at the edge of the same fiber, where
misalignment and defects (structural and impurities) are expected. The G-band in-
tensity is much lower in location 2, about 35 times less intense than in location 1.
Many peaks are observed in the spectrum at location 2, clearly different from the
spectrum at location 1. Eight Lorentzian peaks were used for fitting the spectra at
location 2, which can be related to first-order allowed Raman peaks and to sever-
al different double resonance defect-induced peaks. For example, the inset to the
lower panel of Figure 13.14 shows the Elaser dependence of the two peaks indicated
by arrows. The solid curves in this inset are predictions for the Elaser dependence
of the G-band double resonance features [160, 237]. The dispersive peak seems to
agree well with a double resonance mechanism, while a nondispersive behavior fits
the lower frequency peak observed in location 2, which can be assigned as the first-
order Raman-allowed TO G-band. It is not clear at this time how these peaks are
related to specific edge defects and, again, more effort is needed for a quantitative
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Figure 13.14 G-band resonance Raman spec-
trum from a fiber of aligned SWNT bundles
(Elaser D 2.71 eV). (a) The inset shows an
optical image of the sample. The spectrum
was taken from location 1 (see inset in (a))
with the light polarized along the fiber direc-

tion, and the spectrum in (b) was acquired
from location 2. The inset to (b) shows the
Elaser dependence of the two peaks indicated
by arrows. The solid curves in this inset are
predictions for the Elaser dependence of the
G-band double resonance features [415].

analysis of the disorder-induced features in carbon nanotubes, to make the RRS
technique a more powerful tool for the characterization of disorder in s p 2 carbon
materials.

13.6
Local Effects Revealed by Near-Field Measurements

Besides breaking momentum conservation, the presence of disorder is expected
to change the local electron and phonon structure. The G0-band (see Chapter 12)
is not a disorder-induced feature but it can nevertheless be used to probe changes
in the electronic and vibrational structure related to disorder. The 2D vs. 3D stack-
ing order of graphene layers is one example where the G0-band provides impor-
tant information (see Section 12.2.4). Highly crystalline 3D graphite shows two G0

peaks (see Figure 12.8e). When the interlayer stacking order is lost, a one-peak fea-
ture starts to develop, identified with 2D graphite, and the peak is centered near
the middle of the two peaks in the G0 lineshape from ordered graphite (see Fig-
ure 12.8f) [394]. More interesting, localized emission of a red-shifted G0-band was
observed and is related to the local distortion of the nanotube lattice by a negatively
charged defect. The defect position was initially located by local variations in the
D-band intensity as described below [191].



322 13 Disorder Effects in the Raman Spectra of sp2 Carbons

Figure 13.15 shows near-field Raman and near-field photoluminescence spectra
and their related spatial maps for an individual SWNT. The near-field technique can
generate spectral information with spatial resolution ∆x below the diffraction lim-
it (∆x � λlaser/2) [416]. In particular, Figure 13.15a,b show the photoluminescence
and Raman spectra, respectively, with ∆x � 30 nm. The near-field microscopy
measurements from the same SWNT are shown in Figure 13.15c–f. Figure 13.15c
represents the near-field photoluminescence image of this SWNT, where the im-
age contrast is provided by spectral integration over the photoluminescence peak
centered at λem D 900 nm (see Figure 13.15a). The most striking feature in this
image is the high degree of spatial localization of the photoluminescence emission
along the SWNT. This is evident by inspection of the extended topography image
of the nanotube shown in Figure 13.15f, and also of the near-field Raman image of
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Figure 13.15 Localized excitonic emission
in a semiconducting SWNT. (a) Photolumi-
nescence emission at λem D 900 nm. (b)
Raman spectrum recorded from the same
SWNT. The spectral position of the RBM,
ωRBM D 302 cm�1, together with the
λem D 900 nm information, leads to the (9,1)
assignment for this tube. (c) Near-field pho-
toluminescence image of the SWNT revealing
localized excitonic emission. (d–e) Near-field
Raman imaging of the same SWNT, where the
image contrast is provided by spectral inte-
gration over the G and D-bands, respectively.

(f) Corresponding topography image. The cir-
cles indicate localized photoluminescence (c)
and defect-induced (D-band) Raman scatter-
ing (e). The scale bar in (c) denotes 250 nm.
(g) Evolution of the G0-band spectra near the
defective segment of the (9,1) SWNT. The
spectra were taken in steps of 25 nm along
the nanotube, showing the defect-induced
G0 peak (dotted Lorentzian). The asterisks
denote the spatial locations where localized
photoluminescence and defect-induced D-
band scattering were measured (see circles in
(c) and (e), respectively) [191].
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the G-band, with a peak intensity near 1590 cm�1 shown in Figure 13.15d. While
from Figure 13.15d we observe that the G-band Raman scattering is present along
the entire length of nanotube, from Figure 13.15e we observe an increased defect-
induced (D-band, 1300 cm�1) Raman scattering intensity localized in the same re-
gion where exciton emission was detected. Defects are known to act as trapping
states for electron–hole recombination (i. e., exciton emission), thereby providing
insights into the correlations observed between Figure 13.15c,e.

Interestingly, when measuring the Raman spectra across the defective spot, sud-
den changes in many Raman features are observed. Maciel et al. [191] have shown
that substitutional doping in SWNTs causes changes in the G0-band spectra due
to charge-induced renormalization of the electronic and vibrational energies. Fig-
ure 13.15g shows the G0-band measured on the same SWNT, moving along the
position where the local D-band and photoluminescence emission is observed (cir-
cle in Figure 13.15e). The two spectra marked by “*” in Figure 13.15g were obtained
at this defect location, and a new peak is observed at the G0-band. The frequency
and intensity of this new peak depend on the type and level of doping, respective-
ly [417–419]. This makes the G0-band a probe for studying and quantifying doping,
which is more accurate than the D-band, since the D-band can also be related to
amorphous carbon and any other defective sp2 structure.

13.7
Summary

This chapter discusses how Raman spectroscopy can be used to probe defects in sp2

nanocarbons. The break-down of momentum conservation together with the dou-
ble resonance mechanisms make Elaser-dependent resonance Raman spectroscopy
a powerful probe for electronic and phonon dispersion relations. Like the two-
phonon double resonance peaks, the disorder-induced peaks represent a break-
through in optical spectroscopy, because probing the phonon dispersion inside the
Brillouin zone is usually done solely with neutron, electron or X-ray scattering,
due to momentum conservation considerations. Besides, the possibility to probe
particle size, layer stacking, defect concentration, edge structure and doping, and
individual defects shows new power for optical spectroscopy techniques, that goes
beyond the simple analysis of crystalline lattices. Here nanoscience is making pos-
sible the study of materials science from a completely new perspective.

The phenomenological model presented in Section 13.3.2 describes well the evo-
lution of the D-band intensity with increasing defect density. However, the physics
ruling the intensity of the double resonance features, in general, is an open ques-
tion. It is clear that when moving into the use of near-field Raman spectroscopy, a
new world opens for exploration. Although this research area still presents several
technical difficulties, near-field techniques seem to provide major future opportu-
nities for Raman spectroscopy studies of nanocarbons.
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Problems

[13-1] In Eq. (13.3), if V is periodic in the crystal, show that the matrix elements
vanish except for k0 D k in the first Brillouin zone. Here use the fact that
hφ(Rs0 )jV jφ(Rs)i depends only on Rs0 � Rs. Show that the matrix elements
have a large value for k0 D k C G , where G is a reciprocal lattice vector.

[13-2] Obtain the next order correction to the wavefunction of Eq. (13.5) by substi-
tuting Φ (k0) iteratively for Ψ c(k0) in the last term of Eq. (13.5).

[13-3] Using the previous results, obtain Eq. (13.6).

[13-4] Higher-order correction terms can be obtained similarly by substituting
Φ (k0) iteratively for Ψ c(k0) in the last term of Eq. (13.5). Using this ap-
proach, get a general expression for Φ (k0) and Mk 0k .

[13-5] After consulting some textbook on scattering theory, explain that the T-
matrix is expressed by T D V C V G0T or T D V C V G V , where V � H �
H0 is an impurity potential operator and where H and H0, respectively, de-
note the perturbed and nonperturbed Hamiltonians, while G D (E � H )�1

and G0 D (E � H0)�1 denote perturbed and nonperturbed Green’s func-
tion. Using proper basis functions shows that we can make a matrix for
each operator and get the T-matrix.

[13-6] In scattering theory, the S-matrix is also frequently used. Explain the differ-
ence between the T-matrix and the S-matrix. What are the advantages and
disadvantages for using the T and S matrices?

[13-7] Considering the electron and phonon dispersions near the K point in
graphene, derive a quantitative description which explains why ωG0 ¤ 2ωD

for one-phonon vs. two-phonon processes in the double resonance of the
iTO phonon ω(q) branch near the K point, where q denotes the phonon
wave vector.

[13-8] Sketch all the possible defect-induced double resonance one-phonon pro-
cesses in monolayer graphene for Stokes and anti-Stokes, intravalley and
intervalley processes.

[13-9] Consider the electronic dispersion of graphene in the linear approximation,
that is, E˙(k) D ˙„vFjkj, where vF is the Fermi velocity of the electrons
given by vF D p

3(γ0a/2„), and a D p
3aC–C is the lattice constant of

graphene and aC–C D 1.42 Å is the nearest neighbor carbon–carbon dis-
tance. Calculate the pair of (q, k) wave vectors which would fulfill the one-
phonon defect-induced double resonance conditions for Elaser D 1.98 eV
and 2.41 eV. Considering the phonon dispersion in Figure 13.5b, give the
approximate frequency for all the defect-induced Raman peaks that should
be observed for these two laser lines. Check your results against the values
in Figure 13.5a.



13.7 Summary 325

[13-10] Calculate the number of ArC ion-induced defects per C atom expected for a
1011 ArC/cm2 and a 1015 ArC/cm2 ion bombardment dose on a monolayer
of graphene.

[13-11] In our phenomenological model for the D-band intensity dependence on
ArC ion impacts, consider SS , SA and ST as the structurally damaged,
activated and total areas of the graphene sheet, respectively, and N as the
number of ArC ion collisions. Derive Eq. (13.8) using rate equations (for
dSS /dN and dSA/dN ) and considering the initial conditions f S D 0 and
f A D 0 for σ D 0.

[13-12] Derive Eq. (13.9). Suppose that the width δ of the boundary is responsible
for the E 4

laser dependence observed experimentally for ID/IG. How should δ
vary with Elaser to obtain this relation? In this case, what would be the ex-
pected Elaser dependence of ID/IG for point defects inducing the D-band?

[13-13] Show that (560/E 4
laser) D (2.4 � 10�10 λ4), as shown in Eq. (13.11).

[13-14] Explain why Eq. (13.12) is responsible for the polarization dependence ob-
served for the D-band in armchair edges, and show that a ID / cos θ 4 de-
pendence is expected for the D-band intensity when both the incident and
scattered light are analyzed along an angle θ with the edge direction.

[13-15] Calculate the intervalley matrix element Mk 0k for an armchair edged
nanoribbon of width L a . Here we assume that an electron is reflected at the
armchair edge. Show that this assumption predicts a width dependence for
the D/G intensity ratio given by ID/IG / L�2

a . Such a relation has not been
observed experimentally, showing that more work (both experimental and
theoretical) is still needed.

[13-16] The G0-band was observed to shift to higher frequencies under acceptor (p-
type) doping, and to lower frequencies under donor (n-type) doping. Explain
qualitatively which doping-induced changes should happen to the electron-
ic and/or phonon dispersion relations to generate such a shift.




