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Dispersive G0-band and Higher-Order Processes: the Double
Resonance Process

All kinds of sp2 carbon materials exhibit a strong Raman feature which appears in
the frequency range 2500–2800 cm�1, as shown in Figure 1.5. Together with the G-
band (1585 cm�1), this higher-frequency feature in the spectrum is also a Raman
signature of sp2 carbon materials, and is called the G0-band1) to emphasize that it is
a Raman-allowed mode for graphitic sp2 carbons. Interestingly, the G0-band is a sec-
ond-order two-phonon process and, intriguingly, it exhibits a strong frequency de-
pendence on the laser excitation energy. This dispersive behavior (ωG0 D ωG0 (Elaser))
is unusual in Raman scattering, since Raman-active mode frequencies usually do
not depend on laser excitation energy. Together with many other Raman peaks
(e. g., features around 2450 and 3240 cm�1 in Figure 4.14), the G0-band in sp2 car-
bons pertains to the class of higher-order Raman spectra, which include overtone
and combination modes (see Section 4.3.2.7). The G0-band in particular is a second-
order process related to a phonon near the K point in graphene, activated by a dou-
ble resonance process, which is responsible for its dispersive nature and causes
a strong dependence on any perturbation to the electronic and/or phonon struc-
ture of graphene. For this reason, the G0 feature provides a very sensitive probe for
characterizing sp2 nanocarbons. For example, the G0-band can be used for differen-
tiating between single and double-layer graphene with Bernal interlayer stacking
order, as discussed in Section 4.4.3 and for probing aspects of the electronic struc-
tures of SWNTs. The present chapter discusses the science behind these higher-
order Raman scattering processes and how they can be used to characterize sp2

nanocarbons in general. In particular, we review in this chapter a number of the
characteristics and properties of the most intense second-order feature in the Ra-
man spectrum for sp2 carbons, namely, the G0-band. In Section 12.1 the general as-
pects of higher-order Raman processes are considered, while in Section 12.2 double
resonance phenomena are reviewed for graphene and generalized to other spectral
features in Section 12.3. Strictly speaking, we should call this effect the “multiple-
resonance process”, since more than two resonances may take place, as discussed

1) The G0-band is also called the 2D band in the graphene literature. Here we use the conventional
G0-band notation for the following reasons: (1) The G0-band is not a defect-induced process
while the D and D0-bands denote defect-induced Raman features (see Chapter 13). (2) 2D is
conventionally used to denote two-dimensional systems, and is so used also in the sp2 carbon
literature.
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in Section 12.2.1. However, most of the experimental results can be explained with
the double resonance and, since it is largely treated in the literature with this name,
we keep it here. The double resonance process in carbon nanotubes is discussed in
Section 12.4, while Section 12.5 provides a brief summary of Chapter 12.

12.1
General Aspects of Higher-Order Raman Processes

A two-phonon emission process is a second-order Raman process, described clas-
sically by considering anharmonic terms in the polarizability tensor (see Sec-
tion 4.3.1):

α D α0 C α1 sin ωq t C @2α
@Q1@Q2

Q1Q2 , (12.1)

where Q1 and Q2 are amplitudes for the two phonons. The last term in Eq. (12.1)
gives a Raman shift of ˙ω1 ˙ ω2 for the two phonons.

In quantum mechanics, the two-phonon process is described by using fourth-
order perturbation theory and the scattering intensity can be calculated using
Eqs. (5.22) and (5.23), which are reproduced here:
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where the summation is taken over two intermediate electronic states m and m0

and the corresponding phonon frequencies ω1 and ω2, and also for the initial
states j, after taking the square of the scattering amplitude, Jm ,m0 that is given by:

Jm0,m00 (ω1, ω2)

D M d(k, i m00)M ep(�q, m00m0)M ep(q, m0m)M d(k, mi)
(Elaser � ∆Emi � i γr)(Elaser � ∆Em0 i � „ω1 � i γr)

� 1
(Elaser � ∆Em00 i � „ω1 � „ω2 � i γr)

. (12.3)

Equation (12.3) differs slightly from Eq. (5.23), by the addition of the broadening
factor γr,

2) which gives the width of the resonance window, that is, the energy un-
certainty related to the lifetime of the excited state, and avoids having J going to
infinity when the system is in resonance. Figure 12.1 shows a Feynman diagram
for a two-phonon Stokes Raman process. Of course, like for first-order process-
es in general (see Section 5.3), different scattering orderings are possible for this
two-phonon process and each distinct process should be considered separately, us-
ing similar Feynman diagrams when making a very accurate intensity analysis of

2) In principle, the three γr factors in Eq. (12.3) can be different. However, there is no experimental
evidence presently available to provide separate values for each of these γr factors.
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Figure 12.1 Feynman diagram for a two-phonon Stokes Raman process.

higher-order processes. In general, energy and momentum conservation for the
incident (i) and scattered (s) electrons requires:

Es D Ei ˙ Eq1 ˙ Eq2 (12.4)

ks D ki � q1 � q2, (12.5)

where C (�) in Eq. (12.4) and � (C) in Eq. (12.5) correspond to phonon absorp-
tion and emission with the wave vectors q1 and q2. By considering ks � ki (see
Section 4.3.2.6), momentum conservation requires q2 � �q1.

Any two-phonon scattering process involving the same Raman-active (M ep ¤ 0)
phonon mode twice, and just obeying q2 D �q1 gives a Raman spectrum with
a double frequency. Such a process can be observed for any solid. However, any
q ¤ 0 wave vector can be involved in two-phonon processes, and thus the corre-
sponding Raman signal without any resonance effect is broad. Moreover, the an-
harmonic (or fourth-order) perturbation is relatively weak compared with the α1

term in Eq. (12.1).3) Interestingly, in sp2 carbon materials the special electronic and
phonon structures are such that resonance processes can take place for well-se-
lected internal electron–phonon scattering processes. These resonance processes
strongly enhance the second-order Raman spectra from specific phonons, through
the so-called double resonance (DR) Raman process [159] described in Section 12.2.
This then generates a unique Raman spectra for sp2 carbon materials. There are
two factors that govern the Raman intensity, thereby enhancing the probability of a
scattering event for specific phonons:

1. The double resonance condition, which enhances J in Eq. (12.3) by minimizing
two of the three factors in the denominator of Eq. (12.3) at the same time;

2. A strong electron–phonon matrix element, which enhances J by enhancing the
numerator in Eq. (12.3).

The next sections discuss how these two factors occur in graphene (Section 12.2),
and in carbon nanotubes (Section 12.4), focusing mostly on the G0-band, which
is the most intense DR feature and is also one of the most dispersive features.
Generalization of the DR process to many features in the Raman spectra of sp2

nanocarbons is presented in Section 12.3.

3) This picture is different from higher-order Raman spectra for molecules, where the phonon
amplitudes are large enough to enhance anharmonic effects and the electronic energy levels are
discrete (and do not exhibit q-dependent effects).



280 12 Dispersive G0-band and Higher-Order Processes: the Double Resonance Process

12.2
The Double Resonance Process in Graphene

In this section the double resonance (DR) process introduced in Section 12.1 is
reviewed for graphene, starting with a more detailed description of the double res-
onance process in Section 12.2.1. This is followed by a discussion of the depen-
dence of this phenomenon on Elaser in Section 12.2.2 and on the number of layers
of graphene in Section 12.2.3. Emphasis is also given in Section 12.2.4 to the use of
the G0-band in characterizing graphene samples with regard to their stacking order
along the c crystallographic axis.

12.2.1
The Double Resonance Process

When a photon with a given energy is incident on monolayer graphene, it will
excite an electron from the valence band to the conduction band vertically in mo-
mentum space (gray arrow in Figure 12.2a). Since the graphene energy band does
not have an energy gap, we always have an electron with wave vector k for any Elaser

which satisfies Elaser D E c(k) � E v(k). The photoexcited electron at k is then scat-
tered by emitting a phonon with wave vector q to a state at k � q, as shown by the
black arrow in Figure 12.2a. The phonon emission in Figure 12.2a corresponds to
intervalley scattering in which the phonon q vector connects two energy bands at
the K and K 0 points of the Brillouin zone. If there is a phonon in the vibrational
structure of graphene with the wave vector q and phonon energy Eq so that this
photon can connect the two conduction electronic states, this phonon scattering
process will be resonant. A double resonance process (electron–photon and elec-
tron–phonon scattering, shown by the two solid dots in Figure 12.2a) will then take
place.

Figure 12.2 (a) This schematic diagram
shows cones representing the electronic
dispersion (energy vs. momentum) near
the Fermi level at the K and K 0 points in the
hexagonal Brillouin zone of graphene. The
light-induced electron–hole formation and the
one-electron–one-phonon scattering process

taking place in the double resonance process
are indicated by gray and black arrows, respec-
tively. (b) The phonon dispersion in graphene
is displayed [366], in which the phonon wave
vector q measured from the Γ point and ener-
gy Eq are given by a dot.
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Using a quantum mechanical description of this phenomenon, the two processes
described above, and shown in Figure 12.2, give a large scattering amplitude J,
since they minimize the first two terms in the denominator of Eq. (12.3). The full
Raman process requires two phonons with wave vectors q and �q for momentum
conservation, and both the electron–hole creation by the incident photon and the
subsequent electron–hole recombination by emitting scattered light are shown in
Figure 12.3. In Figure 12.3, we show the corresponding intravalley two-phonon
scattering processes in which the phonon q vector connects two conduction band
states with the same K (or K 0) points. In graphene, both intravalley and intervalley
(from/to K to/from K 0, see Figure 12.2) scattering processes can occur.

The processes shown in Figure 12.3a–c represent Stokes processes, where reso-
nance with (a) the incident and (b) the scattered photons take place, in addition to
the internal electron–phonon scattering process. While the electron–phonon reso-
nant scattering shown in Figure 12.3b minimizes the second term in the denom-
inator of Eq. (12.3), resonance with the incident/scattered photons minimizes the
first/third term in the denominator of Eq. (12.3). Panels (d–f) of Figure 12.3 show
the respective anti-Stokes processes. Note that, for the same laser excitation line, a
different q vector will give rise to the double resonance process for Stokes and anti-
Stokes processes (qS ¤ qaS). A more detailed discussion can be found in [367].

The intervalley and intravalley double resonance two-phonon processes are,
respectively, relevant near 2700 cm�1 (the G0-band), and near 3240 cm�1. The
3240 cm�1 peak arises from a second-order process for a q ¤ 0 phonon near the
maximum frequency in the phonon dispersion in Figure 12.2b near the Γ point,

Figure 12.3 The full multiple resonance
Raman process, with two electron–phonon
scattering events, requiring both q and �q
phonons for momentum conservation, and
the electron–hole recombination for scattered
light emission. Double resonance with the in-
cident light is shown in (a), while double reso-

nance with the scattered light is shown in (b).
Part (c) shows a fully resonant process, where
the �q scattering also takes place on the hole.
Parts (a–c) are for Stokes (S) processes, while
(d–f) show the corresponding anti-Stokes
(AS) processes [160, 178, 367, 368].
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for which the momentum transfer q is small in the intravalley process. The reason
why the G0 feature is much more intense than the 3240 cm�1 feature has noth-
ing to do with intravalley vs. intervalley scattering processes, but rather with the
electron–phonon matrix elements, that are much stronger for phonons near the K

point than for phonons near the Γ point.
Intriguing is the fact that the G0-band in mono-layer graphene is more intense

than the first-order Raman-allowed G-band. Some argue that this is an indication
that the dominating process is not the double-resonance but actually the fully-
resonant scattering process shown in Figure 12.3c [369, 370]. However, this very
strong G0-band intensity could also be related to different electron–phonon matrix
elements for near K and near Γ point phonons. It is true that the fully resonant
process in Figure 12.2c,f should, in principle, be much more probable than the
others which exhibit a virtual (nonresonant) state. However, this is only valid if the
electron and hole electronic dispersion relations are symmetric. Since the electron
wave function overlap in graphene results in a different normalization for the va-
lence and conduction bands, an electron–hole dispersion asymmetry is introduced,
and for this reason the two processes could select DR phonons with somewhat
different q vectors. This asymmetry is relatively small and is generally neglected
in common descriptions of the electronic structure of graphene in terms of mir-
ror band cones. More theoretical and experimental work is required to fully un-
derstand the differences in electron–phonon vs. hole-phonon scattering, including
differences in the matrix elements that have not yet been addressed theoretically.

The slope of the energy dispersion @E/@k is called the group velocity. When we
consider only the direction of the group velocity for the initial k, there are two
possibilities for scattered k � q states as shown in Figure 12.4 where each of the
intervalley (Figure 12.4a,c) and intravalley (Figure 12.4b,d) scattering processes cor-
respond to backward (Figure 12.4a,b) and forward (Figure 12.4c,d) scattering. Here
the backward (forward) scattering means that the direction of the group velocity

Figure 12.4 The double-resonance Stokes
Raman processes for intervalley (a,c) and
intravalley (b,d) scattering. Here (a,b) re-
lates to the backward scattering process with
qDR D k C k0 and (c,d) relates to the forward

scattering process with qDR D k � k0 , with k
and k0 measured from the K point. K is the
distance between the K and K 0 points, k (k0)
is the distance of the resonant states from K
(K 0), as defined in (a) [160, 178, 367, 368].
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does (does not) change after scattering. The corresponding q vectors for intervalley
scattering are given by:

q D K C qDR D K C k C k0 � K C 2k (backward scattering) (12.6)

q D K C qDR D K C k � k0 � K (forward scattering) , (12.7)

where K is the distance between K and K 0, and k (k0) here is measured from the
K (K 0) point, which means qDR is the phonon wave vector distance from the K

(K 0) point. In the case of intravalley scattering, we just put K D 0 in Eq. (12.6)
and (12.7). Since the phonon energy is usually small compared to the excited en-
ergy levels, k � k0, these two double resonance conditions approach qDR D 2k

and qDR D 0 (commonly used in the literature [158–160]). As already stated, the
qDR � 2k wave vector gives rise to the G0-band, while the qDR � 0 wave vector
gives rise to a DR feature from the iTO phonon very close to the K point, consistent
with the Raman peak observed around 2450 cm�1 in Figure 4.14 (see peak assign-
ment summary in Chapter 14). However, there are some controversies about the
origin of this 2450 cm�1 feature (denoted by G�), since ωG� is also consistent with
the frequency of another combination mode, which is further discussed in Sec-
tion 12.3. The qDR � 0 processes are expected to be less intense than the qDR � 2k

because the destructive interference condition is exactly satisfied for qDR D 0 [371].
However, the asymmetric (density of states-like) lineshape of the 2450 cm�1 fea-
ture in Figure 4.14 seems to be representative of the density of q vectors fulfilling
the double resonance process, discussed in the next paragraph.

While all the important double resonance conditions have already been intro-
duced, the picture discussed up to now is not the full story because graphene is a
two-dimensional material. For a given laser energy, not only is the electron–hole
excitation process shown in Figure 12.2 resonant, but any similar process within
a circle in these cones defined by Elaser (see Figure 12.5) is also resonant. Further-
more, the mechanism of double resonance (DR) is actually satisfied by any phonon
whose wave vector connects two points on two circles around K and K 0, as shown
in Figure 12.5 [367]. (Here we neglect the trigonal warping effect of the constant
energy surface of graphene near K(K 0) for simplicity.) A phonon with wave vec-
tor q connects two points along the circles with radii k and k0 around the K and
K 0 points, respectively, where the difference between k and k0 (for k ¤ k0) comes
from the energy loss from the electron to the phonon.4) By translating the vector q

to the Γ point, and considering all possible initial and final states around the K and
K 0 points, the doughnut-like figure shown in Figure 12.5 is generated. Therefore,
there is a large set of q vectors fulfilling the double resonance condition. However,
there is also a high density of phonon wave vectors q satisfying the DR mechanism
for which the end of the wave vectors measured from the Γ point are on the inner
and outer circles of the “doughnut” in Figure 12.5. Therefore, the radii of the inner
and outer circles around K 00 (see Figure 12.5) are, respectively, k � k0 and k C k0.

4) Here q is the real phonon wave vector, measured from the Γ point, while in defining qDR, k and
k0 are measured from K.
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Figure 12.5 One of the possible double res-
onance (DR) Stokes Raman processes in-
volving the emission of a phonon with wave
vector �q. The set of all phonon wave vec-
tors q which are related to transitions from
points on the two circles around K and K 0

gives rise to the collection of small circles
around the K 00 point obeying the vector sum
rule q D K � k C k 0 (here we neglect the trig-
onal warping effect). Note that this collection

of circles is confined to a region between the
two circles with radii qDR D k C k0 � 2k and
qDR D k � k0 � 0. The differences between
the radii of the circles around K and K 0 and
thus the radius of the inner circle around K 00

are actually small in magnitude and are here
artificially enlarged for clarity in presenting
the concepts of the double resonance pro-
cess [367].

Exactly as given by the 1D model (Eqs. (12.6) and (12.7)) these are the phonons
associated with the singularities in the density of q vectors that fulfill the double
resonance requirements, and they are expected to make a significant contribution
to the second-order Raman scattering process. However, for a full description and
lineshape analysis, considering the 2D model generates an asymmetric density of
states that is consistent with the asymmetric lineshape that is observed for the
2450 cm�1 feature in Figure 4.14.

12.2.2
The Dependence of the ωG0 Frequency on the Excitation Laser Energy

As described in Section 12.2.1, when a photon with a given energy (Elaser) is inci-
dent on graphene, it will excite an electron from the valence to the conduction band.
This electron can be resonantly scattered by a phonon with the correct wave vec-
tor q and phonon energy Eq to satisfy the double resonance conditions. Figure 12.6
shows that, if Elaser is changed, the correct wave vector q and phonon energy Eq

that will fulfill the double resonance conditions will also change. This effect gives
rise to the dispersive nature of the G0-band, which comes from an intervalley dou-
ble resonance (DR) Raman process involving an electron with wave vector k in the
vicinity of the K point and two iTO phonons with wave vectors qDR � 2k, where
both k and qDR are measured from the K point (see Section 12.2.1).

Figure 12.7a shows the Raman spectra in the region of both the G� (�2450 cm�1)
and G0 (� 2700 cm�1) bands for different laser excitation energies. Also the G�-
band can be either explained by the q � 0 DR relation, or by the q � 2k rela-
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Figure 12.6 (a) The schematic diagram shows
the light-induced electron–hole formation and
one electron-one phonon scattering event
taking place in the double resonance process
with two different excitation laser energies (as-
sociated with phonon wave vectors q1 and q2,

respectively), which are indicated by the gray
and black arrows. (b) The phonon dispersion
in graphene is shown where the phonon wave
vector q that fulfills the double resonance re-
quirements for each Elaser is also indicated in
terms of the wave vectors q1 and q2.

Figure 12.7 (a) Raman spectra of the G0

and the G�-bands of monolayer graphene for
1.92, 2.18, 2.41, 2.54 and 2.71 eV laser excita-
tion energy. (b) Dependence of ωG0 and ωG�

on Elaser. The red circles correspond to the
graphene data and the lozenges correspond
to data for turbostratic graphite. From [372].

tion applied to an intervalley process, but involving one iTO phonon and one LA
phonon [371, 382]. Figure 12.7b shows the G0 and G� frequencies ωG0 and ωG�

as a function of Elaser for graphene and turbostratic graphite (for which the stack-
ing between graphene layers is random). The G0-band exhibits a highly dispersive
behavior with (@ωG0 /@Elaser) ' 88 cm�1/eV for monolayer graphene, 95 cm�1/eV
for turbostratic graphite [372], and 106 cm�1/eV for carbon nanotubes (see Sec-
tion 12.4 and [173]). The G�-band exhibits a much less pronounced dispersion,
with (@ωG� /@Elaser) ' �10 to �20 cm�1/eV and of opposite sign for both mono-
layer and turbostratic graphite [371, 372], and null for carbon nanotubes [373]. The
G� feature is further discussed in Section 12.3.

To analyze the experimental data from Figure 12.7b, one has to consider the
electron and phonon dispersion of a graphene monolayer, discussed in Chapters 2
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and 3. Near the K point, the electron and phonon dispersions can be approximated
by the linear relations E(k) D „vF k and E(qDR) D „vph qDR, respectively, where
vF D @E(k)/@k and vph D @E(q)/@q are the electron and phonon velocities near the
K point, respectively (usually vF is called the Fermi velocity, vF � 106 m/s). The k

(qDR) is the electron (phonon) wave vector measured with respect to the K point, so
that the general and approximated conditions for the double resonance Raman are
given by:

Elaser D 2vF k

Eph D vph qDR

qDR D k ˙ k0 , (12.8)

where Elaser and Eph are, respectively, the laser and phonon energies, and k0 is the
scattered electron wave vector near the K 0 point in the graphene Brillouin zone.
It is important to remember that we are dealing here with combination modes, so
that the observed Eph has to reflect this combination. For example, for the G0-band,
the observed G0-band energy is given by EG0 D 2Eph, where Eph is the energy for
the iTO phonon mode at qDR.5) Making another commonly used approximation in
Eqs. (12.8), that is, qDR D k C k0 � 2k, then EG0 can be written as:

EG0 D 2
vph

vF
Elaser . (12.9)

A drawback to the use of the DR Raman features to define the electron and phonon
dispersion relations is that the measured values depend on both vph and vF, and
one has to be known to obtain the other. Adding to this problem, the physics of
the phonon dispersion for graphene near the K point is rather complex due to the
Kohn anomaly, which was discussed for the G-band (q ! 0) in Section 8.2, and
the Kohn anomaly also occurs for phonons at q ! K . The high frequency of the
iTO phonon when combined with the Kohn anomaly near the K point are together
responsible for the strong dispersive behavior observed for ωG0 . The exact values
for vph and vF are still under debate since they depend on the complex physics of
many-body effects [86, 355, 366].

12.2.3
The Dependence of the G0-band on the Number of Graphene Layers

Because of the dispersive behavior of the G0-band, it can be used to characterize
graphene layers in terms of their dispersive behavior and to distinguish between
different types of graphene in terms of the number of layers and the stacking of
these layers (see Figure 12.8). To explain this behavior, we first turn to the elec-
tronic properties of bilayer graphene with AB Bernal layer stacking (as also occurs
in graphite), since this bilayer graphene structure is probed by resonance Raman

5) It is only when crystalline disorder is present that the first-order q ¤ 0 phonons can be observed,
as discussed in Chapter 13.
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Figure 12.8 The G0 Raman band measured
with Elaser D 2.41 eV for (a) 1-LG, (b) 2-
LG, (c) 3-LG, (d) 4-LG, (e) HOPG and (f)
turbostratic graphite. The splitting of the G0

Raman band opens up in going from mono-
to three-layer graphene and then closes up in
going from 4-LG to HOPG (see text) [84].

scattering. Since the electronic structure of graphene changes with layer stacking
(see Section 2.2.4), such changes in layer stacking can be probed by the double res-
onance features, and most sensitively by the G0-band. Bilayer graphene has a richer
G0-band spectrum (Figure 12.8b) than its monolayer counterpart (Figure 12.8a), be-
cause of its special electronic structure, consisting of two conduction bands and two
valence bands (see Figure 12.9). From the double resonance (DR) Raman process
in bilayer graphene with AB stacking, it is possible to distinguish four Lorentzians
in the experimental Raman spectra for each laser line [86, 374]. The DR Raman
model can then be used to relate the electronic and phonon dispersion of bilayer
graphene with the experimental dependence of ωG0 on Elaser [192].

Figure 12.9a shows the dispersion of each one of the four peaks that comprise the
G0-band as a function of Elaser for bilayer graphene, as shown in Figure 12.9b–e.
Each one of the DR Raman processes obeying the selection rules (see Chap-
ter 6) gives rise to one of the G0 peaks and is labeled as Pi j (i, j D 1, 2) in Fig-
ure 12.9 [192], which connects two energy band Ei and E j . Since the iTO phonon
along the KM direction increases its frequency with increasing wave vector q, the
highest frequency of the G0 peak for a given Elaser energy is associated with the P11

process, which also has the largest wave vector (q11). The smallest wave vector q22
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Figure 12.9 (a) Plot of the frequency of four peaks arising from the four G0-band peaks vs. Elaser
observed in bilayer graphene. These four peaks arise from the four process shown in (b–e) to
comprise the G0-band of bilayer graphene plotted in (a) as a function of laser energy [192].

is associated with the process P22, which gives rise to the lowest frequency peak of
the G0-band. The two intermediate frequency peaks of the G0-band are associated
with processes P12 and P21 [192]. Increasing the number of layers increases the
number of possible G0-band scattering processes. Trilayer graphene already has 15
possibilities [98, 217], but the frequency spacing between these peaks is not large
enough to allow identification of each scattering event (Figure 12.8c). The situation
gets even more complex for N-layer graphene (N > 3), though the G0-band spectra
at a typical Elaser such as 2.41 eV starts to get simpler in appearance (Figure 12.8d
for 4-LG), converging to a two-peak structure in highly oriented pyrolytic graphite
(HOPG, N ! 1, Figure 12.8e). The two-peak structure of the G0-band in HOPG
(Figure 12.8e) is the result of a convolution of an infinite number of allowed DR
processes in what turns out to be a three-dimensional electron and phonon disper-
sion. A geometrical approach for the understanding of the evolution of the G0-band
in the Raman spectrum from monolayer graphene to bulk graphite (HOPG) has
been discussed in [375].

12.2.4
Characterization of the Graphene Stacking Order by the G0 Spectra

A long time before graphene had been isolated, Raman spectroscopy had been
used to quantify the structural ordering along the c axis in graphite, since the G0-
band is very sensitive to the stacking order [155–157]. Nemanich and Solin were
the first to show the change from one peak to two peaks in the profile of the G0-
band in the Raman spectra obtained from polycrystalline graphite and crystalline
graphite, respectively [150, 151]. Lespade et al. [155, 156] performed a Raman spec-
troscopy study on carbon materials heat treated at different temperatures Thtt and
observed that, by increasing Thtt, the G0-band changes from a one peak to a two
peak feature (see Figure 12.8e,f). They associated this evolution with the degree of
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graphitization of the samples and suggested that the origin of the two-peak struc-
ture of the G0-band in crystalline graphite was related to the stacking order occur-
ring along the c axis. Recently, the evolution of the G0-band from a single to a few
graphene layers [86, 197, 374], and its complete evolution from the 2D to 3D aspect
(from one to two peaks) has been quantitatively systematized (see previous section
and [376]). Furthermore, Barros et al. have used the G0-band to identify three G0-
band peaks due to the coexistence of 2D and 3D graphite phases in pitch-based
graphitic foams [82].

Finally, it is important to mention that in CVD-grown graphene the stacking of
the layers is often not AB Bernal stacking, and this lowering in symmetry results
in a broadened single G0 peak for sample regions containing monolayer or bilayer
graphene [71, 377, 378]. Thus the use of G0-band Raman spectroscopy to assign the
number of layers needs to be viewed with caution since the G0-band lineshape is
also strongly related to the stacking order of these layers.

12.3
Generalizing the Double Resonance Process to Other Raman Modes

The sp2 carbons exhibit several combination modes and overtones, as shown in
Figure 12.10 for graphite whiskers [379]. Basically all the branches in the phonon
dispersion can be observed in such Raman features which obey the double reso-
nance condition [160]. Many of the peaks observed in the spectra of Figure 12.10 be-
low 1650 cm�1 are actually one-phonon bands activated by defects, as discussed in
Chapter 13. Above 1650 cm�1 the observed Raman features are all multiple-order
combination modes and overtones, some of which are also activated by defects.

As shown in Figure 12.10, the double resonance peaks change frequency with
changing Elaser, and they can be fitted onto the phonon dispersion diagram shown
in Figure 12.11 using DR theory (Section 12.2.2). The data points displayed in Fig-
ure 12.11 all stand for the qDR � 2k DR backward resonance condition, the ones
near Γ and K coming from intravalley and intervalley scattering processes, respec-
tively. Actually, in the Raman spectra there are no characteristic features distin-
guishing peaks associated with the intravalley from the intervalley scattering pro-
cesses, or even from the qDR � 2k or qDR � 0 resonance conditions. All we have in
hand is the Elaser dependence of each peak that has to fulfill one of the DR processes
and to fit the predicted phonon dispersion relations. For example, the data points
near-K, assigned as the iTO+LA combination mode (TOCLA in Figure 12.11) could
alternatively be assigned to a qDR � 0 process, since this combination mode is very
weakly (or non) dispersive [373]. Supporting this assignment is the asymmetric DR
phonon-density of states-like shape observed for this peak, and against this iden-
tification is the destructive interference working towards DR Raman processes at
exactly q D K [129]. The debate about the iTOCLA combination mode assignment
near the K point remains for future clarification. Near Γ the dispersive behavior is
clear and the assignment is unquestionable [380].
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Figure 12.10 (a–c) Raman spectra of graphite
whiskers obtained at three different laser
wavelengths (excitation energies) [379]. Note
that some phonon frequencies vary with Elaser
and some do not. Above 1650 cm�1 the ob-
served Raman features are all multiple-order
combination modes and overtones, though
some of the peaks observed below 1650 cm�1

are actually one-phonon bands activated by
defects, as discussed in Chapter 13. The inset
to (c) shows details of the peaks labeled by L1
and L2. The L1 and L2 peaks, which are disper-
sive, are explained theoretically by defect acti-
vation of double resonance one-phonon pro-
cesses (see Chapter 13) involving the acoustic
iTA and LA branches, respectively [160].

12.4
The Double Resonance Process in Carbon Nanotubes

For one isolated SWNT, the signal is limited to a fixed optical transition Ei i by the
van Hove singularities, and we can say that the “dispersive” behavior will be “quan-
tized”. The effect of multiple bands of resonances can be seen in SWNT bundles
where the vertical stripes in Figure 12.12a indicate resonance windows for a given
resonance band. The modes appearing in Figure 12.12b for the spectral region be-
tween 400–1200 cm�1 are called intermediate frequency modes (IFMs), since their
frequencies lie between the common RBM and G modes. The IFM features are at-
tributed to combination modes (oTO ˙ LA [381, 382]), but it is not yet clear whether
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Figure 12.11 Two-phonon dispersion of graphite based on
second-order double resonance peaks in the Raman spectra
(circles). Solid lines are dispersion curves from ab initio calcula-
tions considering combination modes and overtones with total-
ly symmetric irreducible representations. Adapted from [371].

these modes are Raman-active or induced by disorder (see Chapter 13). Theory re-
lates their observation to quantum confinement along the tube length [383], and
some supporting experimental evidence has been found for such an effect [384].
The IFM picture is not yet fully understood, but it represents a generalization of
the double resonance effect. It is interesting to comment here that the DR theory
for the dispersive features was actually developed for a one phonon inelastic scatter-

Figure 12.12 (a) Two-dimensional plot of the
Elaser dependence for the Raman spectra of
SWNT bundles in the intermediate frequen-
cy mode (IFM) range. The light areas indi-

cate high Raman scattering intensity. Arrows
point to five well-defined ωIFM features. (b)
Raman spectra in the IFM range taken with
Elaser D 2.05, 2.20, 2.34, and 2.54 eV [381].
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ing event plus one elastic scattering event activated by defects, such as the D-band,
and this process is discussed in Chapter 13.

Like for the other sp2 carbons, the G0 Raman feature in the carbon nanotube
spectra provides unique information about the electronic structure of both semi-
conducting and metallic SWNTs. In analogy to graphene, SWNTs show dispersive
behavior, although some unique characteristics are observed due to the one-dimen-
sional structure of SWNTs. In Section 12.4.1 we show the G0 behavior in SWNT
bundles, where most of the (n, m)-dependent uniqueness is averaged out, but there
remains a close relation between SWNTs and graphene and some anomalous re-
sults can still be observed experimentally. In Section 12.4.2 we discuss the G0-band
in isolated tubes, where anomalous effects related to their 1D structure are dis-
cussed. Regarding the analogy with multilayer graphene, carbon nanotubes have
double-wall nanotubes (DWNTs), three-wall, MWNTs, etc. However, the literature
on DWNTs is advancing rapidly and the complexity and richness associated with
the differing properties of DWNTs having semiconducting vs. metallic outer and
inner tubes make a detailed discussion of this large topic [289, 385, 386] outside the
scope of this book. Many layers MWNTs exhibit large diameter nanotubes, thus ap-
proaching graphite [387].

12.4.1
The G0-band in SWNTs Bundles

SWNTs bundles exhibit behaviors not found at the individual tube level. Of par-
ticular interest is the novel dispersion of the G0-band observed in SWNT bundles.
The inset to Figure 12.13a shows the dispersion of the ωG0 frequency in SWNT
bundles. Fitting the observed linear dispersion with Elaser for SWNTs [173] gives:

ωG0 D 2040 � 106Elaser . (12.10)

However, different from graphene and graphite, the G0-band dispersion in SWNTs
exhibits a superimposed oscillatory behavior as a function of Elaser, as shown in
Figure 12.13a when the linear dispersion is subtracted from the data points. Such
a behavior is not directly related to the uniqueness of the electronic structure, but
rather is due to the ωG0 dependence on tube diameter.

The frequency of the measured G0-band feature depends on tube diameter be-
cause of a force constant softening, associated with the curvature of the nanotube
wall that is dependent on dt. Experiments on isolated tubes show the dt dependence
of ωG0 to be [389]

ωG0 D ωG0

0
� 35.4/dt , (12.11)

where ωG0

0
is the laser energy dependent value observed in graphene (the limit of

an infinite diameter tube). This diameter dependence of ωG0 is responsible for the
oscillatory behavior observed in Figure 12.13a. The vertical lines in Figure 12.13b
denote the diameter range of the SWNT bundle used in the G0-band dispersion
experiment. When moving along an arrow in Figure 12.13b by increasing the exci-
tation laser energy, (for example, within the E S

22 sub-band by changing Elaser, above
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Figure 12.13 (a) Oscillatory dispersion G0-
band data for ωG0 for a SWNT bundle sample
taken from [173] after subtracting the linear
dispersion 2420 C 106Elaser from the ωG0

vs. Elaser data shown in the inset. (b) Opti-
cal transition energies Ei i as a function of

diameter for SWNTs (the Kataura plot). The
vertical lines denote the diameter range 1.37C
or �0.15 nm of the SWNT bundle used in
the G0-band dispersion experiment shown in
(a) [388].

1 eV), different SWNTs with different diameters enter and leave resonance with a
given Ei i optical transition. By increasing the laser energy, the diameter decreases,
thus increasing the expected energy due to the double resonance process. When
the resonance condition with Elaser jumps from, for example, E S

22 to E M
11 (around

Elaser D 1.5 eV), the diameter jumps to higher values. This process modulates the
ωG0 dispersion, as observed by the oscillatory behavior in ωG0 vs. Elaser seen in
Figure 12.13a.

It is important to make clear that the “continuous” G0-band frequency dispersion
observed in Figure 12.13 is a result observed in the bundles where different tubes
enter and leave resonance, thus probing all the unfolded two-dimensional Brillouin
zone. For one isolated SWNT, the signal is limited to a fixed optical transition Ei i by
the van Hove singularities, and we can say that the “dispersive” behavior is quan-
tized (see the results on the IFMs in Section 12.4, Figure 12.12). To fully appreciate
the 1D-confinement effects on the G0 spectra, experiments on the isolated SWNT
level have to be discussed, and this is the topic of Section 12.4.2.
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12.4.2
The (n, m) Dependence of the G0-band

This section gives an appreciation of the effect of 1D confinement on the G0 feature
in SWNTs. In the case of SWNTs, the resonance condition is restricted to Elaser �
Ei i (the transition energy between van Hove singular energies). This fact gives rise
to a ωG0 dependence on the SWNT diameter (see Section 12.4.1) and chiral angle.

Figure 12.14 shows the cutting lines for two metallic SWNTs, one zigzag and one
armchair, in the unfolded 2D Brillouin zone of graphene. The van Hove singulari-
ties occur where a cutting line is tangent to an equi-energy contour,6) thus causing
a chiral angle dependence on the excited states ki , which are the states responsible
for the dominant optical spectra observed for SWNTs, including the double reso-
nance features. The presence of cutting lines in carbon nanotubes will, therefore,
affect the dispersive Raman features [388] arising from the double resonance pro-
cess [158–160]. The effects are general for many DR features (see Section 12.3), but
we discuss here only the most intense double resonance Raman feature, the G0-
band, since the G0-band dispersion is very large and, therefore, provides the most
accurate experimental results for this effect.

The two-peak G0-band Raman features observed from semiconducting and
metallic isolated nanotubes are shown in Figure 12.15a,b, respectively, where
the (n, m) indices for these nanotubes are assigned as (15,7) and (27,3) [176]. The
presence of two peaks in the G0-band Raman feature indicates the resonance with
both the incident Elaser and scattered Elaser � EG0 photons, respectively, with two dif-
ferent van Hove singularities (VHSs) for the same nanotube. Elaser and Elaser � EG0

are defined in Figure 12.15a,b below the G0-band profiles, by the outer and inner
equi-energy contours near the 2D Brillouin zone of the graphene layer. The wave
vectors corresponding to the resonance VHSs are also shown. For the double res-
onance process in graphite, the momentum conservation for the electron–phonon
interaction couples the electronic k and phonon q wave vectors by the relation
q � �2k,7) where both the electronic and phonon wave vectors are measured from

Figure 12.14 Cutting lines for two metallic SWNTs, one
zigzag and one armchair, in the unfolded 2D Brillouin zone
of graphene. The wave vectors ki point with arrows to the loca-
tions where the van Hove singularities occur [390].

6) The equi-energies in Figure 12.14 have to include the trigonal warping effect to capture the full
chirality dependence that is observed experimentally.

7) Equation (12.6) provides a consideration of the modulus only. The correct vectorial correlation
between k and q would have a minus sign.
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Figure 12.15 The G0-band Raman spectra
for (a) a semiconducting (15,7) and (b) a
metallic (27,3) SWNT, showing two-peak
structures [390–392], respectively. The vicin-
ity of the K point in the unfolded Brillouin
zone is shown in the lower part of the fig-
ure, where the equi-energy contours for the

incident Elaser D 2.41 eV and the scat-
tered Elaser � EG0 D 2.08 eV photons,
together with the cutting lines and wave
vectors for the resonant van Hove singu-
larities (E S

33 D 2.19 eV, E S
44 D 2.51 eV,

E M(L)
22 D 2.04 eV, E M(U)

22 D 2.31 eV), are
shown.

the nearest K point in the Brillouin zone [393]. For the double resonance process
in carbon nanotubes, the introduction of cutting lines superimposed on the 2D
Brillouin zone changes the equality relation q D �2k, which is slightly different
in nanotubes relative to graphene or graphite because the allowed k vectors for
carbon nanotubes are no longer continuous [390].

The two peaks in Figure 12.15a and b can be associated with the phonon modes
of the wave vectors q i D �2k i , where i D 3, 4, 2L, 2U for E S

33, E S
44, E ML

22 , and E MH
22 ,

respectively,8) and the electronic wave vectors k i are shown in the lower part of Fig-
ure 12.15. For the S-SWNT shown in Figure 12.15a, the resonant wave vectors k3

and k4 have different magnitudes, k4 � k3 ' K1/3, resulting in twice the difference
for the phonon wave vectors, q4 � q3 ' 2K1/3 D 4dt/3, so that the splitting of
the G0-band Raman feature arises from the phonon dispersion ωph(q) around the K

point. In contrast, for the metallic nanotube (M-SWNT) shown in Figure 12.15b,
the resonant wave vectors kL

2 and kH
2 have roughly equal magnitudes and opposite

directions away from the K point, so that the splitting of the G0-band Raman feature
for metallic nanotubes arises from the anisotropy of the phonon dispersion ωph(q)
around the K point [390], which we call the phonon trigonal warping effect. Overall,

8) The density of states of EM
22 for an M-SWNT splits into the two peaks (higher (H) and lower (L)

energy peaks) except for armchair nanotubes, where a degeneracy in their frequency occurs.
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the presence of two peaks in the double resonance Raman features of isolated car-
bon nanotubes is associated with quantum confinement effects expressed in terms
of cutting lines. Correspondingly, the two-peak structure of the double resonance
Raman features is not observed in 2D graphitic materials, such as in a monolay-
er graphene sheet. As stated above, the G0-band doublet structure observed in 3D
graphitic materials is attributed to the interlayer coupling [157].

Finally, the G0-band is not the only feature to exhibit an (n, m) dependence for
SWNTs. Actually, all the double resonance features may exhibit such a dependence.
The stronger the dispersive behavior, the larger the (n, m) dependence. The smaller
the tube diameter, the larger are the frequency shift effects. The (n, m) dependence
of other combination modes, such as the iTO+LA combination mode near Γ , have
been studied in detail (see [380]).

12.5
Summary

In this chapter we introduced the double resonance effect, important for explain-
ing the observation of combination modes and overtones in sp2 carbon materials.
Many strong and weak Raman peaks can be assigned to two-phonon, second-or-
der double resonance processes, while others are one-phonon disorder-activated
processes, as discussed in Chapter 13. The peak frequencies usually exhibit small
deviations depending on their sp2 structure (single vs. multi-layer graphene, rib-
bons, tubes with different diameters and chiral angles, etc.), but in general the
peak frequencies reflect the phonon dispersion relation of graphene subjected to
the double resonance selection rules. This phonon dispersion effect allows us to
probe the interior of the Brillouin zone with light scattering. Usually this is not
possible using light because of the small momentum of photons as compared to
the momentum range within the Brillouin zones of typical materials, so that neu-
tron or electron scattering is generally applied to study such phenomena. The sen-
sitivity to the detailed sp2 structure makes these features, and especially the strong
G0-band, a powerful tool for quantifying the number of graphene layers and the
stacking order in graphite, and for studying various chirality-dependent effects in
carbon nanotubes. The double resonance bands are strongly sensitive to changes
in the electronic and vibrational structure in general, and serve as a sensitive probe
for such effects.

Problems

[12-1] Polarization P is expressed by P D αE , where is α is a polarization tensor,
which is given by Eq. (12.1). When E D E0 exp(i ω t), Q i D Q0

i exp(i ω i t),
(i D 1, 2), show that the last term of Eq. (12.1) gives the frequency terms of
ω ˙ ω1 ˙ ω2.
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[12-2] In an optical process such as photoabsorption or phonon emission, the
probability for the occurrence of an optical process is proportional to the
square of the matrix elements of the electromagnetic perturbation in time-
dependent perturbation theory. Explain how we get energy conservation and
momentum conservation from perturbation theory. Especially show that
these conservation rules are not always necessary because of the uncertainty
principle, which becomes important for short times or short lengths.

[12-3] The ˙ symbols in Eq. (12.4) correspond to phonon absorption and emis-
sion with the wave vectors q1 and q2, respectively. Then explain, in the cor-
responding momentum conservation rule of Eq. (12.5), why we should not
use ˙ but rather use � by illustrating the scattering process in the two-
dimensional Brillouin zone.

[12-4] Using Eqs. (12.2) and (12.3), analyze how the intensity of a second-order
Raman process involving two phonons with q and �q wave vectors changes
when one, two or three denominators are minimized (select a constant val-
ue for γr and draw the resonance window). Make a comparative analysis of
the intensities for the six processes depicted in Figure 12.3.

[12-5] Discuss how the triple-resonance process in Figure 12.3c,f depends on the
symmetry between the valence and conduction band. For this discussion,
show how the total intensity would change when the slopes for the electron
and hole dispersions are different. Analyze the results as a function of γr

and the phonon linewidth Γq .

[12-6] Since the electronic dispersion in graphene near the K point is character-
ized by a Fermi velocity of vF D 1 � 106 m/s and the G0-band dispersion
is given by (@ωG0 /@Elaser) ' 88 cm�1/eV, find the phonon dispersion for
the iTO phonon branch in graphene. Compare the result you find with the
result obtained by the force constant model described in Section 3.1.3. You
will see why the addition of electron–phonon coupling, not accounted for
in the force constant model, is very important for describing the phonon
dispersion near the K point and, consequently, for explaining the dispersive
behavior of the G0-band.

[12-7] Explain qualitatively how to obtain the circles around the K and K 0 points in
Figure 12.5 by using the electron and phonon energy dispersion. Estimate
the diameters of these circles for Elaser D 2.41 eV, and a phonon frequency
of 1350 cm�1 and compare these lengths with the Γ K distance.

[12-8] Plot the phonon density of states as a function of energy for possible DR q

vectors, as shown in Figure 12.5, by assuming that all circles are regular (not
deformed) circles. Here assume that the phonon dispersion is proportional
to the distance of q from the K point in the two-dimensional Brillouin zone.

[12-9] Considering the electron and phonon dispersions near the K point, calcu-
late the difference in frequency between the Stokes and anti-Stokes process-
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es for the G0-band (intervalley process), equivalent to the Stokes and anti-
Stokes processes depicted in Figure 12.3a,d for the intravalley scattering
process.

[12-10] Considering the double resonance condition q � 0, do you expect a disper-
sive (Elaser-dependent) behavior? Explain why.

[12-11] Draw a picture similar to Figure 12.5, but considering the trigonal warp-
ing effect. What differences do we expect to find in the double resonance
features when the trigonal warping effect is included?

[12-12] Derive Eq. (12.9).

[12-13] Consider: (a) the average G0 dispersion (@ωG0 /@Elaser) D 106 cm�1/eV; (b)
the G0 diameter dependence given by Eq. (12.11); (c) the Kataura plot. De-
scribe quantitatively the oscillatory behavior expected for the G0-band in
SWNT bundles, considering a diameter distribution 1.2 � dt � 1.6 nm for
the above three cases. For which diameter distribution would the oscillatory
behavior become an averaged linear dispersion? Analyze your result as a
function of the G0-band Raman peak width for one given SWNT.

[12-14] Explain how the inclusion of trigonal warping in the phonon dispersion
relation would generate a chiral angle (θ ) dependence for the G0-band of a
hypothetical SWNT with the same dt and as θ is changed from 0 to 30ı .

[12-15] There is a mirror symmetry for n layer graphene (n is an odd number) in
which a mirror is parallel to the graphene layer. The π energy band and
phonon modes are either symmetric (S) or anti-symmetric (AS) with regard
to the mirror operation. Discuss the selection rules for optical transitions
and for the electron–phonon interaction for four possible combinations of
S and AS energy bands. How about the case when n is an even number?

[12-16] When you look at Figure 12.3a,b, it is easy to see that the incident and scat-
tered double resonance processes in graphene occur with the same (q, �q)
wave vector pair. Explain why two peaks are observed in the G0-band of
SWNTs when both the incident and scattered light are in resonance with
two different optical transition energies.

[12-17] Explain why there is no possibility of a second-order Raman process with
the combination modes of two phonons, one causing an intravalley and one
causing an intervalley scattering event.

[12-18] Explain that the density of states (DOS) of E M
i i is split into two peaks from

the two cutting lines near the K point except for armchair nanotubes. Please
specify the cutting line in the two-dimensional Brillouin zone which corre-
sponds to the DOS peak at the higher energy for each i of E M

i i .




