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10
Theory of Excitons in Carbon Nanotubes

In the resonance Raman spectroscopy of single-wall carbon nanotubes (SWNTs),
the optical transition energy from the ith valence band state to the ith conduction
band state, Ei i , is important for assigning (n, m) values to individual SWNTs. To
assign the experimentally observed Ei i in single-wall carbon nanotubes, a theoreti-
cal development has been carried out with respect to the simple (nearest neighbor)
tight-binding (STB) model discussed in Chapter 2. By adjusting the STB (simple
tight-binding) parameters, Ei i values have been assigned to specific (n, m) SWNTs
for a limited region of diameter or energy on the Kataura plot. However, this pro-
cedure is not useful for explaining in a systematic way the results obtained from
many SWNT samples synthesized by different methods. In this chapter we discuss
three aspects going beyond the STB model that are necessary to achieve experi-
mental accuracy:

� Curvature (σ–π hybridization) effects using the extended tight-binding method;
� Excitonic effects using the Bethe–Salpeter equation;
� Dielectric screening effects of excitons.

This chapter begins with a brief description of how curvature effects are intro-
duced into the tight-binding model, to construct what has been called the extended
tight-binding (ETB) method (Section 10.1). The curvature effect in SWNTs is re-
sponsible for σ � π hybridization, resulting in a much stronger Ei i dependence
on the SWNT chiral angle θ than that predicted by the STB picture. In sequence,
Section 10.2 gives a broad overview of exciton physics, which is the main part of
this chapter. The electron–electron and the electron–hole interactions, generally
called many-body effects, change in a significant way the Ei i dependence on tube
diameter dt, as well as the relative distance between the different Ei i levels. From
a theoretical point of view, the importance of excitons to SWNTs was introduced
early on by Ando [319], who studied the electronic excitations of nanotubes with-
in a static screened Hartree–Fock approximation. Later on, after experimental re-
sults started to show the importance of excitons, detailed first-principles calcula-
tions of the effects of many-body interactions on the optical properties were per-
formed for nanotubes with very small diameter [320–323] and some descriptions
of excitons in nanotubes based on simpler models [324–327] were also developed.
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Following this work, a systematic dependence of exciton effects (including wave
function-related phenomena) on the nanotube diameter and chiral angle was de-
veloped [186, 328, 329] and this topic is presented in Section 10.4.1. These results
are important for providing a quantitative description of the photophysical prop-
erties of SWNTs, including the Raman response. Finally, Section 10.5 introduces
the importance of the dielectric screening of an exciton by other electrons and by
surrounding materials, a topic that is still under development in the science of one-
dimensional systems.

10.1
The Extended Tight-Binding Method: σ–π Hybridization

The nearest neighbor (simple) tight-binding (STB) model, developed in Chapter 2,
gives the first approximation in constructing a Kataura plot showing the depen-
dence of the transition energies Ei i on the tube diameter dt (Section 2.3.4). The
several Ei i levels for SWNTs are shown in Figure 2.22 to exhibit a strong 1/dt de-
pendence, that is related to the distance of the cutting line from the K point in
the unfolded 2D-graphene Brillouin zone, and there is in addition a small chiral
angle θ dependence related to the trigonal warping effect [31]. However, the exper-
imental results of Ei i as a function of dt show from the observed 1/dt dependence
of Ei i for SWNTs (see Section 9.3.2) that the chirality-dependent pattern (family pat-
tern) which occurs for (n, m) SWNTs with (2n C m) D constant, is actually much
larger than that predicted from the STB model. This experimental observation led
to the implementation of the ETB model for the explanation of many experimental
studies of the photophysics of SWNTs. This (2n C m) spread is mainly attributed
to the SWNT curvature effects, which cause a chiral angle dependence in the C–C
bond length relaxation in small dt SWNTs that is missing from the STB approxi-
mation.

It had been shown that long-range interactions of the p orbitals are not negli-
gible [330], and the curvature of the SWNT sidewalls results in an important sp2–
sp3 rehybridization in the small dt limit. The curvature effect can be included in
the tight-binding (TB) model [182, 329] by extending the basis set to the atomic s,
px , p y , and pz orbitals that form the s and p molecular orbitals according to the
formalism developed in Chapter 2 (the Slater–Koster formalism [31, 331]). This ex-
tended tight-binding (ETB) model utilizes the TB transfer and overlap integrals as
a function of the C–C inter-atomic distance calculated within the density function-
al theory (DFT) framework [263], thus including long-range interactions and bond-
length variations within the SWNT sidewall. The atomic p-orbitals are aligned with
the cylindrical coordinates of the SWNT sidewall according to a symmetry-adapted
scheme [182, 329] in which pz is orthogonal to the SWNT sidewall, while px and
p y are parallel to the SWNT sidewall for each C atom. This choice allows us to
consider an 8 � 8 Hamiltonian for the graphene unit cell of two C atoms (A and B),
even for chiral SWNTs with large translational unit cells, thus greatly simplifying
the calculations. Further details of the calculational method can be found in [329].
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Figure 10.1 Differences between the C–C
bond lengths aC–C in the ETB model (denot-
ed by aETB

C–C) and aC–C D 0.142 nm in the flat
graphene layer for many SWNTs as a function
of nanotube curvature 1/d2

t . Open, closed,
and gray dots denote the bond lengths of

zigzag, armchair, and chiral SWNTs, respec-
tively, calculated from the ETB model for the
optimized SWNT structures. For compari-
son, crosses show the bond lengths of zigzag
SWNTs from DFT calculations [182].

The total energy of the SWNT can be calculated using the short-range repulsive
potential obtained from DFT calculations [263], and the geometrical structure op-
timization can then be performed. To compare the SWNT structures optimized by
using the ETB model with the results of other independent geometrical structure
optimizations, we plot in Figure 10.1 the change in the C–C bond lengths for each
SWNT as a function of nanotube curvature 1/d2

t [182]. For calculating the elec-
tronic structure of SWNTs, it is essential to utilize the optimized SWNT structure,
since the overlap integrals are very sensitive to the relaxed atomic positions. As a
consequence, the θ dependence (i. e., the family pattern in the Kataura plot) in-
creases significantly with decreasing dt, thereby matching the results observed in
the experimental Kataura plot (Section 9.3.2).

10.2
Overview on the Excitonic Effect

The exciton is a bounded electron–hole pair. An exciton in a semiconducting ma-
terial consists of a photoexcited electron and a hole bound to each other by an
attractive Coulomb interaction. In many commonly occurring bulk 3D semicon-
ductors (such as Si, Ge and III–V compounds), the binding energy of an exciton
can be calculated by a hydrogenic model with a reduced effective mass and a di-
electric constant, giving a binding energy on the order of � 10 meV with discrete
energy levels lying below the single particle excitation spectra. Thus optical ab-
sorption to exciton levels is usually observed only at low temperatures. However,
in a single-wall carbon nanotube, because of its 1D properties, the electron–hole
binding energy becomes much larger (and can be as large as 1 eV), so that exciton
effects can be observed even at room temperature. Thus excitons are essential for
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explaining optical processes, such as optical absorption, photoluminescence, and
resonance Raman spectroscopy in SWNTs.

The following sections presents a broad descriptive picture of the theoretical de-
scription of excitons in SWNTs. It starts by briefly addressing the general proper-
ties of excitons in general, while also emphasizing the uniqueness of excitons in
graphite, SWNTs and C60 and the difference in behavior between the excitons in
each dimension (2, 1, and 0, as represented by these carbon materials, respective-
ly.) The unusual geometrical structure of sp2 carbons to which all of these materials
relate gives rise to the two special points in the Brillouin zone (K and K 0), which
are related to one another by time reversal symmetry [80], making these sp2 carbon
systems unique relative to other nanosystems which also have large excitonic ef-
fects, but do not have similar symmetry constraints. Differences in symmetry are
important and guide electronic structure calculations and the interpretation of ex-
periments. Therefore, an analysis of exciton symmetries in SWNTs is needed to
understand in greater detail many aspects of their optical properties, and this is
the next topic of this section (Section 10.3). From the group theory analysis, the
selection rules for optical phenomena in SWNTs are obtained (and are discussed
in Section 10.3.2). Finally, Section 10.4 develops the theory for excitons in carbon
nanotubes.

10.2.1
The Hydrogenic Exciton

The simplest treatment for an exciton is given by the Wannier exciton, which can
be described by the Schrödinger equation:
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where subscripts e, h stand for the electron and the hole of the exciton which are
attracted by a Coulomb potential1) �e2/� r (� is the dielectric constant), and me and
mh are the effective mass of the electron and the hole, respectively. By adopting the
center of mass coordinate R D (me re C mh rh)/(me C mh) and the relative distance
coordinate r D (re � rh), the exciton wavefunction can be given by:

Ψ (R , r) D g(R) f (r) , (10.2)

where g(R) D e i K�R describes the movement of an exciton with momentum K , and
f (r) gives the different exciton levels with solutions obtained by the Schrödinger

equation for a hydrogen atom with a reduced mass
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1) In SI (MKS) units, a Coulomb potential becomes �e2/4π�0� r. For a conversion from CGS to
MKS units, we include a factor of 1/4π�0 along with e2.
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The solution of Eq. (10.1) gives:

E(K) D � µe4
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, (n D 1, 2, 3, . . .) . (10.4)

The first and second terms in Eq. (10.4) are the excitonic energy levels denoted by
the quantum number n and the energy dispersion relation for the center of mass
motion of the exciton, respectively. Although the description of excitons in SWNTs
is more complex, since the exciton is formed by the mixing of different k states
due to the Coulomb interaction (as described below in Section 10.4), the concepts
of a dispersion relation, exciton wave vector and excitonic energy levels are closely
related to this simplified description.

10.2.2
The Exciton Wave Vector

A single-particle picture of carriers is simple and easy to understand. In a semicon-
ducting material, an electron can be excited from the valence band to the conduc-
tion energy band, and the photon energy beyond the band gap goes into the kinetic
energy of the excited electron. An excitonic picture, however, cannot be represent-
ed by a single-particle model, and we cannot generally use the energy dispersion
relations directly to obtain the excitation energy for the exciton. If the electron and
hole wavefunctions are localized in the same spatial region, the attractive Coulomb
interaction between the electron and hole increases the binding energy, while the
kinetic energy and the Coulomb repulsion between the electrons becomes large,
too. Thus the optimum localized distances between the e–h (electron–hole) pair
determine the exciton binding energy. In the case of a metal, the dielectric screen-
ing of the Coulomb interaction by other conduction electrons reduces the Coulomb
interaction significantly (where � is infinity) and thus the exciton does not form.2)

The repulsive Coulomb interaction between a photoexcited electron and valence
electrons causes the wave vector k for the excited electron to no longer be a good
quantum number, since electron–electron scattering occurs and thus the lifetime
of an electron becomes finite.

Since the exciton wavefunction is localized in real space, the exciton wavefunc-
tion in k space is a linear combination of Bloch wavefunctions with different k

states. Thus the definition of kc and kv is given by their central values with a width
of ∆ k.3)

When we consider an optical transition in a crystal, we expect a vertical transi-
tion, kc D kv (Figure 10.2a), where kc and kv are, respectively, the wave vectors of
the electron and the hole. The wave vector of the center of mass for the exciton is
defined by K D (kc � kv)/2, while the relative coordinate is defined by k D kc C kv.
Here, we note that the hole (created by exciting an electron) has the opposite sign
for its wave vector and effective mass as compared to the electron. The exciton has

2) Metallic SWNTs have shallow exciton bound states relative to those for semiconducting SWNTs.
3) The Fourier transformation of a Gaussian in real space is a Gaussian in k space, too.
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Figure 10.2 (a) A singlet exciton formed at
K D 0 in a crystal where kc D kv (left),
at either the band extrema or away from the
band extrema if kc ¤ kv, K ¤ 0, giving rise
to a dark exciton (right, see text). (b) When a
photon is absorbed by an electron with spin "

(left), we get a singlet exciton (S D 0, right).
If the spin of the electron is " we here define
the spin of the hole that is left behind as #.
(c) A triplet exciton (S D 1), that is a dark
exciton [187].

an energy dispersion as a function of K, which represents the translational motion
of an exciton. Thus only the K D 0 (K < ∆ k) exciton can recombine by emitting a
photon. Correspondingly, a K ¤ 0 exciton cannot recombine directly to emit a pho-
ton and therefore is a dark exciton. Recombination emission for K ¤ 0 is, however,
possible by a phonon-assisted process involving an indirect optical transition.

10.2.3
The Exciton Spin

When we discuss the interaction between an electron and a hole, the definition of
the total spin for an exciton is a bit different from the conventional idea of two elec-
trons in a molecule (or a crystal). A hole is a different “particle” from an electron,
but, nevertheless, an exchange interaction between the electron and the hole exists,
just like for two electrons in a hydrogen molecule.

When an electron absorbs a photon, an electron, for example with spin " is excit-
ed to an excited state as shown in Figure 10.2b, leaving behind a hole at the energy
level where the electron with up spin " had previously been. This hole has not only
a wave vector of �k and an effective mass of �m� as mentioned in Section 10.2.2,
but also is defined to be in a spin down # hole state. The exciton thus obtained
(Figure 10.2b) is called a spin singlet exciton, with S D 0, since the definition of S

for the two-level model shown here is in terms of the two actual electrons that are
present,4) and in this sense the definition for the two actual electrons and for the
S D 0 exciton are identical. It should also be mentioned that Figure 10.2b does
not represent an S D 0 eigenstate. To make an eigenstate we must take the anti-
symmetric combination of the state shown in Figure 10.2b with an electron # and
hole " [332]. In contrast, a triplet exciton (S D 1) can be represented by two elec-
trons, one in the ground state and the other in an excited state to give a total spin
of S D 1 (Figure 10.2c).5) For the triplet state in Figure 10.2c, we define the hole
to have a spin " and the resulting state shown here is an eigenstate (ms D 1) for

4) The electric dipole transition does not change the total spin of the ground state which is S D 0.
5) The reader should not be confused by having S D 1 for the triplet state, since the two spin up

electrons are in different energy states.
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S D 1. We further note that a triplet exciton cannot be recombined by emitting a
photon because of the Pauli principle. We call such an exciton, a triplet exciton. A
triplet exciton is one type of “dark exciton” (dipole-transition forbidden state).6) An
exchange interaction (> 0) between a hole and an electron works only for S D 0
(see Figure 10.2b) and thus the S D 1 state in Figure 10.2c has a lower energy than
the S D 0 state7) (see also Eq. (10.10) in Section 10.4.1). It should be noted that for
the more familiar case of just two electrons, the exchange interaction (< 0) works
for the S D 1 case and therefore the S D 1 state lies lower in energy than the
S D 0 state.

10.2.4
Localization of Wavefunctions in Real Space

The localization of a wavefunction can be obtained by mixing the Bloch wavefunc-
tion labeled by the wave vector k. The equation for determining the mixing of de-
localized wavefunctions is called the Bethe–Salpeter equation (Section 10.4.1). The
center of mass momentum for an exciton is now a good quantum number in the
crystal, while the relative motion of an electron and a hole gives excitonic levels.
Thus an exciton is considered to provide a quasi-particle or an elementary excita-
tion with additional freedom, like the plasmon or polariton. By forming an exciton
wavefunction, the Hilbert space of the wavefunction for the free particles which
describe the electronic states is reduced significantly, and this gives a reduction in
the optical absorption for the one-particle spectra. This is known as the oscillator
strength sum rule (or f-sum rule). Thus if most of the available oscillator strength
for optical absorption is used for the exciton, the spectral intensity for the one-par-
ticle transitions is reduced. This situation makes research on excitons for SWNTs
more important in the sense that a single-particle excitation has hardly ever been
observed in this system in an optical absorption experiment.

The localization length of the exciton in a single-wall carbon nanotube is larger
than the diameter of a SWNT but much smaller than the length of a SWNT. This
situation gives rise to a predominantly one-dimensional behavior in the optical
properties of a SWNT exciton. In a pure 1D exciton, however, the binding energy of
the lowest state would be minus infinity. Thus the cylindrical shape of the SWNT is
essential for giving a sufficiently large binding energy to the exciton, thus allowing
observation of the exciton at room temperature.

6) Spin conversion by a magnetic field could
flip a spin and lead to the recombination of
the triplet exciton. We will show later another
type of dark exciton (E-symmetry exciton).

7) The exchange interaction for the S D 0
exciton can be understood as the difference

in the interaction energy between two
electrons (one at the position of the excited
electron and the other at the position of the
hole left behind as in Figure 10.2b) and the
energy of the S D 1 exciton which has no
exchange energy (Figure 10.2c).
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10.2.5
Uniqueness of the Exciton in Graphite, SWNTs and C60

The electronic structure of a SWNT and of graphite is unique insofar as there are
two nonequivalent energy bands near the two hexagonal corners K and K 0 of the
Brillouin zone. We therefore distinguish the regions about K and K 0 from one an-
other and call them the two valleys of SWNTs and graphite. Although an optical
transition occurs vertically in k space, we can consider the electron and the hole in
the electron–hole pair to be either in the same valley, or an electron to be in one val-
ley and a hole in the other valley. The latter pair can form an excitonic state in real
space, but it never recombines radiatively, since the electron and hole do not have
the same k value; we call such a state an E-symmetry exciton (see Section 10.3). An
E-exciton is another type of “dark exciton”. In addition to the conventional “bright
exciton” (an electron–hole pair from the same valley that can recombine radiative-
ly8)), the coexistence of many different types of excitons is of importance for under-
standing the optical properties of SWNTs.

In resonance Raman spectra, photoluminescence or resonance Rayleigh scatter-
ing, we can observe a signal even from a single SWNT “molecule”. In a one-particle
picture of optical processes, a strong enhancement of the optical intensities can be
understood in terms of the 1D van Hove singularities (vHSs) in the joint density
of states connecting the valence and conduction energy bands. In an excitonic pic-
ture, an exciton has an energy dispersion as a function of the center of mass wave
vector and we expect 1D vHSs in the excitonic density of states from the ground
states, where optical absorption becomes strong and this occurs when the center
of mass wave vector vanishes. The assignment of the excitation energy to a SWNT
with (n, m) indices works well by interpreting the Ei i , which is a one-particle pic-
ture concept, in terms of the exciton vHS position. This exciton energy position can
be modified by electro-chemical doping or by changing the surrounding materials
by use of substrates, solutions or wrapping agents (environmental effects) in the
space surrounding a SWNT.

In C60, which is a zero-dimensional molecule [6, 333], excitonic behavior is also
observed and the binding energy for C60 is estimated to be 0.5 eV, which is of the
same order of magnitude in energy as the nanotube exciton. This value for C60

is obtained by comparing (i) the optical absorption energy (1.55 eV) and (ii) the
energy difference observed by photoelectron emission and inverse photoemission
spectroscopy (2.3 eV) [334, 335].

The C60 and nanotube excitons exhibit fundamental similarities, both systems
being π conjugated, both having similar diameters, and both having singularities
in their electronic density of states (molecular levels or a narrow energy band width
in the C60 crystal). On the other hand, the lowest exciton wavefunction is not ho-
mogeneous on the C60 ball because the electron and hole have their own molec-
ular orbitals with different symmetries. In contrast, in the nanotube exciton, the

8) We will see in Section 10.3 that even within the same valley, one of the two possible exciton types
is a dark exciton because of symmetry requirements.
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electron and hole have the same symmetry. The lowest exciton wavefunction is ho-
mogeneous around the circumferential direction and is localized only along the
tube axis direction, because the range of the Coulomb interaction, U, is larger than
the tube diameter and smaller than the length of a SWNT. Furthermore, in the
case of the C60 crystal, the energy band width of the highest occupied molecular or-
bital (HOMO) and the lowest unoccupied molecular orbital (LUMO) band is much
smaller than the Coulomb interaction, while in the case of the nanotube, the en-
ergy band width is larger than U. In a SWNT, the motion of the exciton along the
nanotube axis gives an energy dispersion for the exciton while the excitons in C60

are localized within a molecule. Though we can use similar experimental and the-
oretical techniques for considering a molecular exciton for C60 and for a SWNT, it
is nevertheless important to consider the differences in the physics of a 0D and a
1D system when describing excitons in C60 and in SWNTs.

10.3
Exciton Symmetry

Group theory discussions tell us that there are four kinds of spin-singlet excitons
corresponding to the symmetries, A 1, A 2, E and E� in a SWNT [135], and that only
the excitons with A 2 symmetry are optically allowed. We call A 2 excitons “bright
excitons” (dipole-transition allowed states) and all other excitons are dark excitons.

10.3.1
The Symmetry of Excitons

Figure 10.3a shows a schematic diagram of the electronic valence and conduction
single-particle bands with a given index µ, for general chiral SWNTs [31]. The ir-

Figure 10.3 (a) Pictorial diagrams for the dis-
persion of the electronic valence and conduc-
tion bands E(k) for chiral (n, m) nanotubes
and (b) for their respective excitonic bands.

The electron, hole and exciton states at the
band edges are indicated by a solid circle and
labeled according to the irreducible represen-
tation to which they belong [135].
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reducible representations of the factor groups of nanotubes are labeled by the an-
gular momentum quantum number µ, which is the index that labels the cutting
lines [110]. Here the cutting lines denote the possible k vectors given by the period-
ic boundary condition around the circumferential direction of a single wall carbon
nanotube [110, 336] which can be expressed by k D µK1 C k K2/jK2j (where µ =
1 � N/2, . . . , N/2, and �π/T < k < π/T ). Here K1 and K2 are, respectively, the
reciprocal lattice vectors along the circumferential and axial directions. N denotes
the number of hexagons in the unit cell for SWNTs, and T is the length of the real
space unit cell [31]. The electron and hole states at the band-edge are therefore la-
beled according to their irreducible representations. The exciton wavefunction can
be written as a linear combination of products of conduction (electron) and valence
(hole) band eigenstates, φµ

c (re) and φµ0�
v (rh) as [135, 218, 337]

ψ(re, rh) D
X

v,c,µ,µ0 ,k

A vcφµ
c (re)φµ0�

v (rh), (10.5)

where v and c stand for valence- and conduction-band states, respectively. φµ
c (re)

and φµ0�
v (rh) are localized functions in real space which are obtained by taking

the summation on k. To obtain an accurate solution for the excitonic eigenfunc-
tions (the A vc coefficients in Eq. (10.5)) and eigenenergies, it is necessary to solve
the Bethe–Salpeter equation Section 10.4.1, which includes many-body interactions
and considers the mixing by the Coulomb interaction of electron and hole states
with all the different wave vectors for all the different bands. The Coulomb interac-
tion depends only on the relative distance between the electron and the hole, and
thus the many-body Hamiltonian is invariant under the symmetry operations of the
nanotube. Each excitonic eigenstate will then transform as one of the irreducible
representations of the space group of the nanotube. In general, the electron–hole
interaction will mix states with all wave vectors and all bands, but for moderately
small-diameter nanotubes (dt < 1.5 nm), the energy separation between singu-
larities in the single-particle JDOS (joint density of states) is fairly large and it is
reasonable to consider, as a first approximation, that only the electronic energy
sub-bands contributing to a given JDOS singularity Ei i will mix to form the exci-
tonic states. Within this approximation, it is possible to employ the usual effective-
mass approximation (EMA) and the envelope-function approximation to obtain the
exciton eigenfunctions [135, 218, 337]:

ψEMA(re, rh) D
X

v,c

0

A vcφc(re)φ�
v (rh)Fν(ze � zh) . (10.6)

The prime in the summation of Eq. (10.6) indicates that only the electron and hole
states associated with the JDOS singularity are included. It is important to empha-
size that the approximate wavefunctions Ψ EMA have the same symmetries speci-
fied by µ as the full wavefunctions Ψ . The envelope function Fν(ze � zh) provides
an ad hoc localization of the exciton in the relative coordinate ze � zh along the
axis and ν labels the levels in the 1D hydrogenic series given in Section 10.2.1. The
envelope functions will be either even (ν D 0, 2, 4 . . .) or odd (ν D 1, 3, 5 . . .) upon
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the z ! �z operations.9) The use of such “hydrogenic” envelope-functions (sim-
ilar to f (r) in Section 10.2.1) serves merely as a physically grounded guess to the
ordering in which the different exciton states might appear. From Eq. (10.6), the
irreducible representation of the excitonic state D(ψEMA) will then be given by the
direct product [135, 218, 337]:

D(ψEMA) D D(φc) ˝ D(φv) ˝ D(Fν), (10.7)

where D(φc), D(φv) and D(Fν) are the irreducible representations of the conduc-
tion state, valence state and envelope-function Fν , respectively.

As shown in Figure 10.3a, there are two inequivalent electronic bands in chiral
tubes,10) one with the band edge at k D k0 and the other one at k D �k0. In order
to evaluate the symmetry of the excitonic states, it is necessary to consider that the
Coulomb interaction will mix the two inequivalent states in the conduction band
(electrons) with the two inequivalent states in the valence band (holes). These elec-
tron and hole states transform as the 1D representations Eµ(k0) and E�µ(�k0) of
the CN point group [135],11) where the conduction and valence band extrema occur
at the same k D k0 (or �k0). This situation gives rise to a van Hove singularity
(vHS) in the joint density of states (JDOS) [31, 338]. Taking this into consideration,
the symmetries of the exciton states associated with the ν D 0 envelope func-
tion, which transform as the A 1(0) representation, can be obtained using the direct
product in Eq. (10.7):

�
Eµ(k0) C E�µ(�k0)

� ˝ �
E�µ(�k0) C Eµ(k0)

� ˝ A 1(0)

D A 1(0) C A 2(0) C Eµ0 (k0) C E�µ0 (�k0), (10.8)

where k0 � 2k0 and µ0 D 2µ are the exciton linear momenta and quasi-angular
momenta, respectively. Therefore, group theory shows that the set of excitons with
the lowest energy is composed of four exciton bands, shown schematically in Fig-
ure 10.3. Basically the mixing of two electron and two hole (˙µ) wave functions
generates four exciton states. The mixing of electron and hole states in the same
vHSs (kc D ˙k0, kv D �k0) will give rise to excitonic states, which transform as
the A 1 and A 2 irreducible representations of the CN point group. The excitonic
states formed from electrons and holes with kc D kv D ˙k0 will transform as the
Eµ0 (k0) and E�µ0 (�k0) 1D irreducible representations of the CN point group, with
a wave vector k0 and an angular momentum quantum number µ0.

The higher-energy exciton states in chiral tubes can be obtained, for instance,
by considering the same vHS in the JDOS and higher values of ν. For ν even, the
resulting decomposition is the same, since the envelope function also has A 1 sym-
metry. For odd values of ν, the envelope function will transform as A 2, but that will
also leave the decomposition in Eq. (10.8) unchanged. Thus, from the group theory

9) For this symmetry operation, we can use a C2 axis which is perpendicular to the nanotube axis.
10) The case of achiral nanotubes is given in the problem set for this chapter.
11) Usually E is used to label 2D irreducible representations (IRs) in point groups. In cyclic groups,

however, two 1D IRs can be degenerate not by a symmetry in real space, but by time-reversal
symmetry. Here these 1D IRs are denoted by E (see Chapter 6).
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point view, both even and odd ν have A 1 and A 2 symmetry excitons. The result
is still the same if one now considers higher-energy exciton states derived from
higher singularities in the JDOS (for instance, the so-called E22 or E33 transitions),
as long as the angular momentum of the electrons and holes is the same. There-
fore, Eq. (10.8) describes the symmetries of all exciton states in chiral nanotubes
associated with each Ei i transition.

10.3.2
Selection Rules for Optical Absorption

To obtain the selection rules for the optical absorption of the excitonic states, it
is necessary to consider that the ground state of the nanotube transforms as a to-
tally symmetric representation (A 1) and that only K D 0 excitons can be created
(Section 10.2.2). For light polarized parallel to the nanotube axis, the interaction
between the electric field and the electric dipole in the nanotube transforms as
the A 2 irreducible representation for chiral nanotubes [135]. Therefore, from the
four excitons obtained for each envelope function ν, only the A 2 symmetry with
S D 0 (Section 10.2.3) excitons are optically active for parallel polarized light, and
the remaining three states with S D 1 are dark states.

Although not related to Raman spectroscopy it is here important to comment
that the two-photon absorption experiment [339, 340] represented an important
advance for discussing the exciton photophysics of SWNTs. For two-photon exci-
tation experiments, the excitons with A 1 symmetry are accessed, and thus, there
will also be one bright exciton for each ν envelope function. The presence of one-
photon (two-photon) allowed transitions associated with odd (even) envelope func-
tions result from the presence of two inequivalent vHSs in the first Brillouin zone
associated with the two inequivalent carbon atoms in mono-layer graphene. This
experiment [339, 340] was considered to prove the excitonic character of the optical
levels of SWNTs.

10.4
Exciton Calculations for Carbon Nanotubes

In this section we present some details of the calculations of the excitonic behav-
ior in carbon nanotubes. First a discussion of the Bethe–Salpeter equation is giv-
en which is used to calculate the excitonic wavefunctions and their mixing by the
Coulomb interaction (Section 10.4.1). Then the energy dispersion of excitons is
discussed in Section 10.4.2, while exciton wavefunction calculations are discussed
in Section 10.4.3. Finally in Section 10.4.4 the family pattern formation in exciton
photophysics is discussed.



10.4 Exciton Calculations for Carbon Nanotubes 235

10.4.1
Bethe–Salpeter Equation

Here we show how to calculate the exciton energy Ωn and the wavefunction
Ψ n [186, 311, 319, 321]. Since the exciton wavefunction is localized in real space
by a Coulomb interaction, the wave vector of an electron (kc) or a hole (kv) is not
a good quantum number any more, and thus the exciton wavefunction Ψn for
the nth exciton energy Ωn is given by a linear combination of Bloch functions at
many kc and kv wave vectors. The mixing of different wave vectors by the Coulomb
interaction is obtained by the so-called Bethe–Salpeter equation [321]

X
kc kv

n
[E(kc) � E(kv)]δk0

c kc
δk0

v kv
C K

�
k0

ck0
v, kc kv

�o
Ψ n(kc kv)

D Ωn Ψ n
�
k0

c k0
v

�
, (10.9)

where E(kc) and E(kv) are the quasi-electron and quasi-hole energies, respectively.
Here “quasi-particle” means that we add a Coulomb interaction to the one-particle
energy and that the particle has a finite lifetime in an excited state. Equation (10.9)
represents simultaneous equations for many k0

c and k0
v points.

The mixing term of Eq. (10.9) which we call the kernel, K(k0
ck0

v, kckv) is given by:

K
�
k0

ck0
v, kc kv

� D �Kd �
k0

ck0
v, kc kv

� C 2δS K x �
k0

ck0
v, kckv

�
, (10.10)

with δS D 1 for spin singlet states and 0 for spin triplet states (see Section 10.2.3).
The direct and exchange interaction kernels Kd and K x are given by the following
integrals [332]:

Kd �
k0

ck0
v, kckv

� � W
�
k0

ckc, k0
v kv

�
D
ˆ

d r0d r ψ�

k0
c
(r 0)ψkc (r0)w (r0, r)ψk0

v
(r)ψ�

kv
(r) ,

K x �
k0

ck0
v, kckv

� D
ˆ

d r0d r ψ�

k0
c
(r 0)ψk0

v
(r 0)v (r0, r)ψkc (r)ψ�

kv
(r) , (10.11)

where w and v are the screened and bare Coulomb potentials, respectively, and ψ
is the quasi-particle wavefunction as discussed below.

The quasi-particle energies are the sum of the single-particle energy (�(k)) and
self-energy (Σ (k)),

E(k i) D �(k i) C Σ (k i) , (i D c, v) , (10.12)

where Σ (k) is expressed by:

Σ (kc) D �
X

q

W(kc(k C q)v, (k C q)vkc) ,

Σ (kv) D �
X

q

W(kv(k C q)v, (k C q)v kv) . (10.13)
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In order to obtain the kernel and self-energy, the single-particle Bloch wavefunc-
tion ψk (r) and screening potential w are obtained by either a first principles cal-
culation [321] or an extended tight-binding wavefunction and a random phase ap-
proximation (RPA) calculation [186]. In the RPA calculation, the static screened
Coulomb interaction is expressed by:

w D v

��(q)
, (10.14)

with a static dielectric constant � and the dielectric function �(q) D 1 C v (q)Π (q).
By calculating the polarization function Π (q) and the Fourier transformation of
the unscreened Coulomb potential v (q), we get information, which is sufficient
for describing the exciton energy and wavefunction [186, 319]. For one-dimension-
al materials, the Ohno potential is commonly used for the unscreened Coulomb
potential v (q) for π orbitals [324]

v (jRu0 s0 � R0sj) D Uq
((4π�0/e2)UjRus � R0s0 j)2 C 1

, (10.15)

where U is the energy cost to place two electrons on a single site (jRus � R0s0 j D 0)
and this energy cost is taken as U � Uπa πa πa πa

D 11.3eV for π orbitals [324].

10.4.2
Exciton Energy Dispersion

For an electron–hole pair, we introduce wave vectors K for the exciton center of
mass and k for the relative motion,

K D (kc � kv)/2 , k D kc C kv . (10.16)

The Bethe–Salpeter equation (Eq. (10.9)) is then rewritten in terms of K and k.
Since the Coulomb interaction is related to the relative coordinate of an electron
and a hole, the center-of-mass motion K can be treated as a good quantum num-
ber.12) Thus the exciton energy is given by an energy dispersion as a function of K .

In Figure 10.4, we show the two-dimensional Brillouin zone (2D BZ) of graphite
and the cutting lines for a (6,5) single-wall carbon nanotube. Since optical transi-
tions occur around the K or K 0 points in the 2D BZ, we can expect four possible
combinations of an electron and hole pair as is discussed in Section 10.3.1 and as is
shown in Figure 10.4. The excitons in a SWNT can then be classified according to
their 2K values. If both the electron (kc) and hole (kv) wave vectors are from the K

(or K 0) region, then 2K D kc � kv lies in the Γ region and the corresponding ex-
citon is an A 1,2 symmetry exciton. If an electron is from the K region and a hole is
from the K 0 region, their 2K lies in the K region and this exciton is an E symmetry
exciton. If an electron is from the K 0 region and a hole is from the K region, their
2K lies in the K 0 region and this exciton is an E� symmetry exciton.

12) Strictly speaking, when we consider the screening effect of an exciton by other electrons, K is no
longer a good quantum number.
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Figure 10.4 The three inequivalent regions
in the 2D Brillouin zone of graphite. The cut-
ting lines (Section 10.3.1) for a (6,5) SWNT
are shown. The electron–hole pairs and the
corresponding center-of-mass momentum
2K D kc � kv for an A1,2 exciton of the (6,5)
SWNT are indicated. The electron–hole pair
where the electron and hole lie on the second

and first cutting lines relative to the K point
and the electron–hole pair where the electron
and hole lie on the first and second cutting
lines relative to the K 0 point correspond to
an E12 exciton with the center-of-mass mo-
mentum 2K on the first cutting line relative to
the Γ point [186].

As we discussed in the symmetry section (Section 10.3.1), the exciton wavefunc-
tion should be described by an irreducible representation of the group of the wave
vector for a SWNT. For A excitons, the electron–hole pair wavefunction jkc, kvi D
jk, Ki with the electron and hole from the K region, and j � kv, �kci D j � k, Ki
with the electron and hole from the K 0 region have the same magnitude for K .
Thus, we can recombine these two electron–hole pairs to get

A 2,1 D jk, ˙, Ki D 1p
2

(jk, Ki ˙ j � k, Ki) . (10.17)

Here jk, C, Ki and jk, �, Ki are antisymmetric (A 2) and symmetric (A 1), respec-
tively, under the C2 rotation around the axis perpendicular to the nanotube axis.13)

10.4.3
Exciton Wavefunctions

In this section we discuss mainly the calculated results relevant to bright exci-
tons [186]. In Figure 10.5, we plot the energy dispersion of Ei i(A j ) (i D 1, 2;
j D 1, 2) excitons with spin S D 0, 1 for a (6,5) SWNT, where Ei i denotes the ener-
gy separation of the ith valence band to the ith conduction band. We use the same
notation of Ei i for the exciton [229], too, for simplicity. The exciton with the largest
energy dispersion shows a parabolic energy dispersion relation which reflects the
free particle behavior of an exciton with a mass. For the A 1 exciton, S D 0 and
S D 1 are degenerate, since the exchange interaction vanishes by symmetry. Fig-
ure 10.5d gives the excitation energy levels for K D 0 E11(Aν) states. We note that
for the spin S D 0 states, E11(A0

2) has a somewhat larger energy than E11(A0
1). This

13) It might be confusing that C (�) corresponds to antisymmetric (symmetric) wavefunctions. But
it is a correct statement.
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Figure 10.5 The excitation energy disper-
sions for (a) E11(A2) (S D 0) and E22(A2)
(S D 0), (b) E11(A1) (S D 0, 1) and E22(A1)
(S D 0, 1), and (c) E11(A2) (S D 1) and

E22(A2) (S D 1) excitons for a (6,5) SWNT.
The excitation energy levels for K D 0 exci-
tons are also shown in (d) [186].

means that the bright A 2 exciton is not the lowest energy state [341]. The Coulomb
energy Kd(k0, �kI ˙, K ), which is the energy for an inter-valley scattering process,
thus has a one order of magnitude smaller energy than the corresponding energy
for an intravalley scattering process, K d (k0, kI ˙, K ). Therefore, the energy differ-
ence between E11(A0

2) and E11(A0
1) (for S D 0) is predicted to be quite small (about

12meV in Figure 10.5d). Moreover, in Figure 10.5d the triplet E11(A0
2) state lies

about 35meV below the singlet E11(A0
2) state. The energy difference between the

triplet and singlet E11(A 2) states is determined by the exchange Coulomb interac-
tion, K x(k0, kI K ) (see Eq. (10.11)), which is about one order of magnitude smaller
than the direct Coulomb interaction Kd(k0, kI K ) in SWNTs. The energy difference
between the singlet E11(A0

2) state and the E11(A0
1) state, and the energy difference

between the singlet and triplet E11(A0
2) states are consistent for different calcula-

tions [320, 325].
Hereafter, we will mainly discuss the singlet bright exciton Ei i(A0

2) states with
K D 0. In Figure 10.6 we show the exciton wavefunctions along the nanotube axis
of an (8,0) SWNT for several of the E22(Aν

2) states with lower excitation energies
and with ν D 0, 1, and 2, namely (a) E22(A0

2), (b) E22(A1
2) and (c) E22(A2

2) [186]. Be-
cause of the orthogonalization of the wavefunctions, we can see wavefunctions with
0, 1, 2 nodes in Figure 10.6a–c, respectively. The localization of the wavefunction
for E22(A0

2) for the (8,0) SWNT is around 1 nm at full width half maximum inten-
sity. The localization length increases with increasing energy and with increasing
nanotube diameter, reflecting the dimensional change from 1D to 2D.
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Figure 10.6 The magnitude of the exciton wavefunctions along
the nanotube axis of an (8,0) SWNT for the states: (a) E22(A0

2),
(b) E22(A1

2) and (c) E22(A2
2) [186].

In a SWNT or in graphite, there are two sublattices, A and B. For E22(A0
2) and

E22(A2
2), the wavefunctions have a similar amplitude for the A and B sublattices,

while for E22(A1
2), the amplitude of the wavefunction of the electron and hole oc-

cupies one of the two sublattice exclusively. The latter behavior of the wavefunc-
tion (that the amplitude of the wavefunction can exist only on one sublattice) can
be seen for localized edge states. Thus we expect an interesting behavior to occur
when the exciton becomes localized at the end of a SWNT.

The E22(A0
2) and E22(A2

2) excitons are symmetric and the E22(A1
2) exciton is anti-

symmetric upon reflection about the z axis. It then follows that the E22(A0
2) and

E22(A2
2) excitons are bright and the E22(A1

2) exciton is dark with respect to lin-
early polarized light parallel to the z axis.14) In the two-photon absorption ex-
periments, the E22(A2

2) exciton becomes bright [339]. For an achiral (armchair or
zigzag) SWNT, exciton wavefunctions are either even or odd functions of z because
of the inversion center in these SWNTs. Thus, we use A 2u or A 2g to label E22(A1

2),
or E22(A0

2) (and E22(A2
2)), respectively, for achiral SWNTs [218].

The localized exciton wavefunction is constructed by mixing many k states
in which the mixing coefficients are determined by the Bethe–Salpeter equa-
tion (Eq. (10.9)). We found above that the envelope functions for the three wave
functions given in Figure 10.6 can, respectively, be fitted to a Gaussian (e�C z2

,
ze�C z2

, (Az2 � B)e�C z2
). The mixing coefficients (Fourier transformation) are

also localized in k space around one particle k points for a given Ei i , and this
localization is described by the wavefunction full-width at half maximum magni-
tude `k .

14) An important fact in discussing this statement is that the A2 wavefunction itself has a minus sign
under a C2 rotation or z reflection. Thus an even function of z becomes a dipole-allowed exciton
state.
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Figure 10.7 The half width `k of the wave
functions in 1D k space for the E11(A0

2) and
E22(A0

2) states. The cutting line spacing 2/dt
is shown by the solid line for comparison.
Open and filled circles, respectively, denote SI

and SII SWNTs, where SI and SII denote the
semiconductor tube type in SWNTs. Integers
denote the 2nCm values for individual SWNT
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In Figure 10.7, we plot `k in the 1D k space for the bright exciton states, E11(A0
2)

and E22(A0
2), and for all SWNTs with diameters (dt) in the range of 0.5 nm < dt <

1.6 nm. In Figure 10.7, we also plot the cutting line spacing 2/dt by the solid line.
An important message here is that `k is smaller than 2/dt for all SWNTs. This re-
sult indicates that one cutting line is sufficient to describe individual Ei i(A) states.
Consequently, the difficulty in calculating the Bethe–Salpeter equation is reduced
significantly for the case of carbon nanotubes. For the higher energy states, Ei i(Aν

2)
states with ν D 1, 2, � � � , have `k values that are smaller than that for Ei i(A0

2), since
the wavefunctions for Ei i(Aν

2) are more delocalized in real space. Generally, we can
say that the ith cutting line is sufficient to describe the Ei i(A), Ei i(E) and Ei i(E�)
states15) and that the ith and (i C 1)th cutting lines are sufficient to describe the
Ei iC1(A) and EiC1i(A) states. Since metallic SWNTs (M-SWNTs) have smaller `k

values than semiconducting SWNTs (S-SWNTs), the above conclusion is also valid
for M-SWNTs.

The assumption, that we consider only one cutting line, is valid so long as the
range of the Coulomb interaction is larger than the diameter dt of a SWNT. For
a typical nanotube diameter (0.5 < dt < 2.0 nm), the Coulomb interaction is suf-
ficiently strong for all carbon atoms along the circumferential direction, so that
the wavefunction for the Ei i exciton becomes constant around the circumferential
direction, which is the physical reason why we need only one cutting line. When
the diameter is sufficiently large compared to the range of the Coulomb interac-
tion (more than 5 nm), the exciton wavefunction is no longer constant around the
circumferential direction (two-dimensional exciton), and then we need to use the
kernel from neighboring cutting lines in the Bethe–Salpeter equation.

It is important to mention that for the wavefunction for the Ei iC1(A) exciton,
which is excited by perpendicularly polarized light (see Section 9.2.3), we must
consider two cutting lines (i and i C 1) for the wavefunction (see Figure 10.4),

15) For the E exciton, the ˙i states are considered for the electron and the hole.
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because of the dipole selection rule. In fact, the calculated exciton has an anisotropy
around the circumferential direction in the sense that the electron and hole exist
with respect to each other at opposite sides of the nanotube. Since the induced
depolarization field [238] cancels the optical field, there is a significant upshift of
the energy position of Ei iC1(A) relative to the Ei i(A) excitonic transition [238, 315].
This upshift in energy has been observed in PL experiments [311, 312] and can also
be observed in maps of RRS spectra.

10.4.4
Family Patterns in Exciton Photophysics

Based on resonance Raman spectroscopy studies, it is found that the optical transi-
tion energies Ei i when plotted against tube diameter exhibit family patterns related
to the 2n C m D constant families (see Section 9.3). These family patterns are also
observed in two-dimensional photoluminescence (PL) plots [180]. The reason why
we get family patterns is that (n, m) SWNTs within the same 2n C m Dconstant
family have diameters similar to one another and that the Ei i values are generally
inversely proportional to the nanotube diameter. The small change of the Ei i val-
ues within the same family is due to the trigonal warping effect of the electronic
dispersion around the K (and K 0) point [229]. The trigonal warping effect and the
θ -dependent lattice distorion gives a chirality dependence both for the one-parti-
cle energy position at a van Hove singular k point, and the corresponding effective
mass. The change of the effective mass for the various SWNTs belonging to the
same (2n C m) family is important for determining the exciton binding energy and
self-energy for each SWNT.

The energy spread in a family becomes large as the diameter decreases and be-
comes less than 1 nm. In this case, the simple tight-binding calculation in which
we consider only π electrons is not sufficient to reproduce the Ei i energy positions.
To address this problem, the extended tight-binding (ETB) calculation has been de-
veloped (Section 10.1) in which the curvature effect is taken into account by the
mixing of the π orbitals with the σ and 2s orbitals of carbon. When we then add
the density functional form of the many-body effect to the ETB results, we can re-
produce nicely the experimental results for the dependence of the Ei i on diameter
and chiral angle [299, 342].

In Figure 10.8 we plot the exciton Kataura plot for the E S
11(A0

2) and E S
22(A0

2)
states for S-SWNTs and the E M

11 (A0
2) states for M-SWNTs. Open and filled cir-

cles are for Type I and II (SI and SII) SWNTs, respectively, and crossed circles
are for M-SWNTs. SI and SII SWNTs are defined by mod(2n C m , 3) D 1 and
mod(2n C m , 3) D 2, respectively [336], where mod is the modulus function of
integers. The Ei i values are the sum of the ETB one-particle energies, the self-
energy Σ and the exciton binding energy Ebd. We note that a large family spread
appears in Figure 10.8, which is consistent with both calculations [182, 299] and
experiments [180, 183].

In Figure 10.9, we plot separately each contribution to the ETB (extended tight-
binding) transition energy E11, the self-energy Σ of the quasi-particle, and the ex-
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Figure 10.8 The excitation energy Kataura plot based on the extended tight-binding model for
E S

11(A0
2) and E S
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2) for S-SWNTs and E M
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2) for M-SWNTs. Open and filled circles are for SI

and SII SWNTs, respectively, and crossed circles are for M-SWNTs [186].
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Σ � Ebd based on the ETB model for E11(A0
2) bright exciton states. Open and filled circles are,

respectively, for SI and SII SWNTs. The dashed line is calculated by Eq. (10.18) with p D 1 [186].

citon binding energy Ebd. We also plot Σ � Ebd in the same figure [186]. It is seen
that although both Σ and Ebd tend to increase the family spread, the two terms
almost cancel each other regarding the family spread. This near cancellation leads
to a weak chirality dependence, showing that the net energy correction (Σ � Ebd)
to the single-particle energy depends predominantly on the SWNT diameter. Thus,
we conclude that the large family spread that is observed in E11 originates predom-
inantly from the trigonal warping effect and the θ -dependent lattice distortion in
the single-particle spectra. It is known that the logarithmic correction due to the ef-
fect of the Coulomb interaction on the dispersion of 2D graphite is not canceled by
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the exciton binding energy and this effect leads to a logarithmic energy correction
E log given by [181, 299]

E log D 0.55(2p/3dt) log[3/(2p/3dt)] , (10.18)

which is the rationale for the logarithmic term is the empirical Eq. (9.10). In Fig-
ure 10.9, we plot E log with p D 1 as a dashed line, thus showing that the energy
correction Σ � Ebd follows this logarithmic behavior well. This good agreement for
Σ � Ebd explains why the ETB model works well in considering excitonic and other
many-body effects occurring in SWNT photophysics.

10.5
Exciton Size Effect: the Importance of Dielectric Screening

The Ei i values are now understood in terms of the bright exciton energy within
the framework of a tight-binding calculation which includes curvature optimiza-
tion [182, 329] and many-body effects [37–39, 186, 343]. The assignments of Ei i

for SWNTs over a large region of both diameter (0.7 < dt < 3.8 nm) and Ei i (1.2–
2.7 eV) values and for a variety of surrounding materials are now available [20, 317],
thus making it possible to accurately determine the effect of the general dielectric
constant � on Ei i . By “general” we mean that � comprises the screening from both
the tube and from the environment. A dt-dependent effective � value for the ex-
citon calculation is needed to reproduce the experimental Ei i values consistently.
This dependence is important for the physics of quasi and truly one-dimensional
materials generally and can be used in interpreting optical experiments and envi-
ronment effects for such materials.

10.5.1
Coulomb Interaction by the 2 s and σ Electrons

Figure 10.10 shows a map of experimental Ei i values (black dots) [189, 317] from
a SWNT sample grown by the water-assisted (“super-growth”) chemical vapor de-
position method [33, 281]. The resulting data for the Ei i transition energies are
plotted as a function of the radial breathing mode frequencies ωRBM, as obtained
by resonance Raman spectroscopy (RRS) [189, 317, 318]. In Figure 10.10, the exper-
imental values of Ei i vs. ωRBM for the “super-growth” sample E

exp
i i are compared

with the calculated bright exciton energies E cal
i i (open circles and stars), obtained

with the dielectric screening constant � D 1. Although E cal
i i includes SWNT cur-

vature and many-body effects [186], clearly the E
exp
i i values are red shifted when

compared with theory, and the red shift depends on both ωRBM (i. e., on dt) and on
the optical energy levels (i in Ei i).

The Ei i values can be renormalized in the calculation by explicitly considering
the dielectric constant � in the Coulomb potential energy given by Eq. (10.14) [344].
Here, � represents the screening of the e–h (electron–hole) pair by core (1s) and σ
electrons (�tube) and by the surrounding materials (�env), while ε(q) explicitly gives
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Figure 10.10 Black dots show E exp
i i vs. ωRBM

results obtained from resonance Raman spec-
tra taken from a “super-growth” SWNT sam-
ple [189, 317]. The black open circles (semi-
conducting; S-SWNTs) and the dark gray stars
(metallic; M-SWNTs) give E cal

i i calculated for
the bright exciton with dielectric constant
� D 1 [186]. Along the x axis, E cal

i i are translat-

ed using the relation ωRBM D 227/dt [189].
Due to limited computer time availability,
only Ei i for tubes with dt < 2.5 nm (i. e.,
ωRBM > 91 cm�1) have been calculated.
Transition energies E S

i i (i D 1 to 5) denote
semiconducting SWNTs and E M

ii (i D 1, 2)
denote metallic SWNTs [190].

the polarization function for π-electrons calculated within the random phase ap-
proximation (RPA) [186, 324, 345]. To fully account for the observed energy-depen-
dent Ei i redshift, the total � values are fitted to minimize E

exp
i i � E cal

i i . The bullets
in Figure 10.11 show the fitted � values as a function of p/dt, which reproduce
each experimental Ei i value for the assigned (n, m) SWNTs for the “super-growth”
SWNT sample. The stars stand for a different SWNT sample, named “alcohol-
assisted” SWNTs [346], and these differences are due to different environmental
screening (�env), as discussed later in Section 10.5.2. The integer p corresponds to
the distance ratio of the cutting lines from the K point, where p D 1, 2, 3, 4 and 5
are for E S

11, E S
22, E M

11 , E S
33, and E S

44, respectively [20]. Consideration of the p/dt ra-
tio allows us to compare the � values of SWNTs with different dt and different Ei i

using the same plot. As seen in Figure 10.11, the � values increase with increasing
p/dt for different Ei i values. The � values for E S

33 and E S
44 (Figure 10.11b) appear

over a smaller � region than those for E S
11 and E S

22 (Figure 10.11a).
The data points in Figure 10.11 can be fit with the empirical relation [190]

� D C�

�
p

dt

�α

, (10.19)

where the exponent α D 1.7 was found to work for all E
exp
i i , but different C� param-

eters were needed for different samples to reflect the differences in their environ-
mental conditions [190]. For E S

11, E S
22 and E M

11 , the value C� D 0.75 was obtained
for the “super-growth” SWNTs and C� D 1.02 for the “alcohol-assisted” SWNTs
(dashed and dotted curves in Figure 10.11a, respectively), and these differences
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(a) (b)

Figure 10.11 The calculated � values,
which are fitted to the experimental Ei i val-
ues from the “super-growth” (bullets) [317]
and “alcohol-assisted” (stars) [287] sam-
ples. (a) E S

22 (black) and E M
11 (dark gray).

The dashed and dotted curves are given by
Eq. (10.19) with C� D 0.75 and 1.02, re-
spectively. (b) E S

33 (black) and E S
44 (dark gray).

The dashed curves are for Eq. (10.19) with
C� D 0.49 [190].

can be understood by �env. The E S
33 and E S

44 are fitted using C� D 0.49 for both
samples, as shown by the dashed line in Figure 10.11b.

Qualitatively, the origin of the diameter dependence of the dielectric constant
presented by Eq. (10.19) consists of: (1) the exciton size and (2) the amount of elec-
tric field “feeling” the dielectric constant of the surrounding material. These two
factors are connected and the development of an electromagnetic model is needed
to fully rationalize this equation. Interestingly, the similarity between the � values
found for E S

22 and E M
11 shows that the difference between metallic and semicon-

ducting tubes is satisfactorily taken into account by using the RPA in calculating
ε(q) [343]. Also interesting is the different � behavior that is observed for higher
energy levels (p > 3), where C� is smaller than for Ei i with p � 3, and in this
regime � is independent of the sample environment. Two pictures can be given:
(1) the more localized exciton wavefunction (a larger exciton binding energy) for
E S

33 and E S
44 compared with E M

11 and E S
22, leads to smaller � values and a lack of a

�env dependence of the wavefunctions for the E S
33 and E S

44 excitons; (2) the stronger
tube screening (�tube) leads to an independence regarding �env and, consequently,
leads to a smaller effective �.

10.5.2
The Effect of the Environmental Dielectric Constant �env Term

Figure 10.12 shows a comparison between the E
exp
i i from the “super-growth” SWNT

sample (bullets) [317] and from the “alcohol-assisted” SWNT samples (open cir-
cles) [287]. From Figure 10.12, we see that besides the changes in ωRBM, as dis-
cussed in Section 9.1.2, the E

exp
i i values from the “alcohol-assisted” SWNTs are gen-

erally red shifted with respect to those from the “super-growth” SWNTs. Assuming
that �tube does not change from sample to sample for a particular type of SWNT
sample, since the structure of a given (n, m) tube should be the same, these results
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Figure 10.12 E exp
i i vs. ωRBM results obtained for the “super-growth” (bullets) and the “alcohol

assisted” (open circles) SWNT samples [190].

indicate that the “alcohol-assisted” SWNTs are surrounded by a larger �env value,
than the “super growth” sample, thus increasing the effective � and decreasing
Ei i [190].

Looking at Figure 10.11 we can observe the difference in the � values result-
ing from fitting the E

exp
i i to the “super-growth” (bullets) in comparison to “alcohol-

assisted” (stars) SWNT samples. For E S
22 and E M

11 (Figure 10.11a), we see a clear
difference for � up to p D 3 when comparing the two samples. However, for E S

33
and E S

44 (Figure 10.11b), no difference in � between the two samples can be seen.
This means that the electric field of the E S

33 and E S
44 excitons does not extend much

outside the SWNT volume, in contrast to the E S
22 and E M

11 excitons for which the
�env effect is significant. Since the effect of �env is relatively small for energies above
E M

11 , it is still possible to assign the (n, m) values from E S
33 and E S

44 even if the di-
electric constant of the environment is not known, and even though the E S

33 and
E S

44 values are seen within a large density of dots in the Kataura plot.

10.5.3
Further Theoretical Considerations about Screening

The dielectric constant for the materials surrounding the SWNTs cannot be directly
used in calculations or in interpreting data, since the electric field exists not only in
the surrounding materials but also in the SWNTs themselves. In the calculations
shown in Figure 10.13, the dielectric constant � is treated as a parameter which
is used in the Ohno potential and ∆E S

i i � ∆E S
i i (� D 2) � ∆E S

i i (� D 3) > 0
is plotted as a function of 1/dt. In this figure, we can see the (2n C m) family
pattern for type I (S1, mod(2n C m , 3) D 1) and type II (S2, mod(2n C m , 3) D 2)
semiconducting SWNTs for ∆E S

11 and ∆E S
22. This predicted behavior is consistent

with recent experimental results [347, 348].
In Figure 10.14, we plot E S

i i for a (6,5) SWNT as a function of (a) 1/� or (b) �

with (solid lines) and without (dashed lines) including the electron screening ef-
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Figure 10.13 Calculated shifts in the E S
11 and E S

22 transition energies due to changing � from 3
to 2. Open and filled circles are, respectively, for S1 and S2 type semiconducting SWNTs [186].

fect for the E S
11 and E S

22 states for a (6,5) SWNT. It is seen that without considering
the electron screening effect, E S

i i is approximately linearly dependent on 1/�. The
screening effect will bend the line, reducing the energy shift, especially for the
small � region, for example, � < 2. The bending effect arises from the fact that the
screening effect by the environment generally provides a dielectric constant, inde-
pendent of the wave vector q, while the effect of the dielectric function �(0, q) on
the E S

i i transition energies resulting from the electron screening effect is a function
of q [319]. In Figure 10.14a, we also show the exciton binding energy vs. 1/�. It is
seen that for both E11 and E22 states, the binding energy approximately scales as
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Figure 10.14 The transition energy depen-
dence on � for states E S

11 and E S
22 for a (6,5)

SWNT. Solid and dashed lines, respectively, do
or do not consider the π electron screening
effect. (a) Excitation energy vs. 1/�. The three

curves below E11 give the 1/�-dependent exci-
ton binding energies for E S

22 and E S
11, and the

function E D (1/�)1.4 from top to bottom,
respectively. (b) Excitation energy vs. � for E S

11
and E S

22 [186].
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(1/�)1.4. This scaling parameter α can be used for estimating the exciton binding
energy Ebd as:

Ebd / d α�2
t mα�1��α , (10.20)

where m is the effective mass of the electron or hole [324]. The concept of scaling
is useful for explaining the observed family patterns and diameter dependence of
the Ei i . The diameter dependence on � is relevant to this scaling rule, which is still
not well understood [219].

10.6
Summary

In this chapter we have discussed the exciton science in carbon nanotubes. This
discussion starts after introducing the importance of σ � π hybridization in the
curved graphene sheet of carbon nanotubes. Excitons are important in semicon-
ductors generally, but they are especially important in nanomaterials, where the
spatial confinement enhances the overlap between optically excited electrons and
holes, thus enhancing the exciton binding energy. We here discuss the physics
of exciton levels, wave vectors, spin, symmetry aspects, selection rules, energies,
wavefunctions, that is, all the aspects important for achieving an accurate descrip-
tion of the optical levels in nanotubes. However, to achieve experimental accuracy,
a treatment of the dielectric screening also has to be considered.

The diameter-dependent dielectric constants following Eq. (10.19) reproduce the
measured Ei i values well for a large region of energy (1.2–2.7 eV) and tube diameter
(0.7–3.8 nm). The present treatment for � is sufficiently accurate for assigning both
the 2n C m family numbers and the (n, m) SWNTs belonging to each family for
different SWNT samples. All the observed Ei i vs. (n, m) values are now theoretical-
ly described within their experimental precision, considering use of the extended
tight-binding model along with many-body corrections plus a diameter-dependent
dielectric constant � (Eq. (10.19)). The empirical Eq. (10.19) is not yet fully under-
stood, and theoretical modeling considering the role of the exciton size is still need-
ed. The results presented here are also consistent with the empirical methodology
of Eq. (9.10) [287], and therefore provide justification for this approach.

Problems

[10-1] When the planar sp2 bond is bent in the circumferential direction by an
angle θ which is on the order of θ D 0.1 rad, we expect a large curvature
effect. What is the corresponding tube diameter?

[10-2] The curvature effect can be understood by the Slater–Koster method in
which the transfer matrix element for π–π orbitals is mixed with σ–σ or-
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bitals. Show how the matrix element is modified as a function of θ in Prob-
lem 10-1.

[10-3] Applying the wavefunction of Eq. (10.2) to Eq. (10.1), obtain the differential
equations for g and f.

[10-4] Solve the one-dimensional hydrogen Schrödinger equation. In particular
show that the lowest energy is minus infinity. Obtain the corresponding
wavefunction.

[10-5] Solve the two-dimensional hydrogen Schrödinger equation. In this case, we
have an angular momentum within a plane. Obtain the energies.

[10-6] When the potential is spherical in three dimensions, the potential is given
as a function of r. In this case, show that the angular part of the wavefunc-
tion for the Hamiltonian with a spherical potential is given by the spherical
harmonics, Yl m(θ , ').

[10-7] Obtain the differential equation on r for a hydrogen atom with angular mo-
mentum `, and solve this equation for the bound states of the hydrogen
atom.

[10-8] Explain what are the direct and indirect energy gaps by showing some ex-
ample in the case of semiconductors. In the case of an indirect energy gap,
explain that the exciton cannot only emit a photon.

[10-9] When electron–electron interaction U exists between two electrons, explain
that the interaction modifies electronic states mainly near the Fermi energy.
In particular, why are the electrons at the bottom of the energy band not
affected much by the Coulomb interaction. Consider the two cases that (1)
U 	 W (W: energy band width), and (2) W 	 U .

[10-10] Explain qualitatively what you expect for the energy dispersion E(k), if elec-
trons have a finite lifetime in the presence of some interaction.

[10-11] When the wavefunction is spatially localized, the wavefunction is expressed
by a linear combination of Bloch wavefunctions with many k values. In or-
der to understand this, calculate the Fourier transform of a Gaussian func-
tion f (x ) D exp(�x2/a2).

[10-12] The spin functions of an electron with sz D 1/2 and �1/2 are denoted by α
and �, respectively. When we define the spin of a hole by sz D �1/2 and
1/2, respectively, for the states which are originally occupied by an electron
with sz D 1/2 and �1/2 and denoted by �h and αh, obtain the total spin
function of a singlet (S D 0) and a triplet (S D 1) exciton.

[10-13] When we consider the electric-dipole transition which does not depend on
spin, explain that the S D 1, Sz D �1, 0, 1 exciton states are all dark exciton
states.
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[10-14] In the presence of a Coulomb interaction, an energy difference between
the S D 1 and S D 0 states of two electrons appears, which is known as
the exchange energy. Explain the physical meaning of the exchange energy
in terms of the Pauli exclusion principle, the Hartree–Fock approximation,
and the spin of two electrons. Why are the S D 1 states lower in energy
than the S D 0 states?

[10-15] Explain the reason why the S D 0 exciton does not relax quickly to the lower
energy S D 1 states.

[10-16] Derive Eq. (10.8) for achiral SWNTs and draw schematics similar to those
of Figure 10.3 for both zigzag and armchair tubes.

[10-17] Illustrate figures similar to Figure 10.4 for the E11 exciton levels for A 1,
A 2 and E symmetries. What happens for E22 or E12 excitons? Note that
two configurations are coupled when explaining A 1 and A 2 excitons (see
Eq. (10.17)).

[10-18] Why does the plus sign in Eq. (10.17) correspond to the antisymmetric
A 2 exciton? Discuss how the wavefunctions of the valence and conduction
bands change by a C2 rotation.

[10-19] Compare Eq. (10.18) with the logarithmic part of Eq. (9.10) and discuss the
results.

[10-20] Show that the effective mass for the E S
33 or E S

44 exciton is larger than that for
E S

11 or E S
22.

[10-21] By considering the 1s energy of a hydrogen atom, show that the exciton
binding energy becomes large when the effective mass of the electron and
hole is large. From this, show that the exciton binding energy of the E S

33 or
E S

44 exciton is larger than that for the E S
11 or E S

22 exciton.

[10-22] When the dielectric constant of the surrounding material �env is large,
which exciton feels �env more, E S

11 or E S
33? Explain by illustrating the electric

field for these excitons.

[10-23] In a 2n C m D const. family, which SWNTs have a larger effective mass,
near armchair SWNTs or near zigzag SWNTs?

[10-24] Using the fact that the distance of the K point from the Γ point in the
direction perpendicular to the cutting line is K Γ D (2n C m)/3, illustrate
the cutting lines for the E S

11 to E S
44 transitions for S1 and S2 SWNTs in the

two-dimensional Brillouin zone.

[10-25] For E S
11, which semiconducting type has a larger effective mass, S1 or S2?

How about for E S
22?




