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Raman spectra-based structural classification
analysis of quinoidal and derived molecular
systems†

Arthur P. Pena, *a Renata G. Almeida,b João Luiz Campos, a

Hélio F. Dos Santos, c Eufrânio N. da Silva Júnior b and Ado Jorio *a

This work reports a classification analysis method based on the vibrational Raman spectra of 38

quinones and related structures, spectrally ordering and classifying the compounds. The molecular

systems are relevant for chemical and biological processes, with applications in pharmacology,

toxicology and medicine. The classification strategy uses a combination of principal component analysis

with K-means clustering methods. Both theoretical simulations and experimental data are analysed, thus

establishing their spectral characteristics, as related to their chemical structures and properties. The

protocol introduced here should be broadly applicable in other molecular and solid state systems.

1 Introduction

Quinones are organic aromatic compounds that can be found
in nature or synthesized. In nature, quinones can be found in
chemical and biological processes, such as the respiratory
chain and photosynthesis.1–4 Structurally, in the most simple
form, quinones show two carbonyl residues, separated by vinyl
groups within a ring (Fig. 1, left (a)) or adjacent to each other
(Fig. 1 (a), right). Quinone compounds can sustain benzene
(benzoquinone), naphthalene (naphthoquinone), anthracene
(anthraquinone) ring structures, and similar ones.5,6 Quinones
can also be used as a precursor for the synthesis of several
derived molecular systems, such as phenazines. Phenazines are
organic, heterocyclic, nitrogenous aromatic compounds, also
called dibenzo[b,e]pyrazine.7 Fig. 1(b) shows the most basic
forms of a phenazine. The phenazines analysed in this work
were synthesized from quinones.8 It is possible to find these
quinones and phenazines grouped with many other structures
forming more complex molecules, as described in this work.

In the last few decades the study of the electronic9 and
chemical10 properties of quinones has led to interesting results,
especially in their applications in pharmacology, toxicology and
medicine1,11,12 with remarkably known antitumor,13–15

antimalarial,16,17 trypanocidal18–20 and leishmanicidal21 potential

activity. Phenazines have also been widely explored in biology,7,22

where we can mention Barry et al.’s23 investigations of their
potential against tuberculosis and Cezairliyan et al.’s24 identification
of phenazines being capable of killing nematodes. Most recently,
Jardim et al.8 reported on the synthesis of specific quinone and
phenazine compounds for the development of new drugs against
tuberculosis.

The vibrational modes of the p-benzoquinone molecule were
firstly reported by Stammreich and Forneris, followed by the
investigation of the polarization dependence of its Raman
spectrum.25 Durnick and Wait26 published the investigation of the
fundamental Raman active vibrations in phenazines using a He–Ne
laser, along with some infrared active mode investigation. Stenman
and Räsänen27 investigated the symmetry as well as the Raman
active modes of solid state 1,4-naphthoquinone. Delarmelina et al.28

published a complete theoretical and experimental investigation of
lapachol, a- and b-lapachone Raman and infrared spectra. In
addition, studies using time-resolved resonance Raman
spectroscopy,29 characterization via resonance Raman spectroscopy
of quinone co-factors in solution,30,31 in enzymatic catalysis,32 and
surface-enhanced Raman spectroscopy (SERS) investigation33 can
be found in the literature.

In this work we analyse the Raman spectra (both theoreti-
cally and experimentally) of 38 quinones and derived struc-
tures, some, to our knowledge, never characterized before using
Raman spectroscopy. The relevance of comparing both simu-
lated and experimental data in this analysis is that, when it is
established that these data properly correlate, one can perform
the analysis and predictions according to the information
provided by the simulated data, avoiding the influence of
experimental artifacts.
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Considering the complex vibrational structure, we make use
of Principal Component Analysis (PCA) and K-means
clustering.34–38 These methods have been widely used in the
last few decades in materials science, biology and chemistry to
improve the extraction of information from data analysis in
broader, automatic, faster, and more efficient ways. The com-
plexity of the data we analysed here is due to the number of
analyzed compounds (38) and the number of vibrational
Raman active modes, which goes up to 207 modes for the most
complex analysed structure.

Therefore, here we bring an in depth study and the proposal
of a classification analysis method using the combination of
PCA with K-means clustering statistical learning methods,
applied to the vibrational spectra of these 38 quinones and
related structures from Raman spectroscopy. The analysis was
initially performed for the simulation data, which are free from
experimental artefacts, and further compared to related experi-
mental data, showing compatible results. Our contribution is,
therefore, twofold: (i) we present new data and analysis related
to these relevant organic aromatic compounds, the quinones
and phenazines; and (ii) we propose a methodology for Raman
spectral analysis that might contribute to big data protocols
such as the development of genome initiative of materials.39

2 Methodology
2.1 Raman spectra simulation

Molecular geometries were optimized via Density Functional
Theory (DFT) using the m062x functional and 6-31+G(2d,p)
basis-set. The Raman spectra were calculated within the har-
monic approximation considering a single molecule for each
compound. For the Raman intensities IR

i :40–43

IR
i = C(n0 � ni)

4ni
�1Bi

�1Si, (1)

in which n0 is the laser excitation frequency, and ni and Si the
calculated frequency (in cm�1) and Raman scattering activity
(in ref. 4 amu�1) for each normal mode. C is a constant and
since we do not do any absolute intensity analysis, it was not
used here. Bi

40,41 is a temperature factor that accounts for the
contribution from excited vibrational modes and was set as 1.
The calculations were performed using Gaussian 09 44 software,
and the outputs were visualized in the GaussView45 software.

The structure optimization and vibrational analysis were
carried out in the gas phase. In general, the calculated mole-
cules are rigid; however, for those with a flexible side chain, the
conformation was defined by rotating the side chain in order to
minimize steric contacts.

2.2 Sample description

A table with the names, chemical formulae, structures and the
references or the means by which the 38 compounds (see
Table S1) were obtained are shown in the ESI,† followed by pictures
of their morphology shown in Fig. S1 (ESI†), as obtained using a
microscope utilized for Raman spectroscopy experiments. The
compounds were in a solid, microscopic, powder-like state, varying
between crystalline and amorphous aspects (in some cases, both
aspects could be found in the same sample).

2.3 Raman spectra measurements

Raman spectra were obtained using a WiTec Alpha 300 RA
confocal Raman spectroscope with a 633 nm laser as the
excitation source. The 633 nm He–Ne laser is linearly polarized,
and both the laser-to-microscope and microscope-to-
spectrometer coupling are done with optical fibers. The optics
(including spectrometer gratings) are polarization dependent,
and the system configuration is chosen to maximize the optical
efficiency of the system.

The backscattered Raman signal was collected by a 10X/0.25
NA Zeiss EC Epiplan objective lens with an accumulation time
of 30 seconds, sent to a back-illuminated Charged-Coupled
Device (CCD), located after a 600 g mm�1, BLZ = 500 nm
grating. The laser power was adjusted to 4.0 mW as measured
at the sample location. In total, a set of 38 compounds were
measured (see Fig. S1 in the ESI†), including quinones and
derived compounds. Since these molecules have aromatic rings
in their structures, it was possible to observe a wide line of
luminescence in the spectra of most of the compounds, gen-
erating a baseline in the Raman spectrum, which was removed
in the data treatment with the Project FIVE 5.0 WiTec software.

2.4 Statistical analysis

We applied the statistical learning methods based on Principal
Component Analysis (PCA) combined with K-means clustering
using the Scikit–Learn library (version 0.22.1),46 from Python
programming language, in both simulated and experimental
Raman spectra of the compounds. For the theoretical simula-
tion, the PCA considered a 38 � 3800 dimensional matrix,
where 38 is the number of compounds and 3800 is the number
of spectral Raman data, one point per cm�1. For the experi-
mental data, similarly we utilized a 38 � 977 dimensional
matrix, where 977 is the number of experimental spectral
Raman data one point per 2.1 cm�1 on average within the
40–1800 cm�1 spectral range. We checked that the different
pitches utilized in the theoretical and experimental data do not
interfere in the PCA results. PCA offers a way to evaluate the
differences between the compounds involved taking as infor-
mation only the variance in the input Raman data. The
K-means clustering application enlightens the investigation
about the grouping of similar spectral structures calculating
the cluster centroids given in the PCA plot.

When running the PCA with all 38 spectra, we find sample
38 to be too far away from all the others. Therefore, we
considered sample 38 to be most different and executed PCA

Fig. 1 Most basic forms of (a) quinone [para-benzoquinone (left) and
ortho-benzoquinone (right)] and (b) phenazine chemical structures.
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again excluding sample 38. The spectral ordering is then
calculated considering the three first principal components,
weighted by their respective variance, as follows:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PC1var x37 � xj

� �2þPC2var y37 � yj
� �2þPC3var z37 � zj

� �2q
;

J ¼ 1; 2; 3; . . . ; 36;

(2)

where x stands for the PC1 axis, y for the PC2 axis, z for the PC3
axis, and j stands for each of the samples in decreasing order,
from 1 to 36, all calculated with respect to the most distant
sample in this case, which is sample 37.

3 Results and discussion
3.1 Spectral ordering

Fig. 2 shows the Raman spectra of the 38 compounds, both (a)
the simulated and (b) the experimental data in a heat map (see
Fig. S1 (ESI†) for each experimental datum separately). The
spectra are ordered, from bottom to top, according to increased
spectral complexity, as defined by the PCA ordering. Fig. 3(a)
plots the PCA compound ordering of the simulated versus the
experimental data, showing that the simulated data are a
considerably consistent representation of the experimental
data, so that analyses and predictions can be made here
according to the information provided by the simulated data.
The relevance of polarization configuration dependence is
shown in Fig. 3(b), where the polarization scattering geometries
of samples 1, 4, 5 and 24, which are samples with macroscopic
crystalline aspect, were modified (see the caption).

To order the spectra according to spectral complexity, we
applied PCA for processing the similarity among the 38

simulated Raman spectra data, and the K-means clustering
classification method in order to partition the clusters observed
in the PCA. The first three principal components (PC1, PC2 and
PC3) accounting for 70.25% of the total spectral variance (PC1:
46.88%; PC2: 15.55%; and PC3: 7.82%) (see the ESI,† Fig. S2),
are shown in Fig. 4, each point representing one of the 37
spectra, collected according to the K-means clustering labeling
output. Compound (38) was not considered in this analysis due
to a significantly larger distance from the others, interfering in
the understanding of the plot by grouping too closely all the
other 37 data points. 38 appears further away along the same
PC-direction as compound 37. We found that 7 clusters (or 8,
including sample (38)) to better describe the similarities and
differences among the samples.

3.2 Spectral compositions at the first principal component

Fig. 5 shows the compositions of the Raman spectra of some
samples in PC1, using the methodology applied by Campos
et al.35 Except for compounds (37) and (38) that stand alone, the
composition plot for 38 being the predicted data obtained from
the parameterization from the PCA of other 37 spectra. From (a)
to (f) three examples are displayed, representing the center and
the two extremes of each cluster partition. For each partition,
the Raman spectra of the selected samples (above), and their
compositions in the PC1 plot (below) are shown. These com-
position plots give the weights of the Raman modes that mostly
contributed to the PC1 variance (and, consequently, the distan-
cing between the points in Fig. 4) individually for each sample.

Between the dashed red lines in each plot are the most
characteristic modes of quinoidal compounds (top)30–32 and
the analogue PCA composition regions with the most expres-
sive variations (bottom) between the samples: mostly, the C–H

Fig. 2 Heat scale plot for the Raman spectra of the 38 compounds. Each horizontal line corresponds to one Raman spectrum. (a) Simulated Raman
spectra in the region between 0 and 3800 cm�1. (b) Experimental Raman spectra in the region between 40 and 1800 cm�1. In (b), the region above
1800 cm�1 was removed due to the presence of Etalon fringes.
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bendings, CQC and/or CQO stretchings, and associated vibra-
tional modes. The main vibrational modes are labeled in (a)
and (c) in Fig. 5. From Fig. 5 it is possible to realize that the
general variance of the molecular vibrations within one cluster
partition is similar, changing most significantly from one
partition to another.

3.3 Ordering and clustering interpretation

Fig. 6 shows the molecular structures for the 38 quinoidal and
derived molecular systems, ordered according to the spectra-
based PCA. The more complex the chemical structure is, the
more complex will be the Raman spectrum (compare Fig. 2
and 6).

One important aspect defining the complexity of the Raman
spectra is the number of atoms N, which defines the number of
vibrational modes as 3N� 6. This aspect is explored in Fig. 3(c),

where we plotted the PCA-based theoretical spectral ordering
on the X axis, and on the Y axis the respective number of atoms
N. The data points follow roughly the diagonal (dashed line),
indicating the relevance of N (or the equivalent 3N � 6) on
defining the spectral complexity, as expected. However, the
data spread from the dashed line shows that the spectral PCA
depends not only on the number of vibrational modes, but also
on their specific Raman cross sections and frequencies, which
depend on the type of element and their location in the
molecular structure. For example, the spectral ordering within
the cluster of spectra from 1 to 9, or the clustering of larger
molecules, such as the ones related to spectra from 25 to 37,
cannot be explained by N.

The first cluster (purple box) is composed of the simplest
structures, namely, p-benzoquinones and p-naphthoquinones,
with single atoms or small substitutions (for instance Cl, Br, I,
OH, ONa or CH3) bonded to the main benzo- or naphthoqui-
none structure. In the second cluster (black box) are found the
first o-quinones of the whole set of samples ((12), (13), and
(14)), and the molecules have substitutions larger than the first
cluster, with aromatic ring substituents or a long open chain,
like for sample 16. The third (blue box) cluster shows a set of
quinones with longer and more complex patterns of substitu-
tions, being mainly characterized by the presence of sequential
aromatic substituents or by the presence of nitrogen atoms in
the substitutions. Notice that the samples being ‘‘ortho-
quinone’’ or ‘‘para-quinone’’ do not represent a determinant
factor for the ordering/classification considering their vibra-
tional characteristics. The fourth (gray box) and the fifth (yellow
box) clusters are characterized by phenazines with more
complex substituents. Open chains of aliphatic compounds
(alkanes) or aromatic sequences are found. These two clusters
are very close to each other in the PCA scores (see Fig. 4).
Compound (29), for example, which contains a triazole ring and
substituted phenyl as all compounds in group 5, falls into
group 4 according to the K-means analysis. From the mathe-
matical point of view, the ordering is dictated by PC1, which
has the highest variance (notice the PC1 ordering of samples 28
and 29, for example). From the physical-chemistry point of

Fig. 3 (a) Plot of the PCA compound ordering of the simulated versus experimental data. Compound numbers on top of each data point and cluster
colors indicating that the K-means partitioning is based on the simulated data analysis. The red dashed line represents a figurative complete match
between theoretical and experimental orderings. (b) Plot of the PCA compound ordering of the simulated versus experimental data for 901 rotation of the
samples. (c) Plot of the PCA-based theoretical spectral ordering versus the respective number of atoms N.

Fig. 4 PCA score plots relative to the theoretical spectra of compounds
(1) to (37). (a) Three-dimensional (3D) scatter plot of the three first Principal
Components (PCs) (70.25% of the total variance). The 2D plots are shown
in (b), (c) and (d) to give a better notion about the relative distances
between the compounds. The distances between points were calculated
as a weighted norm (see eqn (2)) relative to the most isolated (in this
case 37).
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view, the fifth cluster is characterized mainly by the presence of
a bromine atom in the aromatic chain substituents and by an
aromatic ring bonded in the triazole, and these structural
aspects should be responsible for the actually obtained

clustering. The sixth (green box) cluster is characterized by
the group of alkyne substituents, with the complexity defined
by the size of the structure that ends the bond of the aromatic
ring, the last one being a carbonyl bonded in the aromatic ring.

Fig. 5 (a)–(h): Raman spectra (top) and Raman spectra compositions in PC1 (bottom) of selected samples. Each curve stands for one sample, as
displayed in the legends. At the bottom plot of (a) and (c) the main vibrational modes with larger variance are indicated (‘‘bnd.’’ stands for bending, and
‘‘strch.’’ means stretching). Partition (h) (bottom) shows the prediction of the spectral composition to compound (38) using the PCA parameterized to the
other 37.
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Sample 37, characterized by the tosyl substituent, is by itself the
seventh (red box) cluster. The bodipy substituent characterizes
the eighth (brown box) cluster, with sample 38 being the most
complex structure, with the larger bonded structure, relatively
to the other molecules.

4 Conclusions

In this study, 38 samples of quinoidal compounds and derived
molecular systems were analysed via back scattering confocal
Raman spectroscopy and simulated via DFT and molecular
dynamics under harmonic approximation.

Our algorithm was able to compute the ordering of the
Raman spectra (and so the structures) based on the variance
in the regions related mostly to the C–H bending, and C–C and
CQX stretching (X = C, O or N) vibrational modes, with the
higher weight relative to the C–H bending and CQX stretching
from the quinoidal or phenazinic nuclei structures (C–H and
CQX modes) and substituents (C–H modes). The obtained
ordering was found to be relative not only to the size of the
chemical structure, but also to how the aromatic substitutions
are bonded to the main structure. There is exception for the
cases of the sixth-cluster (green box) samples (34), (35) and (36),
where there was the presence of an alkyne (CRC), which was
not present in any other sample. The analysis of the first
principal component (PC1) shows that the spectral distribution
in the PC1 weights is similar within the same K-means parti-
tion, changing significantly when compared to the spectral
composition distribution among clusters.

Therefore, we demonstrate that PCA and K-means clustering
Raman-based analysis can be utilized to structurally order and
classify molecular systems. Interestingly, we found in the
literature information that indicates a link between the cluster
divisions and biological/pharmacological aspects of some of
the samples, like the antifungal activity of samples (3), (4) and
(5)47 from the purple cluster in Fig. 4 and 6 and HIV-1 inhibi-
tion activity of samples (10), (11) and (15)48 (black cluster in
Fig. 4 and 6), indicating that the method utilized here might be
a way of grouping and/or selecting similar compounds not only
by its physical/spectroscopic characteristics, but also biological/
pharmacological applications.

Fig. 6 Schematic organization of how the molecules grouped together in
accordance with the PCA relative distances. The grouping boxes follow the
same color-code used in Fig. 3. The dashed brown box refers to the
compound number (38), disregarded in Fig. 4.

Fig. 7 Accumulative number of Raman papers in the literature. The data
are built based on the Scopus database using the following search
expressions in the ‘‘keyword, title, or abstract’’ fields (date of search,
September 17, 2020): ‘‘Raman spectr*’’ OR ‘‘Raman microsc*’’ OR ‘‘Raman
scat*’’.
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Finally, the method discussed here should not be applicable
only to molecules, but also to other amorphous or crystalline
solids. In this sense, it is important to stress that with the
advance of lasers and detectors, Raman spectroscopy is gaining
importance very rapidly (see Fig. 7).49 Furthermore, the devel-
opment of theoretical techniques has triggered a new and large
amount of theoretical Raman data, within the materials’ gen-
ome initiative.39 For example, Taghizadeh et al.50 created the
‘‘Computational 2D Materials Database (C2DB)’’ based on
calculated Raman spectra of 733 different two-dimensional
systems. In this perspective, the method introduced here might
be very helpful for the analysis of greater amounts of vibra-
tional and spectral data in physical chemistry.
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