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Effective Hamiltonian for Stokes–anti-Stokes pair generation with pump and probe polarized modes
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In the correlated Stokes–anti-Stokes scattering (SAS) an incident photon interacts with a Raman-active
material, creating a Stokes photon and exciting a quantum vibrational mode in the medium, which is posteriorly
annihilated on contact with a second incident photon, producing in turn an anti-Stokes photon. This can be
accomplished by real and virtual processes. In the real process the quantum mode shared between the Stokes
and anti-Stokes events is a real particle, whereas in virtual processes the pair formation is mediated by the
exchange of virtual particles. Here, we introduce a Hamiltonian to describe the pair production in SAS scattering,
for both types of process, when stimulated by two orthogonally polarized laser pulses in a pump-and-probe
configuration. We also model the effect of the natural decay of the vibration created in the Stokes event and
compute the probability of producing SAS pairs. Additionally, we follow the dynamics of the vibration by
considering the Stokes and anti-Stokes fields as external reservoirs, obtaining thus a master equation for the
reduced density matrix for the vibrational population. Finally, we compare our theoretical results to recently
published experimental data.

DOI: 10.1103/PhysRevB.102.134304

I. INTRODUCTION

The Raman spectrum of materials arises as a consequence
of the inelastic scattering of light by matter [1] which is
underlaid on two types of process: the Stokes process S,
characterized by the annihilation of an incoming photon
of frequency ωL and the creation of a redshifted one, of
frequency ωS together with the excitation of a quantum vi-
brational mode of frequency ν in the target medium; and
the anti-Stokes process AS, where the incident photon and
an existing vibration are annihilated, generating a blueshifted
photon of frequency ωAS . In each event, energy is conserved
such that the frequency of the outgoing photon is equal to
the frequency of the pump plus (AS) or minus (S) that of
the vibration. As proposed by Klyshko [2,3], an additional
process is also possible: the correlated Raman scattering, or
Stokes–anti-Stokes process (SAS). In this case, the overall
scattering involves the annihilation of two incoming photons
of frequency ωL and the creation of a pair composed of one
Stokes and one anti-Stokes photon, such that ωS + ωAS =
2ωL. The nonclassical nature of the correlated Stokes–anti-
Stokes Raman scattering components has been demonstrated
experimentally in several materials, including graphene [4,5],
diamond [6–8], and other transparent media, including water
and other liquids [9–11]. Interestingly, this phenomenon has
raised connections with other condensed matter fields, such as
superconductivity [9] and the phonon-pumping effect induced
by strong fields in surface-enhanced Raman spectroscopy
[12,13].
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Such correlated SAS pairs can involve the exchange of a
real vibration, created in a Stokes process and subsequently
destroyed by an anti-Stokes one. In this case, not only does
the above-mentioned overall energy conservation holds, but
the pair is created red and blue shifted with respect to the
incoming laser energy by the vibrational mode frequency,
i.e., each Stokes and anti-Stokes photon has a well-defined
frequency ωAS,S = ωL ± ν. These pairs, here addressed as
real SAS, lie at the core of recent pump-and-probe experi-
ments exploiting the vibrations of the material as a potential
quantum memory, and are characterized by a time correlation
dominated by the lifetime τP of such vibrational modes. In
solids, these vibrations are phonons of typical lifetimes of a
few picoseconds [6,8,14,15] and have led to new experiments
to store and process classical and quantum information on
picosecond timescales at room temperature with several dif-
ferent materials [6,16–22].

The correlated Raman scattering also takes place out of
resonance, as demonstrated in Ref. [9] in many different mate-
rials such as diamond and diverse liquids. In the denominated
virtual processes, the energy of S and AS events are tuned out
of resonance with the vibrational mode, so that the generation
of photon pairs happens by means of the exchange of virtual
vibrations. The photon pair produced by a virtual process can
be viewed as the photonic analog of the Cooper pairs in super-
conductivity [23]. Some properties of the so-called photonic
Cooper pairs, or PCP, were studied in Refs. [11,24] for open
air propagation and their existence has also been predicted for
waveguides in Ref. [25]. While the real SAS process has a
characteristic timescale dictated by the phonon lifetime, as
previously observed in different studies, in the virtual SAS
process the exchange of virtual phonons is expected to be
nearly instantaneous, therefore limited only by the inverse
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bandwidth of the excitation pump pulse. This scattering time
difference was experimentally demonstrated in Ref. [15] in a
time-delayed pump and probe setup with orthogonally polar-
ized pulses.

All these experiments use either a microscopic or a phe-
nomenological model always designed specifically for the
tested regime (real or virtual exchange of phonons). A full mi-
croscopic model able to fully describe not only both extreme
regimes but also intermediate ones was still missing.

In this paper, we use an extension of the model proposed
in Ref. [26] to provide a unified theoretical framework for
the creation of pairs through either virtual or real vibration
exchange. We calculate the time evolution of the overall quan-
tum state of both photonic and vibrational fields and obtain the
probability distribution of SAS pairs generation considering
the natural decay of the vibrations in the material. We test our
model analyzing the experimental data produced in Ref. [15]
where both regimes are investigated in diamond. In particular,
the phenomenological model used to explain the resonance
(real phonons) data in Ref. [15] was based on the decay of
the phonon population between pump and probe pulses. We
also consider the Stokes and anti-Stokes fields as creating and
absorbing reservoirs for the vibrations and derive a master
equation for its dynamics. This allows us to test the validity
of this phenomenological model.

II. GENERAL THEORETICAL FRAMEWORK

Our stating point is the effective Hamiltonian proposed in
Ref. [26], given by

H = h̄ωLa†a + h̄νc†c + h̄ωSb†
SbS + h̄ωASb†

ASbAS

+ h̄λS (ab†
Sc† + H.c.) + h̄λAS (ab†

ASc + H.c.), (1)

where b†
S (bS ), b†

AS (bAS ), c† (c), and a†(a) stand for the
creation (annihilation) operator of S, AS, phonon and inci-
dent fields, respectively. The constant λS (λAS ) denotes the
coupling between the laser and the material, responsible for
the Stokes (anti-Stokes) events. The Stokes and anti-Stokes
photon frequencies are given by ωS,AS = ωL ∓ ν, for real pro-
cesses, with ωL and ν being the pump and phonon frequencies,
respectively. The Hamiltonian is obtained by handling the Ra-
man scattering as an optical parametric amplification process
[27]. It is valid within the coherence time of the pumping laser,
whether continuous or pulsed. Our procedure is also similar to
the one used in Ref. [14].

A. Full dynamics for the quantum fields

In Eq. (1), the pump laser is assumed to be a quantum field
but, given its very large power and the relatively low count
of Raman photons, its depletion can be ignored and it can be
replaced by a classical function of time. We are, then, left with
three quantum fields whose dynamics we proceed to calculate,
the Stokes and anti-Stokes photonic modes and the phonon of
the material.

First, we extend Hamiltonian (1) to the case in which the
SAS process is stimulated by the incidence of two orthogo-
nally polarized laser pulses, and the Stokes and anti-Stokes
fields can be generated at arbitrary frequencies. This choice of
the polarization of the pulses is motivated by the experimental

data used to test our model but does not represent any limita-
tion to the model itself. The total Hamiltonian describing the
dynamics of pair generation, then, reads

H (t ) = h̄νc†c + H0H + H0V + HIH (t ) + HIV (t ). (2)

The first term is, once again, the free energy of the vibra-
tional mode, whereas the second and third terms, given by

H0H (V ) =
∫ ∞

0
dωh̄ωb†

SH (V )
(ω)bSH (V ) (ω)

+
∫ ∞

0
dωh̄ωb†

ASH (V )
(ω)bASH (V ) (ω), (3)

are the free energy of the photonic Stokes and anti-Stokes
fields for the two orthogonal polarizations of the pump. Fi-
nally, the two last terms describe the coupling of all the fields
via the material, and read

HIH (t ) =
∫ ∞

0
dωh̄g(ω) fH (t − t0)b†

SH
(ω)c†

+
∫ ∞

0
dωh̄g(ω) fH (t − t0)b†

ASH
(ω)c + H.c. (4)

HIV (t ) =
∫ ∞

0
dωh̄g(ω) fV (t − t1)b†

SV
(ω)c†

+
∫ ∞

0
dωh̄g(ω) fV (t − t1)b†

ASV
(ω)c + H.c., (5)

where g(ω) gives the coupling between pump, created photon
at frequency ω, and the vibrational mode. f j (t − t j ) describes
the amplitude of the pump field, and we assume that the
converted photons preserve the polarization of the pump field,
a hypothesis justified by experimental data (see Ref. [15] for
an example).

So far, the model is generic and allows for any type
of pulses sent into the material. However, because we are
particularly interested in comparing our results to previous
experiments, we are going to choose Gaussian profiles f j (t −
ti ) = α je−( t−ti

σ
)
2

e−iωLt for the time dependence of the pump
(i = 0, j = H) and the probe (i = 1, j = V ), where j = H,V
denotes the polarization of the pulse and δτ = t1 − t0 is the
time delay between them. The coupling terms then become
(in the interaction picture)

H̄IH = h̄αH e−( t−t0
σ

)2

[∫ ∞

0
dωg(ω)ei	1t b†

SH
(ω)c†

+
∫ ∞

0
dσg(σ )ei	2t b†

ASH
(σ )c

]
+ H.c., (6)

H̄IV = h̄αV e−( t−t1
σ

)2

[∫ ∞

0
dωg(ω)ei	1t b†

SV
(ω)c†

+
∫ ∞

0
dσg(σ )ei	2t b†

ASV
(σ )c

]
+ H.c., (7)

where 	1 = ωL − ω − ν and 	2 = ωL − σ + ν.
After being created, the photonic fields propagate freely

and will be eventually collected by the detectors. The phonon,
however, can decay due to its interaction with other vibrations
of the material. Therefore, its dynamics, and by consistency,
that of the entire system, is not unitary and cannot be properly
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described by solving the Schrödinger equation with Hamilto-
nian (2). To take the vibrational decay into consideration, we
calculate the dynamics of the system by solving the following
master equation (in the interaction picture):

dρ

dt
= − i

h̄

[
H̄IH (t ) + H̄IV (t ), ρ

] + L(ρ), (8)

where ρ is the density operator for all the quantum fields
(Stokes, anti-Stokes, and phonon) and the Lindblad term L(ρ)
is given by

L(ρ) = γ (2cρc† − c†cρ − ρc†c), (9)

with γ being the decay rate (proportional to the inverse of
the lifetime, γ = τ−1

P ) of the vibrational field. This equation
assumes a dissipative channel at zero temperature which is a
good approximation for most experiments where the vibration
corresponds to an optical phonon whose average number of
thermal excitations at room temperature is of the order of
10−3. The integration in time of Eq. (8) gives the general
solution for our system. A similar approach for the vibrational
dynamics in the context of Raman scattering was used in
Ref. [28]. There, however, the scattering involves plasmons
in a cavity whereas here it happens in free space.

B. Master equation for the phonon population

Equation (8) contains all the information about the dynam-
ics of each quantum field involved in the scattering process, as
well as any eventual time correlation among them. Therefore,
its integration in time should provide a proper description of
the production of SAS pairs for any frequency displacement
	. However, as suggested by the phenomenological approach
used in Ref. [15], the time-delayed cross-correlation func-
tion of SAS pairs can be obtained essentially from the time
dependence of the vibrational population. The underlying
assumptions are that the real SAS processes that mostly con-
tribute for the pair counting are those were the correlation is
driven solely by the shared phonon (i.e., the individual scatter-
ing processes are statistically independent) and that each event
is very rare. In other words, the Stokes process is spontaneous
(the vibrational field is basically in the vacuum at the arrival of
each pump pulse), in each pulse at most one phonon is excited
(Stokes processes are rare), and when the anti-Stokes process
takes place it is solely due to the phonon created within the
same pump-probe pair. All these assumptions meet the ex-
perimental conditions. First, the time distance between pairs
of pump-probe pulses (13 ns) is much larger than the decay
time of phonons in the material (a few picoseconds) and, as
mentioned before, the average number of thermal phonons is
very low (around 10−3), thus justifying the first assumption
of pump pulses reaching the material in its vacuum state of
phonons. Second, the rate of Stokes photons is of the order
of 104 counts per second, while the pulses strike the mate-
rial at around 76 MHz, which means that each pulse has a
probability smaller than 10−3 of creating a Stokes photon and,
hence, a phonon. Finally, to guarantee the absolute statistical
independence of the real SAS pairs, the detection postselects
Stokes and anti-Stokes photons of orthogonal polarizations,
each respectively sharing the polarization of the pump and the

probe pulses. That guarantees that the Stokes comes from the
pump and the anti-Stokes from the probe.

Fortunately, the robustness of the model described in the
previous subsection also relies on the fact that it allows to de-
rive an equation exclusively for the dynamics of the phonons
themselves. As we proceed to show, under the circumstances
of performed pump and probe experiments, when discussing
the phonons alone, Stokes and anti-Stokes fields play the role
of external reservoirs. The Stokes field will correspond to a
pumping reservoir that incoherently creates phonons in the
material, while the anti-Stokes field will enhance the dissipa-
tion rate of such phonons. Given the typical timescales of the
pulses and the weakness of individual scattering processes,
we will proceed to derive a master equation for the phonons
taking into account these extra reservoirs. As it will become
clear soon, the time dependence of the pulse will reflect in
time-dependent dissipative or pumping rates.

To get an expression for the master equation in the Lind-
blad form, according to the scenario just described, we take
as a ground the second-order contribution to the evolution of
the reduced phonon density operator ρPh = TrSASρ in the time
convolutionless approximation [29]

dρPh

dt
= −λ2

∫ t

ti

du TrSAS{[H̄I (t ), [H̄I (u), ρPh(t ) ⊗ ρSAS]]},

(10)

where ρSAS is the density operator of the SAS field. The
constant λ stands for the strength of the interaction that in
our case is represented by the couplings αH (V )g. To derive the
final equation, we will assume that these couplings follow two
conditions:

|αH (V )g(ω)| � ω and |g(ω = ωL ∓ ν)|2 ∼ g2
0. (11)

Signs (−) and (+) correspond to S and AS events, respec-
tively. The first condition implies the weak coupling regime
which is fully justified in our procedure. |αg|2 ∼ 104Hz is
proportional to the count of Stokes photons and, therefore,
much smaller than the optical frequency of the fields at ω ∼
5 × 1014 Hz, which is of the order of the correlation time of
our photonic reservoirs. The second condition means that the
response of the material (|g(ω)|) is basically flat in the range of
frequencies involved in the experiment, which is valid when
considering materials with electronic gap much higher then
the excitation energies involved, such as in diamond. With
no loss of generality, we will approximate it by a Gaussian
function

|g(ω)|2 = g2
0e− (ω−ωL )2

δω2 , (12)

such that δω is taken much greater than all the physical param-
eters involved in the process. Finally, each pulse is still well
resolved in frequency, 1/σ � ωL. When put together, these
conditions allow us to derive a master equation governing the
phonon population distribution as result of the interaction with
the SAS field. Assuming the experimentally verified equal
intensity for the pump and probe pulses, |αH |2 = |αV |2 = α2

0 ,
the contribution of the Stokes and anti-Stokes reservoirs for
the dynamics of the phonons reads (see the Appendix for
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details)

dρPh

dt
= 2π (α0g0)2

[
e−2( t−t0

σ
)2 + e−2( t−t1

σ
)2]

×[2c†ρPhc + 2cρPhc† − {{c, c†}, ρPh}], (13)

where {A, B} = AB + BA. The overall phononic evolution is
obtained by adding the dissipative Lindblad term, in the form
of Eq. (9), to the right-hand side of Eq. (13). This extra
term accounts for the dissipation due to other phonons of the
material, as previously mentioned.

III. RESULTS

A. Overall behavior as a function of �

In principle, the model described by Eq. (8) allows us to
obtain the time correlation PSAS(δτ ) of SAS photons at any
pair of detection frequencies, i.e., for any 	, and as a function
of any delay time δτ between the pump and probe pulses.
To calculate PSAS(δt ) we numerically integrate Eq. (8) for
a given set {	, δτ }. This integration can be computationally
demanding if the required Hilbert space is too large. However,
in the regime of operation of most SAS experiments, includ-
ing all the ones mentioned in the Introduction, the scattering
probabilities, both of a single Stokes photon and a vibration
(∼10−4) or a SAS pair (∼10−7), are very low, and so is the
mean number of thermal phonons. That means that for each
pair of pump and probe pulses, the most probable event, by
far, is that all the quantum fields (Stokes, anti-Stokes, and
phonon) start in the vacuum and remain at the same state
throughout the evolution. Sometimes a Stokes photon and a
phonon are produced and more rarely a SAS pair is produced.
This allows us to truncate the Hilbert space to a small basis,
thus significantly reducing the computational time. The size
of this basis depends on the particular values of the coupling
constants, system frequencies and decay rates. In general, we
chose a large-enough basis to guarantee that the probability
of the higher excited states remained at least three orders of
magnitude lower than the probability of forming a SAS pair.

To be more specific, first, we obtain the density matrix
ρ solving Eq. (8) numerically by considering a truncated
basis of the Hilbert space whose elements represent the pos-
sible states that occur in an unlikely single SAS event. They
can be represented in a generic way by a vector |S, AS, Ph〉,
where S, AS, and Ph stand for the number of particles in
the Stokes, anti-Stokes, and phonon fields, respectively. The
elements composing the basis set includes the vectors with
S (AS and Ph) = 0, 1, 2. To choose the truncated basis, we use
an extended set in the most favorable configuration (largest
probability of pair formation) and confirm that larger occupa-
tion numbers have very low probability of showing up. Before
the incidence of the first pulse, all three fields are assumed to
be empty, i.e., the initial state for the integration is ρ(ti ) =
|0, 0, 0〉〈0, 0, 0| and the time delay δt is fixed in a range
between −2 and 12 ps. Subsequently, the probability to create
a SAS photon pair for that particular δt , PSAS(δt ) is obtained
from ρ by calculating PSAS(δt ) = Tr{|1, 1, 0〉〈1, 1, 0|ρ}. It is
pertinent to note that the lower and upper limits of integration
are taken, respectively, at ti = −3 ps and t f = 14 ps. That
guarantees that both pump and probe pulses, Gaussian shaped

FIG. 1. Normalized SAS pair distribution PSAS(δτ ) as a function
of the delay δτ between the pump and probe pulses, for different
values of the detuning 	. Real processes are dominant for 	 = 0
while the virtual ones are preponderant for large values of 	. Each
pulse is a Gaussian function of time with FWHM σ = 0.40 ps. 	 is
given in unities of σ−1. The vibration dissipation rate is γ = 0.36 ×
1012 s−1 corresponding to a phonon decay time of τP = 2.78 ps.

of width smaller than 1 ps, are properly encompassed in the
dynamics for all of the values of the time delay between them
as implemented in the experiment whose results we describe
in this work. Also note that, due to computational limitations
(the involved numbers may become too small), extending the
limits of integration may give rise to errors in the numerical
procedure.

We present in Fig. 1, the normalized distribution
PSAS(δτ )/PMax as a function of the delay between the pulses
for different values of 	. One clearly sees the expected tran-
sition of regimes. For 	 = 0, the time correlation function
shows two characteristic features observed in different exper-
iments made at the Raman resonance peaks: a smooth decay
influenced by the dissipation time of the vibration and a shift
from zero delay of its maximum value. This confirms that this
regime is dominated by real SAS processes. The shift from
zero is physically justified by the fact that for real processes,
it is more efficient to wait for the pump pulse to generate the
Stokes photon and the phonon before the probe reaches the
sample to produce the anti-Stokes photon. Naturally, this shift
cannot be too large because the dissipation of the vibration
to other channels (scattering against other phonons of the
material, for example) is a competing deleterious effect. At
the other extreme, for very large 	, the width of the curve is
determined basically by the width of the pulses and the most
efficient pair production takes place at zero delay (δτ = 0).
This indicates that in this regime the dominating process is
the virtual SAS, in which case the best scenario happens when
both pump and probe coincide in the material, increasing the
chance of a simultaneous creation of the Stokes and anti-
Stokes photons. For intermediate frequency displacements,
the curve is a mixture of the two processes with weights that
depend on the specific value of 	, as expected.

In Fig. 2(a), we show how the resonant curve (	 = 0)
depends on the dissipation time of the vibration. As expected,
the faster the dissipation rate (larger values of γ ) the tighter
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FIG. 2. Normalized SAS distribution PSAS(δτ ) for different val-
ues of the decay rate of the phonon population γ . The values of γ

are given in unities of 1012 s−1 and the pulses are the same Gaussian
functions of time used in Fig. 1. (a) Real process (	 = 0). (b) Virtual
process (	 = 8 THz). In this case, the curves for each value of γ are
superposed.

the time window for the formation of the pair. Also note
that the maximum of the curve shifts slightly towards zero
delay time for larger values of γ . This happens because the
deleterious effect of the vibrational dissipation forces towards
a slightly increased overlap between the two pulses to maxi-
mize the pair production. On the other hand, as displayed in
Fig. 2(b), in the large 	 scenario, the dissipation time of the
vibration does not play any significant role, confirming that
only virtual vibrations are exchanged.

B. Data analysis

To test our model, we compare its predictions to the ex-
perimental results displayed in Ref. [15]. There, the authors
performed a pump and probe experiment in diamond in the
exact same framework of the theory developed here. They
used two delayed cross-polarized pulse beams and a set of
polarization selective detectors to count correlated Stokes and
anti-Stokes photons pairs in two regimes, on and off the Ra-
man resonance peaks. Previous theoretical and experimental

results indicated that the first is dominated by the exchange
of real phonons in the material, whereas the second by the
exchange of virtual vibrations, and the experiment was set to
test these two configurations.

The first part of the experiment was used to establish that
both S and AS photons predominantly carry the same polar-
ization of the excitation pulse. With this in mind, the authors
proceeded with the time-delayed cross-correlated pump-probe
photon detections of SAS pairs. In each run, a 76-MHz se-
quence of two pulses of orthogonal polarization, H and V ,
were sent into the sample, each pulse centered at ωL = 632.8
nm and of Gaussian shape with FWHM σ = 0.40 ps. A
polarization-dependent delay line placed before the sample
established a switchable time separation δτ between the H
pump pulse and the V probe pulse ranging from −2 to +13
ps. A dichroic mirror and polarizers were placed before the
photon detectors to guarantee the collection of Stokes photons
of H polarization and anti-Stokes photons of V polarization.

The detections were made at two different pairs of frequen-
cies, ωA and ωB. First, photons were detected at the Raman
resonance peaks with detectors placed at ωA = ωS = ωL − ν

and ωB = ωAS = ωL + ν. At these frequencies, the pair gener-
ation process was dominated by real SAS. Then, the detection
setup was adjusted to collect pairs at displaced frequencies
ωA = ωS + 	, ωB = ωAS − 	, where 	 < ν and the process
was dominated by virtual SAS [11]. The displacement was
made sufficiently larger than the width of the resonance peaks
in order to guarantee the dominance of virtual processes.

In each case, they measured the SAS scattering intensity,
i.e., the number of pair coincidence photon counts or, equiva-
lently, the pairs of correlated photons detected simultaneously,
by varying the time delay δτ between the H pump pulse and
the V probe pulse. It was observed that the production rate of
real SAS pairs decreases with the decay of the phonon popu-
lation generated by the Stokes process. The measured lifetime
of the phonon population was around 2.8 ps, in agreement
with results of other experiments. In contrast, in the virtual
process, SAS pair production occurred primarily when the two
laser pulses overlapped, indicating that it happened faster than
the duration of a single pulse.

In Fig. 3 we plot the experimental data from Ref. [15]
and the theoretical curves obtained by solving Eq. (8), and
calculating the normalized probability PNSAS (δτ ) of finding a
Stokes photon of polarization H and an anti-Stokes photon
of polarization V , at the respective detectors’ frequencies.
The corresponding results for real and virtual processes are
represented by the dashed-red lines in Fiqs. 3(a) and 3(b),
respectively. The distribution is plot as a function of the delay
δτ between pump and probe pulses, for values within the
interval between −2.0 and 12.0 ps, and it is given by

PNSAS (δτ ) = PSAS(δτ ) + CPmax

(1 + C)Pmax
. (14)

Note that this normalized function includes a shift to the min-
imum value of detected pairs, given by the constant C. This
renormalization is necessary here because of experimental
conditions not taken into account by the theoretical model.
The model assumes perfect polarization in each pulse, also
perfect polarization detection, no dark counts, no accidental
counts, and other experimental imperfections. All these ef-

134304-5



DIAZ, MONKEN, JORIO, AND SANTOS PHYSICAL REVIEW B 102, 134304 (2020)

FIG. 3. The black dots in both plots correspond to experimental
data published in Ref. [15]. (a) Real SAS. Red dashed line represents
the probability of detecting a SAS pair from model IIA (full dynam-
ics). Dashed-blue line corresponds to the probability of finding one
vibration in the sample following model IIB (master equation for the
vibrations). The values of the parameters involved are σ = 0.25 ps,
τP = 2.78 ps, and C = 0.25. (b): Virtual process. The red-dashed
curve corresponds to the probability of detecting a SAS pair from
model IIA (full dynamics). The values of the parameters are σ =
0.4 ps, τP = 2.78 ps, and C = 0.30.

fects contribute to a minimum pair counting present even for
very large delays between the pulse and the probe. However,
as it becomes clear, this simple correction, extracted from
the experiment, is enough to properly adjust the experimen-
tal data. Also note that all the parameters used to draw the
theoretical curves, both for the pulses and the lifetime of the
phonon, are drawn from Ref. [15].

Also note that, as mentioned in the previous section, the
theory correctly predicts that at the Raman peaks (resonance),
real pairs dominate and the probability of finding a pair de-
pends on the decay of the phonon, whereas out of resonance
the pairs are created only when the two pulses coincide, which
is consistent with the formation of photonic Cooper pairs

(PCPs), also observed in Ref. [9], via the exchange of virtual
phonons.

In Fig. 3(a) we also plotted the theoretical curve for the
phonon population, dashed-blue line, obtained by solving
Eq. (13). Once again, the numerical integration was performed
using a truncated basis in the Hilbert space of number states
of phonons, |Ph〉, where Ph = 0, 1, 2, justified, as before, by
the fact that the chance of creating more than two phonons in
each pair of pulses is very low and checked numerically by
increasing the Hilbert space and confirming a very low prob-
ability of state |Ph = 3〉 throughout the dynamics. As before,
the system is initially in the vacuum state, ρPh (ti ) = |0〉〈0| and
the region of integration is the same as in the integration of
Eq. (8). The probability of producing a phonon is given by
ρPh = Tr{|1〉〈1|ρPh}.

As in the previous case, the curve represents a normalized
quantity

PNSAS (δτ ) = Pph(δτ )

Pphmax

, (15)

where Pph(δτ ) is the probability to create a unique phonon
in the entire process, while Pphmax is the maximum value
for Pph(δτ ).

The parameters used for the pulses, as well as the phonon
natural lifetime are the same as in the dashed-red curve. Note
that the result confirms the accuracy of the phenomenological
model used in Ref. [15] for the probability of generating real
SAS pairs. It also reinforces the validity of the hypothesis used
to derive Eq. (13), that is, at the Raman peaks, the pair forma-
tion is indeed dominated by real processes and its dynamics
depends basically on the probability of a second pump photon
combining with the phonon created in the Stokes scattering to
create the correlated anti-Stokes component of the pair.

IV. CONCLUSION

In this paper we introduced an effective Hamiltonian to
describe the correlated SAS photon pair production in Raman
scattering by both real and virtual processes. In particular,
we considered the cases when the material is shined by two
laser pulses of orthogonal polarizations with a time-delay one
from the other. We also derived a nonunitary dynamics for
the vibration of the material considering the Stokes and anti-
Stokes fields as external pumping and dissipative reservoirs.
We tested the validity of our model by comparing the theoreti-
cal results to the experimental data measured in Ref. [15]. The
Hamiltonian model confirms the experimental data in both
regimes (real and virtual pairs). In particular, our model pre-
dicts correctly that, at the Raman resonance peaks, the process
is dominated by the lifetime of the phonon, therefore by real
SAS pairs, whereas out of the resonance peaks, it is centered
at zero delay and defined basically by the inverse linewidth of
the pump and probe pulses, hence, dominated by virtual SAS
pairs. Furthermore, the model for the dynamics of the phonon
distribution also adequately describes the real SAS data. This
second result demonstrates that the phenomenological model
used in Ref. [15] is sound and correctly captures the essence
of the production of pairs at the Raman resonance peaks and
under the experimental conditions used therein.

134304-6



EFFECTIVE HAMILTONIAN FOR STOKES–ANTI-STOKES … PHYSICAL REVIEW B 102, 134304 (2020)

The model here proposed should be general enough to be
applied at a range of frequencies and for diverse materials that
have not been experimentally tested yet. New experiments in
this range and with different materials are desirable to either
confirm or improve the model. Another interesting improve-
ment that can be pursued is the generalization of the model for
arbitrary polarizations of the pump and probe pulses as well
as different spatial-temporal modes, including the addition
of degrees of freedom that take into account the transversal
profile of the pulses. This would overcome a limitation of
the current model, allowing the description of more complex
experiments that include measuring properties such as the
orbital angular momentum of the generated pairs as well as
their angular distribution.
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APPENDIX

Here we derive the master equation in the Lindblad form of
the reduced phonon density operator, Eq. (13). To this aim, we
consider the second-order contribution of the dynamics of an
open system in the time convolutionless approximation, which
is defined by Eq. (10). First, let us remember that, since the
photonic fields are initially in the vacuum,

TrSAS
{
bSH (V ) (ω1)b†

SH (V )
(ω2)ρSAS

} = δ(ω1 − ω2), (A1a)

TrSAS
{
bASH (V ) (ω1)b†

ASH (V )
(ω2)ρSAS

} = δ(ω1 − ω2), (A1b)

and the remaining similar relations between the fields opera-
tors are all equal to zero.

Then, if we consider the Hamiltonians given by Eqs. (6)
and (7), we get for Eq. (10) the following expression:

dρPh

dt
= −

∫ t

ti

du[ fH (t − t0) fH (u − t0)

+ fV (t − t1) fV (u − t1)]

×
[ ∫ ∞

0
dω|g(ω)|2ei	1(u−t )cc†ρPh

+
∫ ∞

0
dω|g(ω)|2ei	2(u−t )c†cρPh

+
∫ ∞

0
dω|g(ω)|2e−i	1(u−t )ρPhcc†

+
∫ ∞

0
dω|g(ω)|2e−i	2(u−t )ρPhc†c

−
∫ ∞

0
dω|g(ω)|2e−i	1(u−t )cρPhc†

−
∫ ∞

0
dω|g(ω)|2e−i	2(u−t )c†ρPhc

−
∫ ∞

0
dω|g(ω)|2ei	1(u−t )cρPhc†

−
∫ ∞

0
dω|g(ω)|2ei	2(u−t )c†ρPhc

]
. (A2)

The function f j (t − t j ) in the integrand is given by

f j (t − t j ) = α je
−( t−t j

σ )
2

, (A3)

such that, after removing the parenthesis in the integrand of
Eq. (A2), we have integrals of the following type:

I =
∫ t

ti

du f j (u − t j )
∫ ∞

0
dμ|g(μ)|2e±i	b(u−t ), (A4)

where the index j replaces the H and V ones, and t j stands
for the time where the maximum of the respective Gaussian
occurs, while 	b = 	1,2. Now, since the integrand in the time
integral decreases fairly quickly for times above and below
of t j we extend the lower and upper integration limits to −∞
and +∞, respectively. This fact together with the assumptions
established by Eqs. (A1a) and (A1b) determine the validity
of the Markov approximation in our approach. Then, we can
write

I = αa

∫ ∞

0
dμ|g(μ)|2

∫ ∞

−∞
due−( u−ta

σ
)2

e±	b(u−t )

= αa
√

πσ

∫ ∞

0
dμ|g(μ)|2e−( σ

2 )2	2
b e∓i	b(t−ta ). (A5)

To perform the integral in frequency we assume that the re-
sponse of the material |g(μ)| can be approximated by Eq. (12)
as discussed before. In view of ωL 
 0 we can again extend
the lower integration, in Eq. (A5) to minus infinite, so the
integral I reads

I = αag2
0

√
πσ

[∫ ∞

−∞
dμe

− (μ−ωL )2

δμ2 e−( σ
2 )2	2

b e∓i	b(t−ta )

]

= αag2
0

√
πσ

[
e−( ωL

δμ
)2

e−( sσ
2 )2

e∓is(t−ta )

×
∫ ∞

−∞
dμe−A2μ2

eBμe∓i(t−ta )μ

]

= αag2
0

√
πσ

[
e−( ωL

δμ
)2

e−( sσ
2 )2

e∓is(t−ta )
][√

π

A
e

[B∓i(t−ta )]2

4A2

]
,

(A6)

with

A2 =
(σ

2

)2
+ 1

δμ2
,

B = 2ωL

δμ2
− sσ 2

2
, (A7)

s = ν − ωL (s = −ν − ωL ) → S (AS).

Taking δμ2 much greater than all the physical parameters
concerning to Eq. (A6), it yields

I = 2παag2
0e−( t−ta

σ
)2
. (A8)

Finally, Eq. (A2) reduces to Eq. (13).
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