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Amethodology for the structural analysis of graphene-relatedmaterials using parameterized principal component analysis (PCA),
ideal for large-scale data treatment, is introduced. First, we review different aspects of Raman spectroscopy for structural and
functional characterization of sp2-bonded carbon materials, which are important for understanding the problem. The parameter-
ized PCA is then introduced and applied to 2 different scenarios: to identify different sp2 carbon structures and to identify
graphene samples with different numbers of layers. Automating these Raman spectroscopy analysis techniques is desired for
large-scale industrial applications. Copyright © 2017 John Wiley & Sons, Ltd.
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Introduction

Graphene-related structures have generated great interest from the
scientific community, in both basic and applied research.[1] From a
perspective, the sp2 carbon structures offered a number of broadly
studied materials, such as graphite intercalated compounds
(GICs),[2] amorphous carbons,[3] fullerenes,[4] nanotubes,[5–7]

graphene,[8] and biochar.[9] From another perspective, graphene
opened the field of 2-dimensional systems,[10] launching the re-
search on x-enes[11] (phosphorene,[12] arsenene,[13] antimonene,[13]

silicene,[14] germanene,[15] borophene[16]), transition metal
dichalcogenides (TMDs)[17,18] and monochalcogenides,[19] and van
der Walls heterostructures.[20]

Raman spectroscopy has been the leading technique to study
and characterize graphene-related structures,[2,4,21,22] basically
because it is a simple and non-invasive technique, and because
the carbon atoms are light, the sp2 σ bonds are strong, and the
π-electron-related optical transitions range from the infrared up to
the visible range. These structural characteristics are responsible
for many properties of the sp2-bonded carbons that contribute to
the high degree of sensitivity observed in Raman spectra of these
systems, which include high phonon frequencies, sensitivity to
strain and temperature; strong electron-phonon coupling and
many-body effects, sensitivity to doping, functionalization, environ-
mental conditions and dimensionality, and optical resonances,
allowing spectroscopy of single nanostructures and detailed
analysis of their electronic structure.[22]

While our present knowledge of the applications of Raman
spectroscopy to graphene-related systems has been sufficient for
laboratory proof-of-concepts, it is desirable to generate automated

procedures for big data analysis to turn Raman spectroscopy into a
technique for industrial control. In this sense, principal component
analysis (PCA)[23] is a technique for dimensionality reduction and
feature extraction that consists of calculating the directions of
greatest variance in a data set. The largest variance components
are, naturally, linear combinations of the attributes of the original
data set, and what PCA does essentially is to perform a transforma-
tion of coordinates by translating and rotating the original
coordinate frame.[23]

However, while PCA is able to extract nontrivial features in the
data set and display relationships between the samples, in most
cases, the interpretation of the PCA results is nontrivial, and the
analysis changes from one data set to another. To overcome this
problem, we discuss the use of parameterized PCA for applications
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in sp2 carbon systems. Initially, we present an overview of some
Raman spectroscopy characteristics, and how they have been used
to study and characterize graphene-related systems, addressing
both structural and functional analysis. We do not intend to provide
a complete overview of the literature, but just to exemplify the
possibilities offered by the technique, which are then explored in
the PCA. Subsequently, we introduce the concept of the PCA
parameterization to generate a meaningful automated classifica-
tion methodology in the field of Raman spectroscopy applied to
sp2 carbon structures, which can be used in large-scale analysis.
The paper closes with summary and perspectives.

General features of Raman spectroscopy

The goal of this section is to introduce some spectral characteristics
of Raman spectroscopy in graphene-related materials and to illus-
trate applications of this technique. The use of Raman spectroscopy
includes structural characterization of sp2 structures and the
amorphization trajectory from pristine graphene to amorphous
carbon[24]; structural and functional analysis of strain-stress rela-
tions in carbon nanocones[25] and graphene, including tribology
aspects[26]; and the use of tip enhanced Raman spectroscopy (TERS)
to elucidate the nanocrystallite structure of chemical vapor deposi-
tion samples.[27] Some application examples besides graphene
quality control include classification of different types of biochar
and their structural proximity[28–30]; Raman spectroscopy visualiza-
tion of carbon nanotubes used as a carrier agent in biotechnology
applications[31–33]; and the use of graphene/graphite as a standard
for nanometrology.[34,35]

Graphene amorphization routes

From the dimensionality standpoint, the amorphization of a
2-dimensional crystalline system can follow 2 routes: increasing
the number of zero-dimensional (point-like) defects, such as
vacancies or 7-5 pairs in graphene, or increasing the number of
1-dimensional (line-like) defects, such as grain boundaries in
graphene. Raman spectroscopy was shown to be able to quantify
the amount of point-like and line-line defects in graphene using 2
pieces of spectral information together: (1) the integrated intensity
(peak area) ratio between the D (~1350 cm�1) and G (~1580 cm�1)
Raman peaks, AD/AG, and (2) the G band full width at half
maximum, ΓG.

[24]

Figure 1(a) shows the carbon amorphization Raman diagram,
with exemplary spectra from different locations in this diagram
displayed in Figure 1(b,c). The AD/AG spectral information is
normalized in the Raman diagram by multiplying the ratio by the
excitation laser energy to the fourth power, EL

4, to make the infor-
mation independent of the excitation laser energy.[24,36] The solid
and dotted lines in Figure 1(a) provide the amorphization routes
for pure line-like and pure point-like defects, respectively. The
spectra following the amorphization route of line-like defects come
from diamond-like amorphous carbons heat treated at different
temperatures.[36] The spectra following the amorphization route
of point-like defects come from graphene subjected to different
doses of Ar+ ion bombardment.[37] Samples exhibiting both point
and line defects exhibit the [(AD/AG)*EL

4,ΓG] spectral information
inside the area limited by these lines.[24]

The amorphization metrics are LD, the average distance between
points, and La, the average distance between lines. This analysis can
be used to monitor and guide graphene-like sample growth and

applications, as it has been done for characterizing the growth of
graphene by chemical vapor deposition (CVD) from natural gas,
and its application in conductive inks.[24]

Grain boundaries measured with tip-enhanced Raman
spectroscopy

Graphene samples usually exhibit a polycrystalline structure. Figure
2(a) shows a scanning tunneling microscopy (STM) image of a CVD
grown graphene sample.[27] The bright (yellow) lines indicate grain
boundaries, i.e., a graphene sample full of line-like defects. Tip en-
hanced Raman spectroscopy (TERS) can be used to spectrally image
defects, as shown in Figure 2(b), due to the local enhancement of
the D band. Exemplary spectra are shown in Figure 2(c), from loca-
tions numbered 1, 2, and 3 in (a,b).

Point 3 in Figure 2(a) is a defective structure, and the respective
spectra are shown in the bottom of Figure 2(c). The defect-induced
Raman signature is only observed when the TERS tip is positioned
exactly on top of the defect (tip down). Without the tip (tip
retracted from the sample surface), the Raman signal comes from
a large graphene area, mostly crystalline, which is being illuminated
in a confocal configuration. When the tip is landed on top of the
defect, the defect-induced signal is locally enhanced and becomes
prominent in the Raman spectrum (see tip up vs tip down in the
bottom spectra of Figure 2(c)).

Through similar reasoning, it is evident that point 1 is not actually
a graphene grain boundary, because the TERS tip landing does not
enhance a graphene defect-induced spectral signature, but rather a
broad photoluminescence background (see inset to Figure 2(c)).
Notice this point was measured in a location where TERS shows a
bright signal (Figure 2(b)) without a corresponding signal in the
STM image (Figure 2(a)), indicating the enhanced optical signal
comes from underneath photoluminescent material.

Structural strain in carbon nanocone

Small variations in the chemical bonds influence material’s vibra-
tional properties and change their Raman spectra. Consequently,
mechanical properties of materials can be monitored using Raman
spectroscopy. Figure 3 (scanning electron microscopy, SEM image
in Figure 3(a)[25] and Raman spectral image in Figure 3(b)) addresses
the structural strain in a carbon nanocone, which is a natural strain
related to the cone structure. The local strain in this structure is
mapped in Figure 3(c). The colored points in Figure 3(c) indicate
the local G band wavenumber (ωG) measured at that position. The
strain can be monitored locally with Raman spectroscopy because
it causes the redshift in ωG.

Functional strain in graphene under nanomanipulation

Tribology aspects related to the adhesion of nanostructures to
substrates can also be monitored using Raman spectroscopy
during nanomanipulation.[26] Figure 4(a) shows a schematic view
of an atomic force microscope (AFM) tip inducing radial strain on
a graphene flake suspended over a circular hole made on a SiNx

substrate. Figure 4(b,c) plots ωG as a function of the AFM-induced
strain in 2 physically distinct samples. The red bullets stand for
strain loading, and the open circles for strain unloading.

The change in behavior for the G band loading procedure shown
in Figure 4(b), taking place when strain is above 0.1% indicates
partial slip of the graphene with respect to the substrate, which
causes a relaxation of the structure, followed by a blueshift of ωG.

Parameterized PCA for graphene-related materials
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A second experiment is shown in Figure 4(c), on a similar sample,
but here slip takes place at a larger strain value (above 0.5%), indi-
cating stronger local adhesion of this graphene sample to the sub-
strate. In this case, when slip takes place, the strain recoil is
complete rather than partial, and the G band goes back to the un-
strained value.
In similar experiments on different suspended graphene sam-

ples, an increase in the D band signal is observed. Sometimes, the
usually strong G band signal disappears, giving rise to an
amorphous carbon signal (Figure 4(d)) that actually comes from
the AFM tip. These observations indicate graphene amorphization
and rupture during the experiment, with the deposition of carbon
on the tip.
The results shown in Figure 4(c) indicate that different samples

exhibit different graphene-substrate adhesion forces. Connection

of the observed G band shift with elasticity theory can provide
quantitative values for the adhesion forces.[26]

Parameterized principal component analysis

When scaling up applications from laboratory proof-of-concept to
industrial production, automated routines able to efficiently
analyze hundreds or thousands of unlabeled spectra may be
needed. One of the most well-established routines for such
endeavor is PCA.[23]

The principal components (PCs) are used most frequently as
means of constructing an informative graphical representation of
the data, and as an exploratory technique for multivariate data.
Often, its operation can be thought of as revealing the internal

Figure 1. (a) sp2 carbon amorphization Raman diagram. (b,c) Exemplary spectra from the reference standard samples with a well-controlled amount of line-like
defects (b) and point-like defects (c). Average distance among line defects (La in b) and between point-like defects (LD in c) are indicated above the respective
spectra. The letters and number inside filled-circles in (a) are the diagram locations where the respective labeled spectra in (b,c) belong to. Reproduced from 2D
Materials 4, 2017, 025039[24].
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structure of the data in a way that best explains the variance in
the data. As such, PCA has the drawback of depending on the
particular batch of data and of carrying, in principle, no clear
physical information. However, PCA can be parameterized to
overcome these problems. Here, we discuss the development of
parameterized PCA for Raman spectroscopy applied to sp2 carbon
structures.

Basic definitions for PCA

The mathematical background for PCA is well established in the
literature,[23] and various open source programming tools are
available for its implementation. However, for an understanding
of the logics implemented here, it is interesting to qualitatively
discuss some basic definitions.

Consider a data matrix with n columns (samples) and m rows
(variables). PCA is mathematically defined[23] as an orthogonal
linear transformation that transforms the data to a new coordinate
system such that the greatest variance by some projection of the
data lies on the first coordinate (first principal component—PC1),
the second greatest variance lies on the second coordinate (second
principal component—PC2), and so on. The eigenvectors (principal
components, PCs) determine the directions of the new feature
space, and the eigenvalues determine their magnitude. In other

words, the eigenvalues explain the variance of the data along the
new feature axes.

The typical goal of a PCA is to reduce the dimensionality of the
original feature space by projecting it onto a transformed space,
where the eigenvectors will form the axes. In order to decide which
eigenvector(s) can be droppedwithout losing toomuch information
for the construction of a lower-dimensional subspace, we need to
inspect the corresponding eigenvalues. The eigenvectors with
the lowest corresponding eigenvalues bear the least information
about the distribution of the data and can be dropped. In order
to do so, the common approach is to rank the eigenvalues from
highest to lowest in order.

After sorting, the next step is to determine how many principal
components are going to be selected for the new feature subspace.
A useful measure is the so-called “explained variance”, which can be
calculated from the eigenvalues. The explained variance tells us
how much information (variance) can be attributed to each of the
principal components.

Because PCA yields a feature subspace that maximizes the
variance along the axes, it makes sense to standardize the data,
especially if it was measured on different scales. Whether or not
the data should be standardized prior to a PCA on the covariance
matrix depends on the measurement scales of the original features.
For Raman spectroscopy, removal of artifacts, such as random

Figure 2. Simultaneous STM (a) and TERS (b) images of graphene. For the TERS imaging, the spectral energy between 1250 and 1780 cm�1 (D and G bands) is
being recorded. (c) Raman spectra at 3 different locations in (a,b), as indicated by numbers 1, 2, and 3, after background subtraction. Red and black traces stand for
spectra obtained with the TERS tip (tip down) and without the TERS tip (tip up, equivalent to a confocal configuration). The inset shows the spectra from point #1
over a larger spectral range, without background subtraction.

Parameterized PCA for graphene-related materials
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peaks in the spectrum coming from cosmic rays, may be important.
If absolute intensity is not a meaningful information (usually it is
related to system alignment), it may also be important to normalize
the dataset.

Parameterized PCA for structural analysis of sp2 carbon
structures

Figure 1 in this paper describes how Raman spectroscopy can be
analyzed to characterize the possible amorphization trajectories
of sp2 carbon structures, from pristine graphene to amorphous
carbon. Figure 5 shows a PCA analysis of the same data utilized
to develop Figure 1,[24] considering the 2 PCs with the most
variances.
In short, PCA works here in the following manner: one starts by

constructing an n×m matrix, where each of the n lines indicates a
sample spectrum, and each of the m columns indicates a
wavenumber. In the current case n = 25 and m = 1101 (ranging
from 800 cm�1 to 1900 cm�1, in steps of 1 cm�1). The analysis
consists of performing a mathematical transformation in this
coordinate space so as to rewrite each Raman spectrum as a linear
combination of principal components PCi, where i = 1, 2,…, m.

Each PC is itself in the form of a Raman spectrum, and the method
extracts the most important spectral characteristics that capture
spectral variations from sample to sample.[23] For instance, the
inset to Figure 5(a) shows the principal component variance for
the 10 first PCs, which indicates the relative importance of each
PC for describing the spectral variation within the data set. The 2
first components (PC1 and PC2) are responsible for more than
90% of the variance in the spectral data, from pristine to amorphous
material.

The similarity between Figures 1(a) and 5 (2 distinct amorphization
routes, one for point-like, and another for line-like defective
samples) shows that the parameters analyzed in Figure 1
[(AD/AG*EL

4),ΓG] reveal the main differences among the analyzed
spectra, i.e., ΓG and AD/AG are responsible for most of the data
variance. The identification of a reduced number of relevant
variables that describe variations among spectra is the advantage
of using PCA, and the fact that we are disentangling 2 physical
parameters (LD, La) is consistent with the need of 2 spectral
parameters or 2 PCs.

In more detail, Figure 5(a) shows a plot of the PC1 and PC2
weights for 25 spectra. Notice that this plot generates 2 different
trajectories, indicated by the full and open symbols (samples with

Figure 3. (a) SEM image of a carbon nanocone. (b) Raman spectral image of a carbon nanocone, determined from the intensity of theG band as a function of sample
location (confocal resolution is ~300 nm). The green pointers indicate places where the G band wavenumber (ωG) was measured and used to build the strain map
drawn by the colored squared symbols in (c), which indicate the variations in ωG. The lower the ωG, the higher the local strain. Points numbered 1, 2, 3, and 25
in (b) are out of the cone and not shown in (c).

J. L. E. Campos et al.
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point-defects and line-defects, respectively), which are coincident at
the 2 extremes, corresponding to fully ordered graphene/graphite
(La,LD → ∞, right side of the plot) and highly disordered carbon
(La,LD → 0, left side of the plot). Figure 5(b,c) shows the spectral
composition of PC1 and PC2, respectively, depicting the
information contained in these 2 principal components. The highly
ordered/amorphous material appears in the right/left extremes of
the plots because, after the PCA procedure, their spectral decompo-
sition exhibits the largest positive/negative PC1 eigenvalues. The
similarity with Figure 1 indicates that the variational diagram shown
in Figure 5(a) can be roughly reconstructed based on 2well-defined
spectral features: the G-band linewidth ΓG replacing PC1, and the
integrated area ratio between the D and the G peaks AD/AG
replacing PC2.

One aspect that is not addressed in the PCA depicted in Figure 5
is the well-known excitation laser energy (EL) dependence of the
AD/AG ratio,[36] considered in the treatment of Figure 1 by
normalizing the Y axis in the amorphization diagram with the EL

4

term. Figure 6(a) gives the PCA result (also the 2 first PCs) for the
same set of samples analyzed in Figure 5, but measured with up
to 4 different laser excitation energies (see figure legend). Notice
that, for a given excitation laser energy (open and filled symbols

of same color), the PC1 × PC2 trend is kept, but when changing
EL (open and filled symbols of different colors), the value of PC2 is
predominately changed, in agreement with the major dependence
of AD/AG on EL.

The concept of “parameterization” of the PCA is now introduced:
Figure 6(b) has the same PCA data set space of Figure 6(a), showing
only the data for the sample with line defects measured with the
633-nm laser (red open circles), plus the new data from 14 Raman
spectra measured in different locations of the CVD graphene
sample shown in Figure 2 (black bullets), with a key difference: here,
PCA does not calculate a new space that maximizes the variances
among the spectra. Instead, it keeps the same orthogonal linear
transformation procedure defined by the standard samples in
Figure 6(a), and it simply projects the new data set (black bullets)
onto this space, as shown in Figure 6(b).

Notice that the CVD-graphene data (black bullets) falls along
the red-solid line in Figure 6(b), which is the one defined by
the standard sample with line-like defects, measured with the
excitation laser wavelength 633 nm. This result is exactly as
expected, considering the new data introduced in Figure 6(b)
were measured with a 633-nm excitation laser, and the sample
is composed mostly of graphene nanocrystallites separated by

Figure 4. (a) Schematic view of the systemused to perform graphene nanomanipulation to study strain effects and adhesion to the SiOx substrate. (b,c) Plots of theG
band wavenumber (ωG) during 2 strain load (red bullets) and unload (open circles) experiments. (d) Raman spectra obtained at the AFM tip after a few cycles of
load-unload experiments where: a reproducible process took place (bottom); graphene break is observed once (middle), graphene break is observed twice (top).
Notice spectral evidence for amorphous carbon deposition at the AFM tip.

Parameterized PCA for graphene-related materials
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grain boundaries, i.e., graphene with line-like defects (see Figure
2(a)). The different spectra are measurements in different
locations in the sample, with more or fewer line defects, as
indicated by the major variation in the PC1 weight for each
black bullet (see exemplary spectra in the insets to Figure 6(b)).
Therefore, the PCA with a parameterized set projects a sample
in a space with well-defined characteristics, generating a
comprehensible result.
The parameterized PCA is now used to analyze different types of

sp2 carbon materials, namely CVD graphene (“CVD” in the legend,
same sample as in Figure 2),[27] graphite, plasma enhanced-CVD
graphene from methane (“peCVD” in the legend),[38] and 2 types
of biochar—a natural deposit (“Rio Negro”) and the anthropogenic
material TPI.[28–30] Figure 7(a) shows a free (non-parameterized)
PCA analysis. Notice the samples are split according to the
different samples, but there is no understanding of what the PC1
and PC2 values mean. There is no clear distinction between TPI

and Rio Negro. For an unknown reason, the data from sample
“peCVD” splits in 2 groups.

Figure 7(b) shows a PCA of the same set of samples shown in
Figure 7(a), but now using the parameterization imposed by the
standard material used to develop Figures 5 and 6. By correlating
the results of Figure 7(b) with Figures 5(a) and 6, the information
obtained from PCA is now clear. Graphite is the perfectly ordered
structure, appearing at the right side of the PC1 × PC2 plot. The
CVD sample has the addition of line defects (grain boundaries);
therefore, it departs towards the left side of the plot changing
mostly in PC1, as already discussed in Figure 6. The sample
“peCVD” has more point defects probably due to the use of
natural gas as precursor, consequently departing along the PC2
axis. Notice the splitting observed in the free PCA shown in
Figure 7(a) for the data of sample “peCVD” is diminished in the
parameterized PCA shown in Figure 7(b), indicating a unique
structural characteristic for this type of material. Samples TPI

Figure 5. (a) Principal component analysis (PCA) of Raman spectra of graphene samples varying from perfectly crystalline to fully disordered, following 2 routes:
increasing the number of point defects (filled symbols—ion bombardment of mechanically exfoliated graphene)[19,20,24] and increasing the number of line defects
(open symbols—amorphous carbon heat treated at different temperatures).[14,30] Spectra were obtained with excitation laser energies EL = 2.41 eV (514 nm,
sample with point-defects, filled symbols) and EL = 2.33 eV (532 nm, sample with line-defects, open symbols). The spectral contribution (weight) from the first
and second principal components (PC1 and PC2, respectively) to the 25 spectra analyzed is shown. The inset shows the spectral variance for the 10 first principal
components. (b) and (c) show the spectral information within PC1 (b) and PC2 (c).

J. L. E. Campos et al.
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and Rio Negro appear in the extreme left of the plot, as
expected, due to the highly amorphous structure of biochar.
Furthermore, there is a more clear separation among these 2
groups of biochar. The TPI samples appear shifted towards larger
values of PC2 when compared with Rio Negro sample, which
indicates TPI has a larger number of point defects. This is
consistent considering TPI biochar is composed by a highly
reactive carbon material, ideal for soil enrichment.

Parameterized versus non-parameterized PCA

Here, we provide another example of the difference between
parameterized and non-parameterized PCA. Figures 3 and 4 show
examples of structural and functional analysis of strain in
graphene-related systems, respectively. Figure 8 shows PC1 × PC2

plots resulting from a non-parameterized PCA of the spectral
measurements from Figure 3 (panel (a)), Figure 4 (panel (b)), and
from both data together (panel (c)). Figure 8(d) shows the result
of the parameterized PCA of both data (from Figures 3 and 4)
together.

As already discussed, the non-parameterized PCA generates a
plot in a space that maximizes the differences among the samples,
whatever these differences are. The data from Figure 3 comes from
a well-defined structure, where different strains in the sp2 carbon
network are found in different locations in the carbon nanocone.
The data from Figure 4 come from well-controlled deformation-
induced experiments, where the changes are also related to strain
in the graphene structure. Therefore, we can understand the routes
formed in the PC1 × PC2 plots of Figure 8(a,b) as related to strain,
which is spectrally evidenced by changes in ωG. However, if we

Figure 6. (a) Similar PCA analysis as in Figure 5, but now for Raman spectra
acquired with different excitation laser energies (red, 633 and 647 nm; green,
514 and 532 nm; blue, 457 nm and UV, 325 nm—see legends). (b) Similar
procedure as in (a), showing only the data for line defects with 633 nm and
adding the data (black bullets) from the CVD graphene sample shown in
Figure 2. The insets are representative spectra.

Figure 7. (a) PC1 × PC2 plot after PCA of 5 different types of samples: CVD,
graphite, peCVD, Rio Negro, and Terra Preta de Índio (TPI). (b) Same
procedure as in (a), but now with the orthogonal linear transformation
parameterized by the standard graphene samples used to develop the Raman
amorphization diagram in the PCA of Figure 6(a).

Parameterized PCA for graphene-related materials
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had no information about what were the differences among those
spectra, the only information we could extract from the PCA plots
would be that the spectra differ somehow, and that they form 2
distinct groups (clearly shown in Figure 8(c)). The reason why there
are 2 distinct groups in Figure 8(c) is because of the unusually high
values observed for ωG in the spectra from Figure 4 (~1600 cm�1

rather than ~1580 cm�1), probably due to graphene doping within
this device.
Differently, if you use the parameterized PCA developed in the

previous subsection, the data collapse on the right extreme of the
sp2-amorphization space, as shown in Figure 8(d). There is,
therefore, clear and well-defined information being displayed: the
spectra come from highly ordered graphitic materials, with a small
amount of defects.
In conclusion, the parameterized PCA discussed here generates

meaningful results and can be utilized to classify the type of sp2

carbon structure according to the amount of point-like and line-like
defects, from pristine graphene to amorphous carbon structures.
When using the sp2 structure parameterization procedure, other
information, such as strain, may be lost, because the chosen
parameterization space just does not emphasizes it. One could,
however, use the parameterization procedure, and the data from
Figure 3 or Figure 4 to generate a parameterization space for strain.

Parameterized PCA for number of layers in graphene

To show the versatility of the PCA parameterization procedure, a
different problem is now addressed, where a 3-dimensional space
is needed: number of layers rather than sp2 structural ordering.

Figure 9(a,b) shows 2 Raman spectral images of a graphene
sample deposited in a SiOx substrate using the exfoliation method
from HOPG. The images are built by raster scanning the graphene
sample to acquire the Raman spectra as a function of sample
position, and then plotting the local intensity of (a) G (1580 cm�1)
and (b) G0 (2700 cm�1) bands. The G0 band is also commonly
named 2D in the literature. The relative intensities between the G
and G0 bands and the G0 lineshape are known to depend on the
number of graphene layers in the sample,[37] and these features
have been broadly used for the determination of the number of
layers.

Each pixel in Figure 9(a,b) represents a full Raman spectrum. We
performed a PCA of this set of 4096 spectra, each spectrum
composed of 1024 data points, each data point comprising the
Raman shift and Raman intensity. Figure 9(c,d) shows a plot of
the weights of the 3 first principal components (PC1, PC2, and
PC3), which are found to be representative in the variance analysis
(more than 56% of dataset variance). PCA thus generates 4 distinct
groups in this 3-dimensional PC space, indicating that the sampled
material has 4 distinct categories of materials. The 4 groups are
connected by a continuous evolution of points, indicating a smooth
transition from a category of material to the other along the PCs,
which is, in principle, unexpected.

To understand the meaning of the PCA weight plot presented in
Figure 9(c,d), we first look into the spectral weight that each PC
assigns to the data, as shown in Figure 9(e,f,g), for PC1, PC2, and
PC3, respectively. Although the 3 PCs are clearly focused on the
main Raman features, it is not yet trivial to understand what kind
of information is hidden into PC1, PC2, and PC3. We then look into

Figure 8. PC1 × PC2 plots of: (a) strain load data from Figure 3; (b) strain load data from Figure 4; (c,d) strain load data from both Figures 3 and 4 together. (a-c) are
the result from non-parameterized PCA; (d) same as in (c) but using the PCA parameterized for structural analysis of sp2 carbon structures. Lines are the
amorphization routes from Figure 6(a). Numbers in (a) indicate the location in the nanocone, as displayed in Figure 3(b). Points 1, 2, 3, and 25 are absent
because they were acquired outside the cone. Numbers in (b) label the data according to the loading procedures in Figure 4b,c. Data 1 to 9 correspond to the
loading data in Figure 4(b); Data 10 to 18 correspond to the loading data in Figure 4(c).
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Figure 9. (a) G band hyperspectral image of a graphene deposited on a SiOx substrate, using the mechanical exfoliation method from an HOPG starting material.
(b) Corresponding G0 (or 2D) hyperspectral image. Every pixel in (a,b) contains a full Raman spectrum at a given sample location, and the PCA of all these spectra
generates the 2 weight plots in (c,d), where the first 3 principal components (PC1, PC2, and PC3) were considered. (d) is the same as (c), only rotating the coordinates
to change the view. (e,f,g) The spectral representation of the 3 first principal components, PC1, PC2, and PC3, respectively. (h,i,j,k) Representative spectra from the
vertices of the PCA tetrahedral in (c,d), obeying the same color code.
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the reconstructed spectra at the vertices of the tetrahedral,
representative of the 4 categories that have been separated in
the PCA (see Figure 9h-k). Figure 9(h) has the typical spectral
shape of the Raman spectrum of multilayer graphene; Figure 9(i)
is typical of the substrate; Figure 9(j) represents the typical spectral
shape of the Raman spectrum of bilayer graphene; Figure 9(k)
represents the typical Raman spectrum of monolayer graphene.
After this inspection of the 4 different categories of materials’
response, it is now possible to elucidate the information contained
in the PCs.
PC1 carries the largest variance among the PCs, and it represents

the difference between the substrate (just background) and the
samples (graphene spectra with G and G0 peaks). PC2 carries
weight relative to the intensity relation between the G and G0

peaks, while PC3 carries weight relative to the internal structure
of the G0 peaks. Therefore, PC2 and PC3 carry the main attributes
known to differentiate single-layer, bi-layer, and many-layer
graphene samples.[39]

With respect to the points connecting the tetrahedral vertices in
the PCA, inspection of the data reveals that the linear transition
between categories does not reflect a property of thematerial itself,
but it actually reflects a limitation of the measurement system.
Specifically, the spatial resolution of the confocal Raman
spectroscopy used to raster scan the sample is limited, and when
moving from 1 category of material to the other, the spectral
information from both materials is acquired.
The data from this sample can then be used to parameterize PCA

as a method for differentiating the number of layers in any
graphene sample. The number of data points in the transitions
between groups is an indicator of the measurement system’s
spatial resolution.

Summary and perspectives

The parameterization of PCA, as presented here, provides a
methodology for large-scale analysis and characterization of a wide
variety of sp2 carbonmaterials. In short, with the Raman data from a
set of standard samples that spans the possible variations of
specific well-known properties, it is possible to find the orthogonal
linear transformation of the data following a PCA algorithm, which
maximizes the ability of classification of an unknown Raman
spectrum within the space spanned by the desired properties.
Such an automated procedure is required if one wants to apply

Raman spectroscopy to industrial procedures, including growth,
functionalization, composites synthesis, or large-scale device fabri-
cation using graphene-related materials. Here, we demonstrated
2 case studies: (1) the amorphization structure of sp2 carbons,
parameterized with the amount of point-like and line-like defects
in the 2-dimensional structure, and (2) the number of layers in
graphene samples. These 2 examples of parameterized PCA are
ready to be used for the quality control of graphene growth via
CVD or chemical/physical exfoliation methods or to monitor the
production of biochar. However, to implement the procedure
utilizing any available programming tool, it is necessary to have in
hands either the set of standard spectra that will be utilized to
parameterize the PCA analysis, or the transformation matrices
generated by the standard data.
The concept of parameterized PCA is not limited to the examples

given here, and it is not limited to graphene-relatedmaterial. It is, in
general, an automated model to allow Raman spectroscopy
large-scale analysis with rich interpretability.
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