
CARBONNANOTUBES: OPTICAL and EXCITONIC

PROPERTIES†

Article for Dekker Encyclopedia of Nanoscience and Nanotech-
nology

R. Saito,∗ 1 M.S. Dresselhaus,‡ G. Dresselhaus,‡‡ A. Jorio,# A. G. Souza Filho,## and M.

A. Pimenta,#

* Department of Physics, Tohoku University, Sendai, 980-8578 Japan

‡ Department of Electrical Engineering and Computer Science and Depart-
ment of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
USA

‡‡Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA

# Departamento de F́ısica, Universidade Federal de Minas Gerais, Belo Hor-
izonte, MG, 30123-970 Brazil

## Departamento de F́ısica, Universidade Federal do Ceará, Fortaleza - CE,
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Overview

The interaction between light and solids gives rise to many optical phenomena that can

be observed by a variety of experimental techniques such as: (1) photo (or infrared) ab-

sorption and emission, (2) Raman and Rayleigh scattering, (3) photo-electron and Auger

1Riichiro Saito is a Professor of Physics at Tohoku University, Japan and has worked intensively on
the theory of carbon nanotubes since 1991. E-mail: rsaito@flex.phys.tohoku.ac.jp
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spectroscopy, (4) ultra-violet and X-ray photo-electron spectroscopy, etc[1]. Especially

for single wall carbon nanotubes (SWNTs), that is, a graphene sheet rolled up into a

seamless cylinder with a diameter around 1-3nm and a length of more than one micron[2],

much useful information on the optical properties can be obtained by exploiting low-

dimensional effects in which electrons and phonons are confined and coupled to each

other in a one dimensional (1D) system. In the 1D system, an exciton (a photoexcited

electron-hole pair) is confined and thus the binding energy of the exciton of the SWNT

becomes large (∼ 1eV) compared with the exciton in three dimensional (3D) semiconduc-

tors (∼ 1meV)[3]. Since the exciton exists in SWNTs at room temperature, most of the

optical properties, such as observed by their resonance Raman behavior or by Rayleigh

scattering spectra, the electron-phonon interaction for phonons (the Kohn anomaly) and

the electron-electron interaction (electronic Raman spectra) are described by the exciton

picture[4]. In this article, which is an updated version of the encyclopedia article pub-

lished in 2002, we overview the optical properties based on exciton photophysics, which

was in a great progress during this decade.

Since an exciton is localized in real space, an exciton wavefunction is expressed by

a linear combination of delocalized Bloch states specified by the wavevector k, in which

the contribution of each k state to an exciton wavefunction, Z(k), is given by solving the

Bethe-Salpeter equation[5]. Once we know Z(k), the exciton-photon or exciton-phonon in-

teractions can be expressed by a linear combination of electron-photon or electron-phonon

interactions, respectively, in k space by appropriate weighting of Z(k) [6]. Electron-photon

or electron-phonon interactions are calculated as a function of k by use of extended tight

binding methods within a single particle picture. Thus the optical properties of the ex-
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citon can be calculated by considering exciton-photon and exciton-phonon interactions,

which depend on the geometric structure of a SWNT. In this article, we will not go into

detail regarding the derivation of the exciton-photon and exciton-phonon interactions,

but we will instead discuss the experimental observations and compare them with the

calculated results.

Chiral vector: definition of a SWNT

First of all, we define the geometrical structure of a SWNT. In Fig. 1 we show the cylin-

drical structures of SWNTs. Each end of the nanotube is terminated by the hemisphere

of a fullerene, or a cap, containing six pentagonal carbon rings. Since it is considered that

nanotubes grow with a cap, the cap structure is essential for generating different kinds of

geometries for nanotubes. However, since a SWNT is usually sufficiently long (micron)

compared with the SWNT diameter (nm), we will neglect the effect of caps for discussing

the optical properties.

Among the various nanotube structures, there are only two kinds of nanotubes which

have mirror symmetry along the nanotube axis, namely the armchair and zigzag nan-

otubes, as shown in Fig. 1(a) and (b), respectively. The names of armchair and zigzag

are taken from the shape of the edge cuts shown on the right side of Fig. 1. All other

nanotubes [Fig. 1(c)] exhibit axial chirality and are called chiral nanotubes.

The geometry of a nanotube is uniquely expressed by two integers, (n,m). In Fig. 2,

the rectangle OAB′B is shown, and by connecting OB to AB′, we can make the cylindrical

shape of the nanotube. In this case, the vector OA (hereafter we call OA the chiral vector)

corresponds to the equator of the nanotube. OA can be expressed by a linear combination
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of the two unit vectors a1, and a2, of the honeycomb lattice shown in Fig. 2, so that

OA = na1 +ma2 ≡ (n,m). (1)

The length of OA divided by π gives the diameter of the nanotube, dt. Two lattice vectors

OB and AB′, which are perpendicular to OA, correspond to the translation vector T, in

the one-dimensional lattice of the nanotube, and T is a function of n and m, as shown

in Table 1. The rectangle OAB′B denotes the unit cell of the nanotube containing N

hexagons and 2N carbon atoms, where N is expressed by

N =
2(n2 +m2 + nm)

dR
. (2)

The integer dR is the greatest common divisor (gcd) of (2n +m) and (2m + n). Further

details of the mathematics describing these variables are given in Table 1 and are further

explained in Reference[2]. Fig.1
and 2

Table 1
Cutting lines: one dimensional Brillouin zone

The valence electrons of sp2 carbons, such as graphite and nanotubes, consist of π (2p)

electrons. Since each carbon atom in a nanotube has one π electron (and since there are

2N carbon atoms in the nanotube unit cell), 2N one-dimensional electronic π bands are

obtained for a SWNT by applying periodic boundary conditions around the circumferen-

tial direction OA. Such a treatment for the electronic structure is called “zone-folding.”

Along the direction OA, the wavevectors (2π/(wave length)) which are perpendicular to

the nanotube axis direction, k⊥, are discrete and are given by the condition:

Ch · kp
⊥ = 2πp, (p = 1, . . . , N). (3)
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Thus one obtains N inequivalent kp
⊥ = 2πp/|Ch| = 2p/dt discrete wave vectors for bonding

and anti-bonding π bands, and the one-dimensional wave vectors, k‖, parallel to the

nanotube axis, are continuous (−π/T < k‖ < π/T ) for an infinitely long SWNT. The one

dimensional Brillouin zone thus obtained is called a cutting line. When we discuss the

electronic or phonon structure of a SWNT, the concept of the cutting lines is important[7,

8].

Electronic structure of a SWNT

One-dimensional energy dispersion relations for a nanotube E1D(p, k‖) are obtained by

cutting the two-dimensional energy dispersion relations of graphite E2D(k) along the k‖

direction with wave vectors kp
⊥ placed at equal distances of 2/dt with a length of 2π/T ,

E1D(p, k‖) = E2D(k
p
⊥ + k‖) (4)

where, by a tight binding calculation, E2D(k) is given by:

Eg2D(kx, ky) = ±γ0

{
1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)}1/2

(5)

in which the coordinates of kx and ky are given in Table 1. The plus and minus signs in

Eq. (5) correspond to unoccupied (anti-bonding) and occupied (bonding) π energy bands,

respectively. Here γ0 > 0 is the tight binding nearest neighbor overlap energy parameter.

When we plot the Eg2D in the hexagonal 2D Brillouin zone (see Fig. 3), the bonding

and anti-bonding energy dispersion relations touch each other at the hexagonal corners,

which are the K and K ′ points of the two-dimensional Brillouin zone (BZ). Because of the

periodicity of Eg2D(kx, ky) in k space, the K and K ′ points are inequivalent to each other,

which we call the K and K ′ valleys. For Raman scattering in SWNTs, there are two
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kinds of scattering processes, that is, intravalley and intervalley scattering processes in

which the photo-electrons are scattered, respectively, within the same valley and between

different valleys (K → K’) .

The asymmetry between the shapes of the bonding and anti-bonding π bands comes

not directly from Eq. (5) but rather from the higher order corrections to the tight binding

parameters known as the overlap parameter s. In the following discussion, however, for

simplicity, we use s = 0, since the value of s that we used is small (s = 0.129). Fig.3
and 4

Cutting these 2D energy dispersion relations by equi-distant lines parallel to the nan-

otube axis (cutting lines) corresponds to obtaining the 1D energy dispersion of nanotubes,

as shown in Fig. 4. In this formulation, the Fermi energy is located at E = 0, and thus

depending on whether there are energy bands which cross the Fermi energy or not, the

nanotube is, respectively, either metallic or semiconducting. The condition to get either

metallic or semiconducting nanotubes is whether the cutting lines cross theK orK ′ points

where the bonding and anti-bonding π bands of 2D graphite touch each other (see Fig. 3). Fig.5

In Fig. 5 we show by solid lines the electronic density of states (DOS) for (a) (10,0) and

(b) (9,0) zigzag nanotubes. Dotted lines denote the DOS for two-dimensional graphite for

comparison. For metallic nanotubes, the density of states at the Fermi energy is constant

as a function of energy, while there is an energy gap for semiconducting nanotubes as seen

in Fig. 5. The value of the density of states at the Fermi energy, D(EF ), is 8/
√
3πaγ0 in

units of states per unit length along the nanotube axis per eV and D(EF ) is independent

of diameter. If D(EF ) is given by per gram per eV, the D(EF ) is relatively large for small

diameter nanotubes. The many spikes in a plot of the DOS vs. energy for nanotubes

correspond to the energy positions of the minima (or maxima) of the energy dispersion

6



curves of Fig. 4. Each spike exhibits a singularity of 1/
√
E − E0 (where E0 is the energy

extremum) that is characteristic of one-dimensional materials and this singularity is known

as a Van Hove singularity.

Van Hove singularity

The energy position of the Van Hove singularity near the Fermi energy is determined by

how the cutting lines are located near the K point of the 2D BZ. Since the wavefunctions

have a time-reversal symmetry between K and K ′, the relative position of the cutting

lines to the K ′ point is the same as that to the K point. Thus the Van Hove singular

energies are degenerate for the K and K ′ valleys. When a magnetic flux unit goes through

a hollow core of a nanotube cylinder, this degeneracy is lifted[2]. Fig.6

In Fig. 6 we show the cutting lines around the K point for (a) metallic and (b)

semiconducting nanotubes. In the case of metallic nanotubes, the central cutting line

just goes through the K point, and the two nearest cutting lines are located at the same

distance of K2 from the K point. The corresponding energy dispersions for the central

cutting line and for the two neighboring lines are, respectively, metallic linear energy

dispersions, and are the first subbands (see Fig. 4a) which give the van Hove singularities,

EM
11 nearest to the Fermi energy. An important fact about the energy dispersion of 2D

graphite (known as graphene) around the K point is that the energy dispersion of Eq. (5)

is linear in wavevector k, when we measure k from the K point, that is

E(k) = ±
√
3γ0
2

|k|a. (6)

Within the linear approximation of the energy dispersion, the equi-energy contour of two-

dimensional graphite is a circle around the K point (see Fig. 7). Thus only the distance of
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the two neighboring cutting lines from the K point is essential for determining the energy

position of a Van Hove singularity. Since the separation between two cutting lines, K2, is

inversely proportional to the diameter of the nanotube, dt, the Van Hove singular energies

relative to the Fermi energy, EM
11, are inversely proportional to dt, too. Fig. 7

In the case of a semiconducting nanotube, on the other hand, the K point is always

located at a position one-third of the distance between the two cutting lines as shown

in Fig. 6(b)[2]. Thus the first and the second Van Hove singular energies, ES
11 and ES

22,

respectively, correspond to the one-dimensional energy dispersion for the nearest and the

second nearest cutting lines, respectively, whose energies, as shown in Fig. 6, are one-third

and two-third of the smallest energy separation of the Van Hove singularity of metallic

nanotubes with a similar diameter.

The Kataura plot
Fig. 8

In Fig. 8(a), the energy separations of ES
ii and EM

ii are plotted as a function of nanotube

diameter, dt, in which each point corresponds to a different (n,m) nanotube. We call

this plot a Kataura plot because Kataura et al. were the first to make such a plot for

explaining phenomena such as the three peak structure of the optical absorption spectra

observed for a SWNT bundle. In such a plot, they assigned the three lowest energy

transitions to ES
11, E

S
22, and EM

11 [9]. The authors of this article have used this plot for

obtaining the resonance condition of Raman spectra [10], and with such a plot we can

even assign the nanotube chirality (n,m) from measurement of the Raman spectra of an

individual single nanotube, as shown in Fig. 8(b) [11].

The Kataura plot has also been used for characterizing the diameter distribution of
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a SWNTs sample by Raman spectroscopy. The Kataura plot itself has been improved by

introducing the curvature effect by using the extended tight binding method [12] and by

introducing the exciton and environmental effects [13]. The most updated Kataura plot in-

formation is now obtained on the “exciton Kataura plot page” at http://flex.phys.tohoku.ac.jp/eii/.

By changing the laser excitation energy, we can also get the experimental Kataura plot,

from Raman [14], photoluminescence [15], and coherent phonon spectroscopy[16].

Trigonal warping effect

The linear energy approximation, however, does not work well for k points far from the

K point. In this case, the equi-energy contours become deformed with a deformation

that increases with increasing k, and the contour eventually becomes a triangle which

connects three M points around the K point (Fig. 7) when we consider the periodicity of

the electron dispersion relations in k space. The distortions of the equi-energy contours

for large k values shown in Fig. 7, are known as the trigonal warping effect of the energy

dispersion [10]. When the trigonal warping effect is included in calculating the dispersion

relations, the direction of the cutting lines, which depends on the chiral angle of the

nanotube (or simply on its chirality), is essential to determine the precise positions of the

Van Hove energies. For example, two neighboring cutting lines in the metallic nanotube

in Fig. 6(a) are not equivalent to each other, and this fact gives rise to a splitting of the

Van Hove peaks in the DOS. This splitting of Van Hove peaks is a maximum for zigzag

nanotubes and monotonically decreases with chiral angle to zero for armchair nanotubes

for which the two neighboring cutting lines are equivalent to each other. For both metallic

and semiconducting nanotubes, the trigonal warping effect appears as a modification of
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the energy position of the Van Hove singularities, that depends on chirality. This value

of the splitting of the Van Hove singularities (0.1 eV at most) is large enough to be easily

detected by the energy accuracy of resonance Raman spectroscopy (10meV). It is therefore

possible to specify the (n,m) values for SWNTs from a detailed analysis of the resonance

Raman spectra of each SWNT using a tunable laser.

Resonance Raman spectroscopy

If the laser excitation energies are matched to an Eii of a SWNT, the Raman intensity

is enhanced by about a factor of 103, which is known as the resonance Raman effect and

the spectra thus obtained are called resonance Raman spectra. The resonance effect is

strong in the case of SWNTs, since the Van Hove singularity of the joint density of states

is sharp (1/
√
E − Eii). When the laser light is focused down to a diameter of about the

wavelength by an optical microscope, we can observe the Raman signal with a spatial

resolution of 1 micron, which we call a micro-Raman measurement. By scanning the light

over the surface of the sample, we can get the spacial distribution of an (n,m) specified

SWNT or of graphene, and obtaining the spacial distribution is called Raman mapping.

For a fixed point of the laser light, when we change the energy of the laser light, a strong

resonance Raman signal is obtained for each (n,m) SWNT around each Eii energy, which

is called the Raman excitation profile. In order to get a continuous laser light source, a

dye laser excited by another laser is often used and a triple monochromater is used as

an optical filter for efficiently removing the Rayleigh scattered light while getting good

spectral resolution. When we put an isolated SWNT on the sample holder or when we

use a sample with a low SWNT density (1-10 SWNTs / µm2), it is very hard to observe
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a resonance Raman signal.

Typical Raman vibrations of a SWNT that are seen in the Raman spectra are (1)

the radial breathing mode (RBM, 100-400cm−1) in which the diameter of a nanotube is

vibrating, (2) the G band (longitudinal (LO) and in-plane transverse optic (iTO) modes,

1550-1580cm−1) which is split into G+ and G− bands in the case of SWNTs, (3) the D

band (1350cm−1) which appears only for the case that SWNTs have defects, and (4) the

G’ band (or 2D band, 2700cm−1) which is a two phonon mode as discussed further in the

next section.

Single and double resonance Raman spectra

In an inelastic scattering process of light, one or several phonons can be excited. In one

phonon generation, since the scattered state for the photo-excited electron from k to k+q

comes by −q phonon emission, the photo-excited electrons should recombine with a hole

forming an electron-hole pair; this process thus results in an emitted scattered photon,

where the phonon −q vector should be zero. Thus only a phonon frequency at the Γ point

(center of the Brillouin zone) is observed in first order Raman scattering, which is a one-

phonon Raman process. In a single resonance Raman spectra, either the incident photon

or the scattered photon is resonant, having the same energy as that of the transition

energy between the ground and the excited states of the electron. We call these processes

incident or scattered resonance, respectively.

In the case of two phonon emission, the restriction of q = 0 for one-phonon Raman

case is relaxed. Thus for two phonon-emission, any q can be selected as far as a pair of q

and −q phonon vectors must be selected to return to the original k states of the electron
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for completion of a Raman process. In the second-order Raman process, there are three

intermediate states, namely at the initial k, the intermediate k+ q and the final k for the

photo-excited carriers. If two of the three intermediate states matches an actual electronic

state, the Raman signal is enhanced twice in the sense that two of three factors in the

energy denominators in the perturbation expansion of fourth order perturbation theory

become zero, thereby resulting in a strong intensity, that is comparable to the intensity

of a first order Raman process. This special second-order high intensity process is called

double resonance Raman spectroscopy, because two of the three energy denominators

vanish [17, 18].

In the case of SWNTs, the RBM and G bands are due to first order single resonance

Raman spectral processes, while the G’ and D bands are both second order double res-

onance Raman spectral features. For the double resonance Raman spectra, the G’ band

consists of two inelastically scattered phonons and the D band consists of an inelastic

scattering by a phonon and an elastic scattering by a defect. There are many possible

combination or overtone phonon modes that can be observed by double resonance Raman

scattering, though the Raman spectral features other than G’ and D band are generally

weak because of their small electron-phonon interactions. For more discussion, see, for

example, a review article and recent paper of double resonance theory[19, 20, 21].

The Kohn anomaly effect

Raman spectra are also observed when (1) applying pressure or uniaxial stress, (2) chang-

ing the temperature, (3) applying a magnetic field, and (4) changing the Fermi energy, and

in each case valuable information about the electrons, phonons and the electron-phonon
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interaction can be obtained. The electronic and phonon structures are both modified by

applied fields and thus by measuring the Raman peak frequency and spectral width, we

can determine the interaction between electrons and phonons. The Fermi energy can be

changed, for example, by electro-chemical doping either through the use of an electrolytic

solution or by applying a gate electrode on a SWNT. When the gate voltage is applied,

an electric dipole layer appears around a SWNT which can change the Fermi energy by

up to 1eV [22, 23].

If there is a metallic energy subband as occurs in a metallic SWNT or in graphene,

a phonon can virtually excite a electron-hole pair in the metallic energy band by an

electron-phonon interaction. Here “virtually” means that the electron-hole pair can be

relaxed to emit a phonon again, which is a second-order perturbation for producing a

phonon. As a result, the phonon frequency and the life time of the phonon is modified

by the self-energy for a phonon coming from the electron-phonon interaction. Here the

self-energy of a particle is defined by an increased energy (or mass) by emitting and by

absorbing an elementary excitation virtually through an interaction of the particle with

a field. In this case, the particle is a phonon, the excitation is the electron-hole pair

generation, and the interaction is the electron-phonon interaction. As a result of this

self-energy consideration, the phonon has both a different frequency from the so-called

bare phonon frequency and a finite life time.

The real (imaginary) part of the phonon self energy corresponds to the frequency

shifts (spectral broadening) of phonon spectra. In a general case, the phonon frequency

decreases (softens) and the spectra becomes broad in the presence of the electron-phonon

interaction with electron-hole pair formation at the metallic energy subband, which is the

13



Kohn anomaly effect [23]. The Kohn anomaly effect is a non adiabatic phenomena in the

sense that the electron system can not remain in the ground state while it is involved in

atomic vibration. In the adiabatic approximation, on the other hand, the electrons quickly

follow the atomic vibration. The Kohn anomaly effect can be suppressed by changing the

Fermi energy. More specifically, when the Fermi energy increases (or decreases) by half

of the phonon energy, an electron-hole pair can not be excited by a phonon because of

energy momentum conservation considerations and then the phonon softening phenomena

do not appear [24].

Hereafter, we first discuss some specific subjects that are relevant to the optical

properties of SWNTs. First we define the exciton and excitonic phenomena, which is

followed by a discussion of modifications to the simple single and double resonance Raman

spectra by self-energy considerations.

Exciton photophysics: Fluorescence

Optical emission or fluorescence signals from a nanotube are not easy to observe, because

most SWNT samples contain bundles of nanotubes in which on average one of three

nanotubes are metallic. In a metallic nanotube, the electron-hole recombination occurs

non-radiatively through metallic energy dispersion pathways discussed above. Further-

more, optical or direct coupling between nanotubes in a bundle suppresses fluorescence

in semiconducting nanotubes, but if a semiconducting nanotube is isolated from other

nanotubes, it is then possible to measure fluorescence behavior. Such spectra have been

obtained for nanotubes separated from one another in a zeolite or when nanotubes are

coated by a micelle (soap) structure[15, 25]. The fluorescence of nanotubes occurs at the
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real energy gap ES
11 of semiconducting nanotubes and provides a good probe of excitonic

effects in SWNTs as discussed below. If high spatial resolution greater than the aver-

age distance between two nanotubes is available, we can assign (n,m) values from the

fluorescence measurement on an individual nanotube[26].

Definition of an exciton

When we discuss optical processes for SWNTs, the concept of the exciton, which is defined

as a bound pair of a photo-excited electron and a hole is important [5, 6, 27, 28, 29, 30, 31].

In conventional semiconductors, an exciton exists only at low temperatures below 10K

because the electron-hole interaction is relatively weak (∼ 1meV). However, due to the low

dimensionality of SWNTs, the overlap between the electron and the hole wavefunctions

increases and the exciton binding energy for a SWNT become very large, up to 1eV. As

a consequence, the exciton can exist in SWNTs even at the room temperature.

Because of the localization of the wave-function in real space, the delocalized Bloch

wave-functions labelled by the wave-vector k become mixed with each other by the

Coulomb interaction, and the mixing effect is solved in term of the Bethe Salpeter equa-

tion [5]. Since the exciton wavefunction has a Gaussian shape along the nanotube axis

direction, the k dependent mixing coefficient, Z(k), shows a Gaussian distribution whose

center is at a Van Hove singular k point. Since the size of the exciton wavefunction is

larger than the diameter dt of a SWNT (around 1-10nm depending on dt), the mixing co-

efficient has a large value for only one cutting line of the 1D Brillouin zone. For this reason

the wavefunction is almost constant around the circumferential direction of a nanotube.

Generally speaking, an electron or a hole can exist on one of the two energy dispersion
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curves around the degenerate Fermi energy, near the K and K’ points in two dimensional

Brilloin zone. Therefore, there are four possibilities (16 if we include spin) for the excitonic

states, except for armchair tubes, which have 16 different excitons without considering

spin because of their two-fold degenerate cutting lines for each K (K’) point. However,

because of symmetry consideration, three of the four excitonic states are not optically

allowed, and these optically forbidden states are called dark excitons. Therefore only

one of the four excitons is dominant, and is optically allowed (called the bright exciton)

[32, 33].

Many body effects on the optical transition energies

The optical transition energies Eii in the Kataura plot are given by the exciton energy.

However, the Coulomb effect appears not only for electron-hole pairs but also for photo-

excited electrons as well as for many valence electrons, and we call all of these additional

effects collectively “many body effects”. These latter interactions increase the energy of

the electron (decrease the energy of a hole), and these energy contributions collectively

contribute to increasing the energy gap compared with the single particle energy difference

between an electron and a hole. This energy difference is called the self-energy correction

of the Coulomb interaction.

In the first principles calculations, the self-energy correction is taken into account as

a pseudo-particle energy. Here because of electron-electron interactions, the wavevector

k in the lattice is no longer a good quantum number and therefore the excited electron

has a life time for having a k. Thus the electron is treated as a pseudo-particle within its

life time and an energy uncertainty for the pseudo-particle energy is thus introduced.
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The exciton excitation energy is as a result given by Eii = (single particle energy)

+ (self energy) - (exciton binding energy) ≡ (pseudo particle energy) - (exciton binding

energy). We call the (self energy) - (exciton binding energy) the many body effect [3, 5].

Measuring Eii with photoluminescence

Because of the localization of the exciton wavefunction, optical transition matrix elements

for an exciton are enhanced by a factor of 102 in comparison to the matrix element for a

free electron-hole pair. This enhancement contributes to the possibility of observing single

SWNT Raman and PL spectroscopy. This section deals with a review of the experimental

work devoted to measuring the bright excitons for each (n,m) SWNT. The plot of these

optical energies (Eii) as a function of tube diameter (Fig. 8) has been called the “Kataura

plot”, in recognition of the importance of such plots for visually first introduced by H.

Kataura et al.[34]. Fig.9

In the photoluminescence (PL) process, photo-absorption occurs at higher optical

transition energies (Eii, with i > 1), most generally E22 for a conventional range of

experimental wavelengths, and the photo-excited carrier is rapidly relaxed to E11. PL then

occurs by the electron-hole recombination resulting in the emission of a photon with energy

E11. By building a two-dimensional map of the PL intensity as a function of the energies

of the photo-absorption, many peaks appear corresponding to the pairs [E11 and E22] for

each (n,m) [35, 36]). Early historic work of single nanotube spectroscopy (Fig. 8) showed

that different nanotube samples contained different (n,m) distributions, summarizing

experimental data and for making comparisons to theoretical calculations[13]. The energy

and intensity of these peaks (as illustrated in the Fig. 9 [35] for different wrapping media)
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depend on environmental effects introduced by the nanotube coating which we discuss in

the next subsection.

PL measurements provide a convenient and powerful tool for determining the dis-

tribution of (n,m) semiconducting SWNTs in the sample (Fig. 9a). Metallic SWNTs,

however, do not exhibit any PL spectra, since the photo-excited carrier can decay non-

radiatively at a much faster rate than the radiative decay into the metallic energy band.

Thus in a SWNTs bundle, we expect a rapid energy transfer from a semiconducting

SWNT to a metallic SWNT, so that no PL emission is observed in this case. Thus single

SWNTs that are isolated by a surfactant or suspended between two electrodes in the air

are needed to observe PL. These limitations can, however, be overcome by using resonance

Raman spectroscopy which is discussed in the next Section.

Environmental effects

The optical properties of carbon nanotubes have been exploited for many applications

and one common feature for all these applications is that the carbon nanotubes are func-

tionalized by interaction with some specially tailored environment. Understanding how

the interactions with the environment affect the optical properties is given by use of the

exciton energy concept. Fig. 10

The measured Eii values can be modified by dielectric constants of surrounding ma-

terials, which we call environmental effects. Figure 10 shows a comparison between the Eii

measured from two different samples, named the “super-growth” SWNT sample (bullets)

[37] and the “alcohol-assisted” SWNT samples (open circles) [38]. From Fig. 10, we see

that the Eexp
ii values from the “alcohol-assisted” SWNTs are generally red shifted with
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respect to those from the “super-growth” SWNTs.

More generally, the Eii energy upshifts or downshifts depends on whether the semi-

conductor SWNTs are type I or type II, and on the both value of i in Eii, and the

SWNT diameter. The magnitude of the observed shift in energy depends on the dielec-

tric constant of the environmental material. This situation is similar to the behavior of

the exciton energy for the hydrogen atom, which depends on the dielectric constant by

substituting e2/ε for e2 in me4/2h̄2 (1 Rydberg) term into the expression for the energy

of the hydrogen 1s orbital. The contribution coming from the electric field between the

e-h pair of the exciton that lies outside of the SWNT will also affect the exciton energy.

Since the electric field also penetrates into the nanotube itself, the dielectric response of

the π electron is also important. An important point is that even a metallic SWNT has

an exciton binding energy, even though the perturbation due to the excitonic effects is

relatively small in comparison to that of semiconducting SWNTs [29].

Assuming that κtube does not change from sample to sample, since the structure of

a given (n,m) tube should be the same, these results indicate that the “alcohol-assisted”

SWNTs are surrounded by a larger κenv value than the “super-growth” SWNTs, thus

increasing the effective κ and decreasing Eii for the “alcohol-assisted” SWNTs. However,

the general dielectric constant depends on the tube (n,m) structure. By “general” we

mean κ comprises the screening from both the tube and the environment. Interestingly,

dt-dependent effective κ values for the exciton calculation are needed to reproduce the

experimental Eii values consistently[13].
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Radial Breathing Mode

One of the most powerful optical measurements for carbon nanotubes is resonance Raman

spectroscopy. The resonance enhancement effect, which is caused when the incident or

scattered photon is in resonance with optical transitions involving Van Hove singularities

in the valence and conduction band, allows the observation of a signal from even one

nanotube, as shown in Fig. 8(b). Recently much progress in Raman spectroscopy has

been made, and therefore it is not possible to cover all important advances in detail [see

Reference 4] within the available space of this review. The present summary therefore

only provides an overview of Raman spectroscopy of carbon nanotubes, and only a few

essential points which are important for analyzing the many features of the resonance

Raman spectra of SWNTs are discussed. Fig. 10

In carbon nanotubes, the Raman spectra show a variety of features associated with

first-order processes, as well as combination or overtone modes up to 3200 cm−1 or even

higher numbers (energy). The characteristic mode that is not observed in other sp2

carbons but is only observed in nanotube samples is the radial breathing mode, RBM

(see Fig. 10). The RBM frequency appears from 100–550 cm−1, depending on the SWNT

diameter, ranging from 2nm–0.4 nm, respectively. In order to check if a sample contains

single or double-wall nanotubes, the RBM spectra provides an easy way to do just that. It

is noted that if no RBM spectra are observed, this does not always mean that there are no

SWNTs in the sample, because we can imagine the case that the resonance condition for

a given diameter distribution of SWNTs might be far from the available laser excitation

energies. In some cases, because of the large signal from the wings of the Rayleigh

(elastically) scattered light, the RBM signal cannot be resolved in the noisy Rayleigh
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background signal. Use of a triple-monochromator or a notch filter is a simple way to avoid

this problem, but use of a notch filter in practice limits observations to ωRBM > 100 cm−1.

In Fig. 11(b) we plot Eii as a function of inverse tube diameter 1/dt. Circles and

crosses correspond, respectively, to metallic and semiconducting (n,m) tubes. For a laser

energy of 1.58 eV, only few metallic and semiconducting (n,m) tubes with EM
11 and ES

22

Van Hove singularities satisfy the resonance condition, as seen in Fig. 11(a). Since the

resolution of a Raman spectra is typically of 1 cm−1 out of 100–200 cm−1, the difference

between the peak frequencies of different (n,m) tubes can be easily distinguished. Fig. 11

G-band

The second important Raman feature is the G-band mode which appears near 1590 cm−1

in SWNTs. This band comes from the Raman-active mode of sp2 carbons (graphite),

and thus all graphitic materials show this spectral feature. What is special in nanotubes

is that the G-band splits into two most prominent peaks, denoted by G+ and G−. In

fact, six (or three) phonon modes are active for chiral (or achiral) nanotubes in this

phonon frequency region, but, among the Raman-active modes, two A (or A1g) modes

are the strongest and account for the two peaks, G+ and G−. Regarding the other four

Raman-active modes, two have E1 and two have E2 symmetries (or two Raman-active

modes E1g or E2g in the case of achiral tubes), and these E1 and E2 modes give rise to

relatively weak Raman peaks. The presence of the E1 and E2 modes are mainly seen from

the Lorentzian decompositions of the lineshape of the observed spectra using polarized

light when carrying out polarization studies. The difference between the two G band

components, G+ − G−, is inversely proportional to d2t , which comes from the curvature
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effect that is responsible for the splitting of the degenerate in-plane optic phonon modes,

E2g, of two-dimensional graphite at the Γ point [39].

D-band

In the range 1250−1400 cm−1, a defect-induced Raman feature , called the D-band, ap-

pears only for defective sp2 carbons. The appearance of a strong D-band in nanotubes

indicates that a nanotube has many symmetry-breaking defects. Nanotubes synthesized

by different synthesis methods have varying degrees of defects. The D-band is a dispersive

feature, since its frequency increases by approximately 50 cm−1 with a 1 eV increase in

the laser excitation energy, Elaser. The physical origin of this very large dispersiveness

has been explained by double resonance Raman theory [40, 41, 18] in which the photon-

absorbed electron is scattered twice before final recombination. Although this process is a

second-order light scattering process, the intensity is comparable to that of the first-order

resonance process when two of the three intermediate states are in resonance with the

real electronic states.

In Fig. 12 two different (a) first-order and (b) second-order Raman processes are

shown. The crossed lines for each figure denote the electronic energy states of graphite

around the K points in the Brillouin zone about which the optical transition occurs. The

upper figure is for the incident laser light resonance condition in which the laser excitation

is at almost the same energy as the energy required for optical absorption. The lower

figure is for the scattered resonance condition, in which the scattered electron energy,

(Elaser − Ephonon), is the same as the optical emission energy. The resonance laser energy

differs in the two cases by the phonon energy. More precisely, the laser energy for the
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scattered resonance energy is higher by Ephonon than that for the incident resonance energy

in a Stokes scattering process which creates a phonon. An important point to be noted

is that, for all Raman-active phonon modes, the incident resonance condition gives the

same resonance laser energy, while the scattered resonance condition gives different laser

energies, depending on the energy of phonons. Thus by observing more than one Raman

spectral feature for the same tube or not, respectively, we know whether the observed

resonance Raman process is with an incident photon or with a scattered photon.

In a first-order process, in order to recombine an electron and a hole at the original k

point, the phonon wave vector q should be sufficiently small, or practically zero. This is

why we see in most solid state textbooks that the Raman spectra of solids can be observed

only for zone-center (q=0) Raman-active phonon modes. In the second-order, double or

triple resonance process, it is clear from Fig. 12, that the phonon wave vector q is not zero.

Furthermore, when the laser energy increases, the electron k vector becomes further apart

from the K point in order to satisfy the requirements for optical absorption, and thus

the corresponding q vectors become longer. Here we use the requirement of the double

and triple resonance processes that the intermediate k + q states should be unoccupied

electronic states, too. This is the reason why the dispersive phonon modes change their

Raman frequencies when the laser excitation energy is changed, since the phonon wave

vector q that satisfies the double or triple resonance Raman condition changes when the

excitation laser energy changes. Fig.12
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Intravalley and Intervalley Scattering

In two-dimensional graphite, there are two inequivalent corners of the Brillouin zone,

K and K ′, as shown in Fig.7, and also called Dirac points. In the electron scattering

by phonons or impurities (elastic scattering), there are two possibilities. One is an intra-

valley scattering process in which an electron (or the hole) scatters within the same region

of the K (or K ′) point. The other is inter-valley scattering in which an electron (or a

hole) is scattered from the K to the K ′ region (or K ′ to K). The corresponding phonon

q vectors for intra-valley and inter-valley scattering are phonons around the Γ and K

points, respectively. Thus we try to find the phonon dispersion point around either the Γ

or K points which satisfies the double or triple resonance condition.

In Fig. 13(a) the phonon q vectors for the double resonance condition are shown as

a function of Elaser (bottom axis) and of the q vector along Γ −K (top axis). Solid and

open circles correspond to phonon modes around the K and Γ points, respectively. In

Fig. 13(b) are collected the many experimental Raman signals which have been observed

in many disordered graphitic materials for many years, and these are here plotted in

the Brillouin zone of 2D graphite [18]. By specifying either Γ or K point phonons, all

of the experimental points could be assigned to one of the phonon energy dispersion

relations (6 solid lines), thus providing clear evidence that double resonance theory can

work well for the dispersive phonon modes of 2D graphite. The resulting dispersion

relations show how resonance Raman scattering can be used to obtain phonon dispersion

relations experimentally based on double resonance theory. Fig. 13

All second-order phonon processes shown here are one-phonon emission processes.

Thus one of the two scattering processes shown in Fig. 12(b) should not be a phonon scat-
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tering process. We consider that the non-phonon scattering process is an elastic electron

scattering caused by an impurity or a defect in which electronic states with momentum k

are mixed with each other. This is the reason why the dispersive phonon modes appear

in a frequency region lower than 1620 cm−1 only for defective carbon materials. If the

two scattering processes are both phonon scattering processes, we do not need the defect

scattering process, and thus strong dispersive overtone phonon modes appear. An exam-

ple of a two-phonon process is the G′-band appearing around 2700 cm−1 with its large

dispersion of approximately 100 cm−1/eV [19].

k-dependent electron-phonon interaction

The measurement of double resonance Raman theory provides detailed information of

scattering process. By changing the polarization direction of the light, we can we can

change the k state of the photo-excited electron within the equi-energy contour of the two

dimensional Brillouin zone. From this measurement, we can get information about inho-

mogeneous optical absorption in which the electron-photon matrix element is k dependent

[42]. By changing the laser excitation energy, we can change the equi-energy contour for a

photo-excited electron in the Brillouin zone, which is relevant to a double resonance scat-

tering process[18, 19]. From this measurement, we can know which k of a photo-excited

electron and which q of a phonon are relevant to the Raman intensity, thereby allowing

researchers to fit the measured double resonance phonon energy to the calculated phonon

dispersion relations[43]. Further, by changing the Fermi energy by electro-chemical dop-

ing, the phonon self-energy can be modified. From the gate-dependent Raman spectra, we

can assign the phonon modes of for various combination phonon modes[44]. We cannot
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here go into detail because of lack of space how to use these Raman techniques to obtain

such microscopic pictures of phonon and electron-phonon interactions. The reader will

learn from the recent publications on Raman spectroscopy that Raman spectroscopy not

only provides a tool to measure the phonon frequency and corresponding lattice structure,

but also allows fundamental understanding of detailed properties of optical processes[1].

Summary

In summary, the optical properties of carbon nanotubes shows rich spectra due to low

dimensional physics phenomena, such as Van Hove singularities in the electronic density

of states. The resonance Raman spectra, in particular, provide a powerful tool for ob-

serving individual nanotubes in the sample, and especially for specifying (n,m) values of

individual nanotubes. Excitons in SWNTs are essential for understanding the detailed

optical properties, such as environmental effects of the transition energy. Double reso-

nance theory explains the dispersive Raman phonon modes such as the D and G’ bands,

and other double resonance Raman spectra can be used to provide detailed information

about the phonon dispersion relations.
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Figure Captions:

Fig. 1 Single wall carbon nanotubes. The ends of nanotubes are capped by fullerene

hemispheres. (a) armchair nanotube (b) zigzag nanotube, and (c) chiral nanotube. Fig. 2

The unrolled honeycomb lattice of a nanotube. OA is the equator of the nanotube and

OB corresponds to the translation vector of this one-dimensional material and OA is

the chiral vector. By connecting OB to AB′, we can make a seamless cylindrical shape.

OAB′B is a unit cell of the nanotube. The figure corresponds to the (4,2) chiral nanotube

and there are N = 28 hexagons in the unit cell for the nanotube.

Fig. 3 The energy dispersion relations for 2D graphite are shown throughout the

whole region of the Brillouin zone. The inset shows the energy dispersion along the high

symmetry points.

Fig. 4 The energy dispersion relations for carbon nanotubes, shown explicitly for the

(a) (5,5) armchair, (b) (9,0) zigzag, (c) (10,0) zigzag nanotubes. Bold and thin lines are

doubly or singly degenerate energy bands, respectively. The Fermi energy is located at

E = 0. (5,5) and (9,0) are metallic nanotubes, while (10,0) is semiconducting.

Fig. 5 Electronic density of states for the: (a) (10,0) semiconducting zigzag nanotube,

and the (b) (9,0) metallic zigzag nanotube. Dotted lines denote the density of states for

two-dimensional graphite.

Fig. 6 Cutting lines around the K point in the Brillouin zone for (a) metallic and (b)

semiconducting nanotubes.

Fig. 7 Equi-energy contours for the electronic π-bands of two-dimensional graphite.

Fig. 8 (a) Energy separations Eii between valence and conduction band Van Hove

singularities are plotted as a function of nanotube diameter for both semiconducting and
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metallic SWNTs. (b) Raman spectra (radial breathing mode) from three different (n,m)

isolated single wall nanotubes [10, 11].

Fig. 9 Photoluminescence excitation (PLE) maps of carbon nanotube samples dis-

persed in aqueous solution and wrapped with the following chemical moieties: (a) SDS,

(b) NaDDBS, (c) NaC, and (d) DNA(GT)10. The same color scale for intensities, nor-

malized to 1, were used in the four plots better visualization [35].

Fig. 10 Eexp
ii vs. ωRBM results obtained for the “super-growth” (bullets) and “alcohol

assisted” (open circles) SWNT samples.

Fig. 11 Van Hove singular energies in the JDOS, Eii as a function of 1/dt are shown

in (b) where circles and crosses correspond, respectively, to metallic and semiconducting

nanotube with (n,m) chirality tubes. For 1.579 eV laser excitation, expansion of the

rectangular section in (b) is shown in (a). The resonance condition satisfies only a limited

number of (n,m) tubes whose RBM frequencies can almost always be distinguished from

one another.

Fig. 12 (a) First-order Raman processes which are resonant with (a1) the incident and

(a2) the scattered laser light. Solid and open dots denote resonance and non-resonance

scattering processes, respectively. Crossed lines show the linear energy dispersion of 2D

graphite around the K point. (b) Second-order Raman processes which are resonant the

incident laser light in (b1,b2), and the scattered laser light in (b3,b4). The solid scattered

vectors and dashed scattered vectors with wavevector q, respectively, denote inelastic and

elastic scattering processes.

Fig. 13 (a) Calculated Raman frequencies for the double resonance condition as a

function of Elaser (bottom axis) and q vector along Γ − K (top axis). Solid and open
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circles correspond to phonon modes around the K and Γ points, respectively. (b) The 6

graphite phonon dispersion curves (lines) and experimental Raman observations (symbols)

are identified according to double resonance theory.
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Table 1 Parameters for Carbon Nanotubes.a)

symbol name formula value

a length of unit vector a =
√
3aC−C = 2.49 Å, aC−C = 1.44 Å

a1,a2 unit vectors

(√
3

2
,
1

2

)
a,

(√
3

2
,−1

2

)
a x, y coordinate

b1, b2
reciprocal lattice
vectors

(
1√
3
, 1

)
2π

a
,

(
1√
3
,−1

)
2π

a
kx, ky coordinate

Ch chiral vector Ch = na1 +ma2 ≡ (n,m), (0 ≤ |m| ≤ n)

L length of Ch L = |Ch| = a
√
n2 +m2 + nm

dt diameter dt = L/π

θ chiral angle sin θ =

√
3m

2
√
n2 +m2 + nm

0 ≤ |θ| ≤ π

6

cos θ =
2n+m

2
√
n2 +m2 + nm

, tan θ =

√
3m

2n+m
d gcd(n,m)b)

dR gcd(2n+m,2m+ n)b) dR =

{
d if (n−m) is not multiple of 3d
3d if (n−m) is multiple of 3d

T translation vector T = t1a1 + t2a2 ≡ (t1, t2) gcd(t1, t2) = 1b)

t1 =
2m+ n

dR
, t2 = −2n+m

dR

T length of T T = |T| =
√
3L

dR

N
Number of hex-
agons in the nano-
tube unit cell.

N =
2(n2 +m2 + nm)

dR

a) In this table n, m, t1, t2, p, q are integers and d, dR N and M are integer functions of

these integers.

b) gcd(n,m) denotes the greatest common divisor of the two integers n and m.
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(a)

(b)

(c)

Fig. 1 Single wall carbon nanotubes. The ends of nan-
otubes are capped by fullerene hemispheres. (a) arm-
chair nanotube (b) zigzag nanotube, and (c) chiral nan-
otube.
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Fig. 2 The unrolled honeycomb lattice of a nanotube.
OA is the equator of the nanotube and OB corresponds
to the translation vector of this one-dimensional mate-
rial and OA is the chiral vector. By connecting OB to
AB′, we can make a seamless cylindrical shape. OAB′B
is a unit cell of the nanotube. The figure corresponds to
the (4,2) chiral nanotube and there areN = 28 hexagons
in the unit cell for this nanotube.
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Fig. 3 The energy dispersion relations for 2D graphite
are shown throughout the whole region of the Brillouin
zone. The inset shows the energy dispersion along the
high symmetry points.
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Fig. 4 The energy dispersion relations for carbon nanotubes, shown explicitly for the (a) (5,5)
armchair, (b) (9,0) zigzag, (c) (10,0) zigzag nanotubes. Bold and thin lines are doubly or
singly degenerate energy bands, respectively. The Fermi energy is located at E = 0. (5,5) and
(9,0) are metallic nanotubes, while (10,0) is semiconducting.
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(a) (n,m)=(10,0)

(b) (n,m)=(9,0)

Fig. 5 Electronic density of states for the: (a) (10,0)
semiconducting zigzag nanotube, and the (b) (9,0)
metallic zigzag nanotube. Dotted lines denote the
density of states for two-dimensional graphite.
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Fig. 6 Cutting lines around the K point in the Brillouin
zone for (a) metallic and (b) semiconducting nanotubes.
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Fig. 7 Equi-energy contours for the electronic π-bands of
two-dimensional graphite.
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Fig. 8 (a) Energy separations Eii between valence and conduction band Van Hove sin-
gularities are plotted as a function of nanotube diameter. (b) Raman spectra (radial
breathing mode) from three different (n,m) isolated single wall nanotubes.

Fig. 9 Photoluminescence excitation (PLE) maps of carbon nan-
otube samples dispersed in aqueous solution and wrapped with the
following chemical moieties: (a) SDS, (b) NaDDBS, (c) NaC, and
(d) DNA(GT)10. The same color scale for intensities, normalized
to 1, were used in the four plots better visualization.(Reprint from
Reference [35]).
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Fig. 10 Eexp
ii vs. ωRBM results obtained for the “super-growth”

(bullets) and “alcohol assisted” (open circles) SWNT samples.
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Fig. 11 Van Hove singular energies in the JDOS, Eii as a function
of 1/dt are shown in (b) where circles and crosses correspond,
respectively, to metallic and semiconducting nanotube with (n,m)
chirality tubes. For 1.579 eV laser excitation, expansion of the
rectangular section in (b) is shown in (a). The resonance condition
satisfies only a limited number of (n,m) tubes whose RBM
frequencies can almost always be distinguished from one another.
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Fig. 12 (a) First-order Raman processes which are res-
onant with (a1) the incident and (a2) the scattered
laser light. Solid and open dots denote resonance
and non-resonance scattering processes, respectively.
Crossed lines show the linear energy dispersion of 2D
graphite around the K point. (b) Second-order Raman
processes which are resonant the incident laser light in
(b1,b2), and the scattered laser light in (b3,b4). The
solid scattered vectors and dashed scattered vectors
with wavevector q, respectively, denote inelastic and
elastic scattering processes.
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Fig. 13 (a) Calculated Raman frequencies for the dou-
ble resonance condition as a function of Elaser (bottom
axis) and q vector along Γ − K (top axis). Solid and
open circles correspond to phonon modes around the K
and Γ points, respectively. (b) The 6 graphite phonon
dispersion curves (lines) and experimental Raman ob-
servations (symbols) are identified according to double
resonance theory.
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