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A theoretical study describing the coherence properties of near-field Raman scattering in two- and one-
dimensional systems is presented. The model is applied to the Raman modes of pristine graphene and
graphene edges. Our analysis is based on the tip-enhanced Raman scheme, in which a sharp metal tip
located near the sample surface acts as a broadband optical antenna that transfers the information contained
in the spatially correlated (but nonpropagating) near field to the far field. The dependence of the scattered
signal on the tip-sample separation is explored, and the theory predicts that the signal enhancement depends
on the particular symmetry of a vibrational mode. The model can be applied to extract the correlation length
Lc of optical phonons from experimentally recorded near-field Raman measurements. The coherence
properties of optical phonons have been broadly explored in the time and frequency domains, and the
spatially resolved approach presented here provides a complementary methodology for the study of local
material properties at the nanoscale.
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Raman scattering in crystals is usually treated in the
literature as a spatially incoherent process [1,2]. In other
words, the scattered field from different sample points is
considered to be spatially uncorrelated. This approach is
supported by the early theory of coherence stating that the
field emitted by an incoherent source at a given wavelength
λ is spatially uncorrelated on length scales larger than λ=2
(measured from the surface of the scatterer) [3]. As a
consequence, correlations on length scales smaller than λ=2
are inaccessible in standard light scattering, and the signal
recorded in the far field is incoherent. With the advent of
near-field optics and nanoscience in general, studies of
thermal emitters revealed correlation lengths much shorter
than λ [4–8]. Here, we show that similar effects under-
lie near-field Raman scattering and that correlation
lengths much smaller than λ=2 can be extracted from
measured data. Thus, near-field Raman scattering must take
into account subwavelength correlations and associated
interference effects.
The coherence of lattice vibrations is of particular

importance for graphene-based electronics since the scat-
tering of optical phonons provides the main channel for
relaxation of charge carriers and heat dissipation in this
material system [9–14]. In this work, we derive a theory for

near-field Raman scattering in one- and two-dimensional
systems and apply the theory to pristine graphene and
graphene edges. Our analysis is based on the tip-enhanced
Raman scattering (TERS) scheme, in which a sharp metal
tip is located near the sample at distances much smaller
than λ. The tip acts as a broadband optical antenna,
transferring the information contained in the spatially
correlated (but non propagating) near field to the far field.
We analyze the dependence of the scattered signal on the
tip-sample separation distance and show that different
vibrational modes (with distinct symmetries and dimen-
sionalities) give rise to different tip-sample distance
dependencies. The theory has been used to measure the
correlation length Lc of optical phonons in graphene, for
which we found Lc ≈ 30 nm [15]. Although the correlation
properties of optical phonons have been broadly explored
in the time and frequency domains [16], the spatially
resolved approach presented here provides an alternative
probe for the study of local material properties at the
nanoscale.
Raman scattering is an inelastic scattering process

where the incident and scattered photons present dif-
ferent energies. The energy difference is equal to the
energy of a quantum of vibration (phonon) that is either
created (Stokes Raman component) or annihilated (anti-
Stokes Raman component) [1,2]. The scope of the present
study is to extract the correlation length of phonons in
crystals by exploring the coherence properties of the
inelastically scattered field in Raman processes. In order
to introduce the theory and the parameters involved, we
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briefly discuss the classical theory of light scattering,
keeping the focus on the spatial domain.
For a linear scattering medium irradiated by a mono-

chromatic incident beam of frequency ω, the scattered field
Es of frequency ωs that reaches the detector at the position
r0 is described by the integral equation of potential
scattering of the form [17]

Esðr0;ωsÞ ¼
ω2
s

ε0c2

Z
D
d3rG

↔ðr0; r;ωsÞμðr;ωÞEðr;ωÞ; ð1Þ

where ε0 and c are the free-space permittivity and speed of
light, respectively, μðr;ωÞ is the scattering potential at a
position r in the scattering domain D, Eðr;ωÞ is the total

exciting field at r, and G
↔
ðr0; r;ωsÞ is the outgoing Green

function that accounts for the whole system, including the
scattering and surrounding media. In the case of vibrational
Raman scattering, the scattering potential is described

by the second-rank polarizability tensor α
↔γ, whose

components are defined as

αγijðr;ωs;ωÞ ¼
X

k¼x;y;z

∂αijðr;ωÞ
∂qk qk; ð2Þ

with α being the polarizability per unit area at frequency ω
and q¼ðqx;qy;qzÞ being the lattice displacement vector
associated with a particular vibrational mode γ with

frequency jω − ωsj. Notice that the product α↔γðr;ωs;ωÞ ×
Eðr;ωÞ defines the induced Raman dipole per unit area
pγðr;ωs;ωÞ, and in this case, Eq. (1) assumes the form

Esðr0;ωsÞ ¼
ω2
s

ε0c2

Z
D
d3rG

↔ðr0; r;ωsÞpγðr;ωs;ωÞ; ð3Þ

with

pγðr;ωs;ωÞ ¼ α
↔γðr;ωs;ωÞEðr;ωÞ: ð4Þ

By considering the field as a single realization in the
spectral domain, the detector renders a signal Sðr0;ωsÞ that
is proportional to the ensemble average of the scattered
field (3):

Sðr0;ωsÞ ¼ hEs�ðr0;ωsÞ ·Esðr0;ωsÞi

¼ ω2
s

ε0c2

Z
D
d3r1

Z
D
d3r2hG

↔ðr0; r1;ωsÞ

× pγðr1;ωs;ωÞ · G
↔ðr0; r2;ωsÞpγðr2;ωs;ωÞi:

ð5Þ

Figure 1 illustrates two individual scattering events, where
the scattering domain D is irradiated by the field EðωÞ. On
length scales jr1 − r2j smaller than the phonon correlation

length Lc, the partial fields G
↔ðr0; r1;ωsÞpγðr1;ωs;ωÞ and

G
↔ðr0; r2;ωsÞpγðr2;ωs;ωÞ add coherently at the detector.
On the other hand, for length scales larger than Lc, there is
no phase correlation between the dipoles, and hence, the
partial fields at the detector add incoherently. For experi-
ments using a coherent exciting field (laser source), the
signal becomes [Eqs. (4) and (5)]

Sðr0;ωsÞ ¼
ω4
s

ε20c
4

X
l;m;n

X
i;j

Z
D
d3r2

Z
D
d3r1hαγ�miðr1;ωsÞ

× αγnjðr2;ωsÞiG�
lmðr0; r1;ωsÞGlnðr0; r2;ωsÞ

× E�
i ðr1;ωÞEjðr2;ωÞ; ð6Þ

with l; m; n ∈ fx; y; zg. Equation (6) tells us that, for
experiments carried out with an incident laser beam, the
spatial coherence of the scattered signal is solely described
by the correlation of the Raman polarizability tensor
components.
Classical textbooks describing Raman scattering usually

do not consider the spatial coherence of the scattered field
(see, for example, Refs. [1,2]). The correlation function
hαγ�miα

γ
nji is typically assumed to be a Dirac delta function,

for which the signal in Eq. (6) turns into a simple
integration over the scattering volume VD. The outgoing
Green function accounts for the polarization direction of
the scattered field (defined by the unit vector ϵ̂s) in the
presence of analyzers, and also for the solid angle Ω of the
collection optics. Equation (6) is then reduced to [1,2]

Sðr0;ωsÞ ∝ VDΩ
ω4
s

ε20c
4
jϵ̂s · α↔γðωs;ωÞEðωÞj2: ð7Þ

FIG. 1. Illustration of two individual scattering paths
associated with a scatterer D irradiated by the field EðωÞ. On
length scales jr1 − r2j smaller than the phonon correlation
length Lc of a vibrational mode γ, the partial fields

G
↔
ðr0; r1;ωsÞpγðr1;ωs;ωÞ and G

↔
ðr0; r2;ωsÞpγðr2;ωs;ωÞ add co-

herently at location r0 of the detector. On the other hand, for
length scales larger than Lc, there is no phase correlation between
the scattering events; hence, the partial fields at the detector add
incoherently.
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Indeed, spatial correlations associated with vibrational
states can be neglected in usual Raman scattering experi-
ments performed in the far-field regime, since the corre-
lation length Lc of optical phonons in crystals is on the
order of tens of nanometers, one order of magnitude shorter
than the wavelength of visible light. In the case of Raman
scattering of liquids and gases, this approximation is even
better applied since the correlation length associated with
vibrational states of the molecules contained in these
systems is in the range of a few nanometers, defined by
thermal fluctuations.
The most important point here is that the analyses

performed in Refs. [1,2] do not take into account the
nonradiating near-field components in the light-matter
interaction, and therefore, Eq. (7) hides important infor-
mation related to the spatial correlation on length scales
smaller than λ=2. To account for spatial coherence in
near-field Raman scattering, we will consider Gaussian
correlations of the form

hαγ�miðr1;ωsÞαγnjðr2;ωsÞi ¼ ~αγ�miðr1;ωsÞ ~αγnjðr2;ωsÞ

×
e−ðjr1−r2j2=L2

cÞ

πL2
c

: ð8Þ

The last term turns into a spatial delta function in the limit
Lc → 0 and into a constant term for Lc → ∞.
In the following, we will consider monolayer graphene

as our material system. The well-defined Raman modes of
graphene provide an excellent model system for our theory
since they involve distinct symmetries and dimensional-
ities. The three main features present in the Raman
spectrum of graphene are [18,19] (i) the one-phonon
first-order allowed G band (around 1580 cm−1) originating
from the double-degenerate bond-stretching mode with E2g
symmetry, occurring at the center of the Brillouin zone
(Γ point) where the transverse optical (TO) and longitudinal
optical (LO) phonon branches touch each other, (ii) the
disorder-induced D band (about 1350 cm−1) originating
from totally symmetric (A1) TO phonons occurring near the
edges (K and K0 points) of the first Brillouin zone, activated
by structural defects that provide momentum conservation
in a double-resonance process, and (iii) the two-phonon G0
band (also called 2D in the literature, but not here where 2D
stands for two-dimensional) centered at about 2700 cm−1,
generated by triple-resonance processes in monolayer
graphene and related to the same phonon as the D band,

although it does not require the presence of defects for its
activation. While the G and G0 bands are allowed over the
entire graphene lattice, the defect-induced D band is
strongly localized near the graphene edges, which gives
it a one-dimensional character [20–23]. For this reason, we
refer to G and G0 as two dimensional (2D), whereas D is
denoted as a one-dimensional (1D) mode. The correspond-
ing Raman polarizability tensors associated with these
Raman modes can be represented as [24]

α
↔GðE2g1Þ ¼ αG

�
1 0

0 −1
�
; α

↔GðE2g2Þ ¼ αG
�
0 1

1 0

�
;

α
↔D;G0 ðA1Þ ¼ αD;G

0
�
1 0

0 1

�
; ð9Þ

where E2g1 and E2g2 are the two components of the double-
degenerate E2g mode giving rise to the G band. We have
omitted the iz and zj components in Eq. (9) because they
are null.
Figure 2 illustrates a near-field Raman experiment on a

graphene sample where, by placing the origin of the
coordinate system in the graphene plane right under the
tip, r0 ¼ ð0; 0; zÞ denotes the position of the near-field
probe, r0 is the location of the detector, and r ¼ ðx; y; 0Þ is
a point on the sample plane. The insertion of the Gaussian
correlation function (8) into the expression for the signal (6)
yields

Sðr0;ωsÞ ¼
ω4
s

ε20c
4

X
l;m;n

X
i;j

ZZ þ∞

−∞
dx2dy2 Glnðr0; x2; y2;ωsÞ ~αγnjEjðx2; y2;ωÞ

×
ZZ þ∞

−∞
dx1dy1

e−½ðx1−x2Þ2þðy1−y2Þ2�=L2
c

πL2
c

G�
lmðr0; x1; y1;ωsÞ ~αγ�miE

�
i ðx1; y1;ωÞ; ð10Þ

where l ∈ fx; y; zg and m; n; i; j ∈ fx; yg.

FIG. 2. Illustration of spatially resolved near-field Raman
scattering of a graphene sample. The electric field E confined
to the apex of a laser-irradiated gold tip interacts locally with the
graphene lattice characterized by the Raman polarizability α

↔γ,
where γ denotes a specific phonon mode (γ ∈ ½G;D;G0�Þ.
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To simplify notation, we will suppress the frequencies ω and ωs in the arguments of the different functions. We introduce
the Fourier transform of the correlation function

1

4π2

ZZ þ∞

−∞
dx2dy2hαγ�miðx1; y1Þαγnjðx2; y2Þie−iðkxx2þkyy2Þ ¼ ~αγ�mi ~α

γ
nj

4π2
e−iðkxx1þkyy1Þ−ðk2xþk2yÞL2

c=4; ð11Þ

with ~αγij defined by the elements of the Raman polarizability tensors (9). The inverse transform of Eq. (11) is given as

hαγ�miðx1; y1Þαγnjðx2; y2Þi ¼
ZZ þ∞

−∞
dkxdky

~αγ�mi ~α
γ
nj

4π2
e−ðk2xþk2yÞL2

c=4eiðkx½x2−x1�þky½y2−y1�Þ: ð12Þ

Likewise, we introduce the Fourier transform

F̂lnjðkx; kyÞ ¼
1

4π2

ZZ þ∞

−∞
dx2dy2 Glnðr0; x2; y2ÞEjðx2; y2Þe−iðkxx2þkyy2Þ; ð13Þ

with the corresponding inverse transform

Glnðr0; x2; y2ÞEjðx2; y2Þ ¼
ZZ þ∞

−∞
dkxdkyF̂lnjðkx; kyÞeiðkxx2þkyy2Þ: ð14Þ

Using these Fourier representations, we can express the second integral in Eq. (10) as

ZZ þ∞

−∞
dx1dy1hαγ�miðx1; y1Þαγnjðx2; y2Þi G�

lmðr0; x1; y1ÞE�
i ðx1; y1Þ

¼ ~αγ�mi ~α
γ
nj

4π2

ZZ þ∞

−∞
dkxdkyF̂

�
lmiðkx; kyÞ

ZZ þ∞

−∞
dk0xdk0ye−ðk

0
x
2þk0y2ÞL2

c=4eiðk0xx2þk0yy2Þ
ZZ þ∞

−∞
dx1dy1e−i½x1ðkxþkx 0Þþy1ðkyþky 0Þ�

¼ ~αγ�mi ~α
γ
nj

ZZ þ∞

−∞
dkxdkyF̂

�
lmiðkx; kyÞe−ðkx2þky2ÞL2

c=4e−iðkxx2þkyy2Þ; ð15Þ

where we used
R
eiðxyÞdx ¼ 2πδðyÞ. The signal (10) can now be calculated as

Sðr0Þ ¼
ω4
s

ε20c
4

X
l;m;n

X
i;j

~αγ�mi ~α
γ
nj

ZZ þ∞

−∞
dkxdkyF̂

�
lmiðkx; kyÞe−ðkx2þky2ÞL2

c=4

×
ZZ þ∞

−∞
dk0xdk0yF̂lnjðk0x; k0yÞ

ZZ þ∞

−∞
dx2dy2e−i½x2ðkx−kx

0Þþy2ðky−ky 0Þ�

¼ 4π2
ω4
s

ε20c
4

X
l;m;n

X
i;j

~αγ�mi ~α
γ
nj

ZZ þ∞

−∞
dkxdkyF̂

�
lmiðkx; kyÞF̂lnjðkx; kyÞe−ðkx2þky2ÞL2

c=4; ð16Þ

which, provided that the Fourier transform (13) can be calculated, is considerably more convenient than the fourfold integral
in Eq. (10). In the fully coherent limit (Lc → ∞), there are no statistical variations between points r1 and r2, whereas in the
incoherent case (Lc → 0), the response at r1 and r2 is completely uncorrelated and the correlation function reduces to a
Dirac delta distribution. In these limiting cases, we find

lim
Lc→∞

Sðr0Þ ¼ 16π4
ω4
s

ε20c
4

X
l;m;n

X
i;j

αγ�miα
γ
njF̂

�
lmið0; 0ÞF̂lnjð0; 0Þ

¼ ω4
s

ε20c
4

X
l;m;n

X
i;j

αγ�miα
γ
nj

ZZ þ∞

−∞
dx1dy1 G�

lmðr0; x1; y1ÞE�
i ðx1; y1Þ

ZZ þ∞

−∞
dx2dy2 Glnðr0; x2; y2ÞEjðx2; y2Þ; ð17Þ

lim
Lc→0

Sðr0Þ ¼ 4π2
ω4
s

ε20c
4

X
l;m;n

X
i;j

~αγ�mi ~α
γ
nj

ZZ þ∞

−∞
dkxdkyF̂

�
lmiðkx; kyÞF̂lnjðkx; kyÞ

¼ ω4
s

ε20c
4

X
l;m;n

X
i;j

~αγ�mi ~α
γ
nj

ZZ þ∞

−∞
dxdy G�

lmðr0; x; yÞE�
i ðx; yÞ Glnðr0; x; yÞEjðx; yÞ; ð18Þ
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where αγ�miα
γ
nj ¼ ~αγ�mi ~α

γ
nj=πL

2
c . These two limits were stud-

ied in Refs. [25,26] for 1D and 2D systems, respectively.
Here, we discuss the more realistic case, where the
correlation length Lc has a finite value.
In order to evaluate the signal in Eq. (10), we need to

know the exciting fieldE at the location r ¼ ðx; y; 0Þ on the
graphene plane. This field corresponds to the superposition
of the incident laser field E0 and the localized field
generated by the gold tip acting as an optical antenna. It
can be represented in terms of a volume integral equation
as [27]

Eðr;ωÞ ¼ E0ðr;ωÞ þ
ω2

c2

Z
d3r00G

↔ðr; r00;ωÞ

× ½εðr00Þ − 1�Eðr00;ωÞ; ð19Þ

where εðr00;ωÞ is the spatial distribution of the dispersive

dielectric constant and G
↔

is the Green function of the
reference system, which includes the sample, the support-
ing surface, and the tip. In principle, the field (19) can be
substituted into the expression for the signal in Eq. (10),
and the signal can be computed numerically. To reduce the

numerical complexity, we describe the tip by an anisotropic
polarizability [27]

α
↔

tipðr0Þ ¼

2
64
α⊥ 0 0

0 α⊥ 0

0 0 α∥

3
75; ð20Þ

with the tip axis coinciding with the z direction. α⊥ and α∥
denote the transverse and longitudinal polarizabilities
defined as [27]

α⊥ðωÞ ¼ 4πε0r3tip
εðωÞ − 1

εðωÞ þ 2
ð21Þ

and

α∥ðωÞ ¼ 2πε0r3tipfeðωÞ; ð22Þ
where ε denotes the dielectric constant of the tip, rtip is the
tip radius, and fe is the complex field enhancement factor.
Accordingly, a general field E interacting with the tip

induces a dipole ptip ¼ α
↔

tipE in the tip. The Green function
in Eq. (10) can then be written as

G
↔
ðr0; r;ωsÞ ¼ Go

↔
ðr0; r;ωsÞ þ

ω2
s

ε0c2
¯
Go
↔
ðr0; r;ωsÞα↔tipðr0;ωsÞGo

↔
ðr0; r;ωsÞ; ð23Þ

where the first term denotes the free-space propagation from a point r ¼ ðx; y; 0Þ on the graphene sample to the observation
point r0, and the second term corresponds to the interaction with the tip dipole at r0 ¼ ð0; 0; zÞ, that is, free-space
propagation from graphene to the tip and subsequent propagation from the tip to the observation point. We apply the same
model for the excitation field described by Eq. (19) and obtain

Eðr;ωÞ ¼ E0ðr;ωÞ þ
ω2

ε0c2
Go
↔
ðr; r0;ωÞα↔tipðωÞE0ðr0;ωÞ: ð24Þ

Equations (23) and (24) can now be inserted into Eq. (10) to calculate the signal Sðr0;ωsÞ in terms of the free-space Green
function and as a function of the tip position and excitation conditions. Combining Eqs. (23) and (24) gives

Glnðr0; x; y;ωsÞαγnjðx; y;ωÞEjðx; y;ωÞ ¼ Go
lnðr0; x; y;ωsÞαγnjðx; y;ωÞE0j

ðx; y;ωÞ

þ ω2
s

ε0c2
½Go
↔
ðr0; z;ωsÞα↔tipðωsÞGo

↔
ðz; x; y;ωsÞ�lnαγnjðx; y;ωÞE0j

ðx; y;ωÞ

þ ω2

ε0c2
Go

lnðr0; x; y;ωsÞαγnjðx; y;ωÞ½Go
↔
ðx; y; z;ωÞα↔tipðωÞE0ðz;ωÞ�j

þ ω2ω2
s

ε20c
4
½Go
↔
ðr0; z;ωsÞα↔tipðωsÞGo

↔
ðz; x; y;ωsÞ�ln

× αγnjðx; y;ωÞ½Go
↔
ðx; y; z;ωÞα↔tipðωÞE0ðz;ωÞ�j; ð25Þ

where we explicitly used r0 ¼ ð0; 0; zÞ and r ¼ ðx; y; 0Þ. Since the polarizability along the tip axis is much larger than
transverse to it (jα∥j ≫ jα⊥j), we neglect α⊥ in Eqs. (20) and (25) and obtain
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Glnðr0; x; y;ωsÞαγnjðx; y;ωÞEjðx; y;ωÞ ¼ Go
lnðr0; x; y;ωsÞαγnjðx; y;ωÞE0jðx; y;ωÞ

þ ω2
s

ε0c2
Go

lzðr0; z0;ωsÞα∥ðωsÞGo
znðz0; x; y;ωsÞαγnjðx; y;ωÞE0jðx; y;ωÞ

þ ω2

ε0c2
Go

lnðr0; x; y;ωsÞαγnjðx; y;ωÞ Go
jzðx; y; z0;ωÞα∥ðωÞE0zðz0;ωÞ

þ ω2ω2
s

ε20c
4
Go

lzðr0; z0;ωsÞα∥ðωsÞ Go
znðz0; x; y;ωsÞαγnjðx; y;ωÞ

× Go
jzðx; y; z0;ωÞα∥ðωÞE0zðz0;ωÞ: ð26Þ

The first term in Eq. (26) is the interaction of the incident
field with the sample (S), the second term accounts for the
incident field that scatters at the sample and then at the tip
(TS), the third term is the interaction with the tip and then
with the sample (ST), and the last term is the interaction
with the tip, then the sample and the tip again (TST). In
other words, Eq. (26) describes the following interaction
series [28]:

Sþ TSþ STþ TST; ð27Þ

which is illustrated in Fig. 3. In our scheme, the S term in
Eq. (26) describes standard far-field Raman scattering (e.g.,
confocal Raman scattering), and the TST accounts for
standard tip-enhanced Raman scattering (TERS). The terms
ST and TS originate from the interference between the near
field and the far field. We have suppressed higher-order
interaction terms between the graphene sample and the tip

because graphene interacts only weakly with light (3%
absorption). TERS relies on excitation fields that exhibit a
strong polarization component along the tip axis. Such
conditions can be provided, for example, by a focused
radially polarized laser beam incident along the tip axis
[29]. Because the z component of the incident field is much
larger than the in-plane x; y components, the signal strength
generated by the TS component is roughly 10 times weaker
than by the ST term. For this reason, we neglect the TS
term in the present study.
We now have all the ingredients to evaluate the TST and

ST components of the near-field Raman signal for 2D and
1D samples.
TST/2D.—In the following, we proceed with the evalu-

ation of the STSTðr0Þ signal generated by the TST compo-
nent for the 2D modes (G and G0). We assume that the
exciting field is homogeneous, that is, E0zðz;ωÞ ¼ E0zðωÞ,
which is fulfilled for tip-sample distances z much smaller
than λ. Considering the TST term in Eq. (26), we can
express the Fourier transform of Glnðr0; x; y;ωsÞEjðx; y;ωÞ
[Eq. (13)] as

F̂lnjðkx; kyÞ ¼
1

4π2
ω2ω2

s

ε20c
4
α∥ðωÞα∥ðωsÞ Go

lzðr0; z;ωsÞE0zðωÞ

×
ZZ þ∞

−∞
dxdy Go

znðx; y; z;ωsÞ

× Go
jzðx; y; z;ωÞe−iðkxxþkyyÞ: ð28Þ

Because of the short-range interaction between tip and
sample (R ¼ jr − r0j ≪ λ; λs), we retain only the nonre-
tarded near-field term in the Green functions Go

zn and Go
jz,

that is,

Go
znðωsÞ ¼

1

4πk2s

3zn
R5

and Go
jzðωÞ ¼

1

4πk2
3jz
R5

; ð29Þ

where ks ¼ ωs=c and k ¼ ω=c. The integral in Eq. (28)
now becomes

FIG. 3. Interaction series in TERS. Red arrows represent
induced dipoles; black arrows indicate electromagnetic
interactions.
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ZZ þ∞

−∞
dxdy Go

znðx; y; z;ωsÞ Go
jzðx; y; z;ωÞe−iðkxxþkyyÞ

¼ 9

16π2
c4

ω2
sω

2

ZZ þ∞

−∞
dxdy

njz2

ðx2 þ y2 þ z2Þ5 e
−iðkxxþkyyÞ:

ð30Þ

This integral has a complicated analytical form, and hence
it is convenient to approximate the integrand by a super-
position of exponential functions,

ðnj=z2Þ
z6½ðx=zÞ�2 þ ðy=zÞ2 þ 1�5

≈
ðnj=z2Þ

z6
½a0e−b0ðx2þy2Þ=z2 þ c0e−d0ðx

2þy2Þ=z2 �; ð31Þ

where a0, b0, c0, and d0 are fitting constants. Figure 4
shows a comparison of the original function and the
approximation. The fitting constants of the latter are given
in the caption. The agreement is very good, and the
approximation is not expected to have any influence on
the results of this study.
The Fourier transform (28) is now calculated as

F̂lnjðkx; kyÞ ¼
9

256π3ε20z
4
α∥ðωÞα∥ðωsÞ

× Go
lzðr0; z;ωsÞE0zðz;ωÞĥnjðkx; ky; zÞ; ð32Þ

with

ĥnjðkx; ky; zÞ ¼
�
a0ð2δnjb0 − knkjz2Þ

b30
e−ðk2xþk2yÞz2=4b0

þ c0ð2δnjd0 − knkjz2Þ
d30

e−ðk2xþk2yÞz2=4d0
�
;

ð33Þ
δnj being a Kronecker delta. To calculate the Raman signal
(16) for the TST interaction term, we define the expressions

fmi;njðz; LcÞ ¼
ZZ þ∞

−∞
dkxdkyĥ

�
miðkx; ky; zÞ

× ĥnjðkx; ky; zÞe−ðkx2þky2ÞL2
c=4; ð34Þ

which can be calculated analytically using the result in
Eq. (33). The functions fmi;nj have the properties

fmi;njðz; Lc → ∞Þ ¼ 1=L2
c ; fmi;njðz; Lc → 0Þ ¼ 1=z2:

ð35Þ

Inserting Eq. (34) into Eq. (16) yields

STSTðr0Þ ¼
ð3=8Þ4
4π4

ω4
s

ε60c
4z8

X
l

jα∥ðωÞα∥ðωsÞ

× Go
lzðr0; z;ωsÞE0zðz;ωÞj2

×

�X
m;n

X
i;j

~αγ�mi ~α
γ
njfmi;njðz; LcÞ

�
: ð36Þ

Thus, we find that for graphene with zero correlation length
(Lc → 0), the signal decays as z−10 fromthegraphene sample,
whereas for graphene with infinite correlation length
(Lc → ∞), it decays as z−8, consistent with the theory
described in Ref. [26].

FIG. 4. Comparison of original function (top panels) and approximation (bottom panels) according to Eq. (31). The left panels
correspond to n ¼ j (¼ x in this case), while the right panels correspond to n ≠ j. In both cases, the following fitting constants were
used: a0 ¼ 0.74, b0 ¼ 4.0, c0 ¼ 0.08, and d0 ¼ 1.5.
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For the modes with E2g1 and A1 symmetries, for which the only non-null terms in the respective Raman tensors are ~αγxx
and ~αγyy [see Eq. (9)], the signal Sðr0Þ is given as

STSTðr0ÞðE2g1;A1Þ ¼
ð3=8Þ4
4π4ε40z

8

ω4
s

ε20c
4

X
l

jα∥ðωÞα∥ðωsÞ Go
lzðr0; z;ωsÞE0zðz;ωÞj2

× ð½ ~αγ�xx ~αγxx þ ~αγ�yy ~αγyy�fxx;xxðz; LcÞ þ 2Re½ ~αγ�xx ~αγyyfxx;yyðz; LcÞ�Þ; ð37Þ

where we have used the properties fxx;xxðz; LcÞ ¼ fyy;yyðz; LcÞ and fxx;yyðz; LcÞ ¼ fyy;xxðz; LcÞ. On the other hand, for
modes belonging to the E2g2 irreducible representation, for which ~αγxy ¼ ~αγyx ≠ 0 [see Eq. (9)], we have

STSTðr0ÞðE2g2Þ ¼
ð3=8Þ4
4π4ε40z

8

ω4
s

ε20c
4

X
l

jα∥ðωÞα∥ðωsÞ Go
lzðr0; z;ωsÞE0zðz;ωÞj24Re½ ~αγ�xy ~αγyxfxy;yxðz; LcÞ�; ð38Þ

where we have used the fact that fxy;yxðz; LcÞ ¼ fyx;xyðz; LcÞ ¼ fxy;xyðz; LcÞ ¼ fyx;yxðz; LcÞ.
Next, we rewrite the tip polarizability component α∥ðωÞ in terms of the complex field enhancement factor feðωÞ and the

tip radius rtip [Eq. (22)], and insert the values of the polarizability tensors (9) in Eqs. (37) and (38). For the G band, we find

STSTG ðr0Þ ¼
81

512

ω4
s

ε20c
4

r12tip ~feðωÞ4
z8

X
l

jGo
lzðr0; z;ωsÞE0zðz;ωÞ ~αGðωs;ωÞj2½fxx;xxðz; LcÞ − fxx;yyðz; LcÞ þ 2fxy;yxðz; LcÞ�; ð39Þ

where we have considered ~feðωÞ ≈ ~feðωsÞ, ~fe being the real part of fe. For the Raman G0 band, we obtain

STSTG0 ðr0Þ ¼
81

512

ω4
s

ε20c
4

r12tip ~feðωÞ4
z8

X
l

jGo
lzðr0; z;ωsÞE0zðz;ωÞ ~αG0 ðωs;ωÞj2½fxx;xxðz; LcÞ þ fxx;yyðz; LcÞ�: ð40Þ

The dependence on the correlation length Lc and the
distance z is solely determined by the last terms in the
expressions. The first terms only account for the overall
strength of the signal. They depend on the Raman cross
section, the local field enhancement, the tip radius, and
the detection conditions. In the following, we will discuss
the consequences of the different terms in Eqs. (39)
and (40).
In Fig. 5, we plot the distance dependence of the G and

G0 TST signals [according to Eqs. (39) and (40), respec-
tively] for different correlation lengths Lc. For all cases, we
set ~feðωÞ ¼ 3 and rtip ¼ 15 nm. Considering the minimum
distance between the tip apex and the sample surface to be
5 nm (this value is determined by the set point that controls
the tip-sample distance in TERS experiments), the shortest
distance zmin between the graphene surface and the tip
dipole becomes zmin ¼ 20 nm. The curves coincide for
Lc ¼ 0, which corresponds to the case where there is no
correlation between neighboring graphene lattice points. In
this case, the Raman signal is added up incoherently; that
is, the intensities of neighboring lattice points are summed
up. For a finite correlation length Lc, we observe that the
distance curves for the G and G0 bands become different,
with the G band showing a markedly weaker distance
dependence. This deviation arises from the coherent
interaction between neighboring lattice points which are
symmetric with respect to the lateral location of the tip. As
Lc increases, the distance dependence of the G0 band
transits from z−10 to z−8. The predictions shown in

Fig. 5 indicate that the phonon correlation length in
graphene can be experimentally determined by measuring
the G and G0 approach curves.
The interference effects that generate different enhance-

ments for the G and G0 bands at finite values of Lc are
illustrated in Fig. 6. The yellow spot represents the top view
of the tip (axis along the z direction) with the graphene
lattice underneath (lying in the xy plane). In (a), the ⊗
symbol represents the tip dipole induced by the incident
field E0ðz;ωÞ. The green arrows represent the x and y in-
plane components of the electric field Eðr;ωÞ at the
graphene lattice, generated by the tip dipole. The respective
induced Raman dipoles pγðr;ωsÞ [Eq. (4)] in the graphene
plane are represented by the red arrows in (b-d) for the
modes with A1, E2g1, and E2g2 symmetries, respectively.
The directions of the induced Raman dipoles are deter-
mined by the Raman polarizability tensors α

↔γðr;ωs;ωÞ in
Eq. (9). By considering the fully coherent case (Lc → ∞),
the scattered field generated by the A1 Raman dipoles add
constructively at the tip apex, generating a strong induced
dipole at the tip [represented by the ⊗ symbol in (b)]. On
the other hand, the field generated by the Raman dipoles
interferes destructively at the tip apex for the E2g1 and E2g2

symmetries [(c) and (d), respectively]. For finite Lc, the G
band (E2g symmetry) TST signal will not be exactly null,
but it will be clearly weaker than in the G0 case (A1

symmetry). Notice that these two distinct situations are
solely associated with the symmetry of the Raman modes.
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ST/2D.—Now, we evaluate the ST component [third term in Eq. (26)] for the 2D modes (G and G0). From Eq. (16), the
Raman intensity in the ST configuration can be calculated as

SSTðr0Þ ¼ 4π2
ω4
s

ε20c
4

X
l;m;n

X
i;j

~αγ�mi ~α
γ
nj

ZZ þ∞

−∞
dkxdkyF̂

�
lmiðkx; kyÞF̂lnjðkx; kyÞe−ðkx2þky2ÞL2

c=4; ð41Þ

where, according to Eq. (26), the F̂�
lnjðkx; kyÞ function (28) in the ST configuration assumes the form

F̂lnjðkx; kyÞ ¼
1

4π2
ω2

ε0c2
α∥ðωÞ Go

lnðr0; z;ωsÞE0zðz;ωÞ
ZZ þ∞

−∞
dxdy Go

jzðx; y; z;ωÞe−iðkxxþkyyÞ

¼ 3

16π3ε0
α∥ðωÞ Go

lnðr0; z;ωsÞE0zðz;ωÞ
ZZ þ∞

−∞
dxdy

jz

ðx2 þ y2 þ z2Þð5=2Þ e
−iðkxxþkyyÞ: ð42Þ

As before, the integrand in Eq. (42) can be approximated as

jz

ðx2 þ y2 þ z2Þð5=2Þ ≈
j
z4
½a00e−b

0
0
ðx2þy2Þ=z2 þ c00e

−d0
0
ðx2þy2Þ=z2 �; ð43Þ

with a00, b
0
0, c

0
0, and d

0
0 being fitting constants. Figure 7 shows a comparison of the original function and the approximation.

FIG. 6. Symmetries of near-field Raman scattering in the TST
configuration. The yellow spots represent the top view of the tip
(axis along the z direction) with the graphene lattice underneath
(lying in the xy plane). In (a), the ⊗ symbol represents the tip
dipole induced by the incident field. The green arrows represent
the x and y in-plane components of the electric field generated by
the tip dipole at the graphene lattice. The respective induced
Raman dipoles in the graphene plane are represented by the red
arrows in (b-d) for the modes with A1, E2g1, and E2g2 symmetries,
respectively. By considering the fully coherent case (Lc → ∞),
the scattered fields generated by the A1 Raman dipoles add
constructively at the tip apex, generating a strong induced dipole
at the tip [represented by the⊗ symbol in (b)]. On the other hand,
the field generated by the Raman dipoles interfere destructively at
the tip apex for the E2g1 and E2g2 symmetries [(c) and (d),
respectively].

FIG. 5. Distance dependence of the TST signal for the G and G0

bands. Panels (a-d) are evaluated for different correlation lengths
Lc: 0, 15, 30, and 45 nm, respectively. In all cases, we used
~fe ¼ 3. The signal Sðr0Þ is normalized to 1 for zmin ¼ 20 nm,
which corresponds to the closest tip-sample distance for
rtip ¼ 15 nm, considering that the minimal distance between
the tip apex and the sample is about 5 nm. For Lc ¼ 0, the curves
for G and G0 coincide. This case corresponds to an incoherent
addition of the Raman response in different points of the
graphene lattice. As Lc increases, interferences between neigh-
boring lattice points which are symmetric with respect to the
lateral location of the tip give rise to a distance dependence that is
different for the G and G0 bands.
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The Fourier transform (42) can now be evaluated as

F̂lnjðkx; kyÞ ¼
ð−iÞ3
32π2ε0

α∥ðωÞ Go
lnðr0; z;ωsÞE0zðz;ωÞ

× ĥjðkx; ky; zÞ; ð44Þ
with

ĥjðkx; ky; zÞ ¼ kj

�
a00
b020

e−ðk2xþk2yÞz2=4b00 þ c00
d020

e−ðk2xþk2yÞz2=4d00
�
:

ð45Þ
To calculate the Raman signal (41) for the ST interaction
term, we define the expressions

lijðz; LcÞ ¼
ZZ þ∞

−∞
dkxdkyĥ

�
i ðkx; ky; zÞĥjðkx; ky; zÞ

× e−ðkx2þky2ÞL2
c=4; ð46Þ

which can be solved analytically. They have the properties

lijðz;Lc→∞Þ¼1=L4
c ; lijðz;Lc→0Þ¼1=z4: ð47Þ

Inserting Eqs. (44)–(46) into Eq. (41) yields

SSTðr0Þ ¼
9

256π2
ω4
s

ε40c
4

X
l;m;n

X
i

½Go�
lmðr0; z;ωsÞ Go

lnðr0; z;ωsÞ

× jα∥ðωÞE0zðz;ωÞj2�½ ~αγ�mi ~α
γ
niliiðz; LcÞ�; ð48Þ

where we have used the properties lxxðz; LcÞ ¼
lyyðz; LcÞ ≠ 0 and lxyðz; LcÞ ¼ lyxðz; LcÞ ¼ 0. For the

modes with E2g1 and A1 symmetries, the ST component
of the signal is given by

SSTðr0ÞðE2g1;A1Þ ¼
9

64

ω4
s

ε40c
4

X
l

jGo
lxðr0; z;ωsÞα∥ðωÞ

× E0zðz;ωÞj2ð ~αγ�xx ~αγxx þ ~αγ�yy ~αγyyÞ
× lxxðz; LcÞ; ð49Þ

where, based on the radial symmetry of the system, we have
considered Go

lx ¼ Go
ly. For the E2g2 symmetry, the ST

component assumes the form

SSTðr0ÞðE2g2Þ

¼ 9

64

ω4
s

ε40c
4

X
l

jGo
lxðr0; z;ωsÞα∥ðωÞE0zðz;ωÞj2

× ð ~αγ�xy ~αγxy þ ~αγ�yx ~αγyxÞlxxðz; LcÞ: ð50Þ
Expressing α∥ in terms of the complex field-enhancement
factor feðωÞ and the tip radius rtip [Eq. (22)], and inserting
the Raman tensor components [Eq. (9)] into Eqs. (49) and
(50), we obtain the following expressions for the G and G0
Raman signals:

SSTG ðr0Þ ¼
9

16

ω4
s

ε20c
4
r6tip ~feðωÞ2

X
l

jGo
lxðr0; z;ωsÞ

× E0zðz;ωÞ ~αGðωs;ωÞj2lxxðz; LcÞ; ð51Þ

SSTG0 ðr0Þ ¼
9

32

ω4
s

ε20c
4
r6tip ~feðωÞ2

X
l

jGo
lxðr0; z;ωsÞ

× E0zðz;ωÞ ~αG0 ðωs;ωÞj2lxxðz; LcÞ: ð52Þ
Equations (51) and (52) show that, unlike the TST case, the
only differences between the G and G0 ST signals are their
numerical prefactors and Raman efficiencies, expressed in
terms of ~αG and ~αG

0
. Figure 8 shows the plot of the distance

dependence of the G and G0 ST signals [according to
Eqs. (51) and (52), respectively] for different correlation
lengths Lc, assuming rtip ¼ 15 nm and ~fe ¼ 3. The signal
is normalized to 1 at zmin ¼ 20 nm. As expected, the G and
G0 curves coincide for all values of Lc. For Lc ¼ 0, they
show a dependence on z−4. For a finite correlation length
Lc, we observe a slight drop in the z dependence. For
Lc → ∞, neither of them shows enhancement.
TST/1D.—Next, we evaluate the TST component of the

near-field signal for 1D systems, more specifically, for the D
band at graphene edges. The D mode is totally symmetric
(A1 symmetry), and we consider the edge along the x
direction, with coordinate y ¼ 0. In this case, the position
vector at the sample is reduced to r ¼ ðx; 0; 0Þ. An important
factor to be taken into account is the strong depolarization
effect in the optical absorption of 1D systems, for which the
absorption is maximum for light polarized along the
longitudinal direction of the object and null for light

FIG. 7. Comparison of original function (top panel) and
approximation (bottom panel) according to Eq. (43), for j ¼ x.
The following fitting constants were used: a00 ¼ 0.78, b00 ¼ 2.4,
c00 ¼ 0.18, and d00 ¼ 0.56.
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polarized along its transverse direction [20,30]. To account

for depolarization, we introduce a depolarization tensor d
↔

with which the local excitation field [Eq. (24)] becomes

Etotðx;ωÞ

¼ d
↔
�
E0ðx;ωÞ þ

ω2

ε0c2
Go
↔
ðx; z;ωÞα↔tipðωÞE0ðz;ωÞ

�
;

ð53Þ
with

d
↔
ðωÞ

2
64
1 0 0

0 0 0

0 0 0

3
75: ð54Þ

The Raman induced dipole [Eq. (4)] is now evaluated as

pγðx;ωsÞ ¼ α
↔γðx;ωs;ωÞEtotðx;ωÞ: ð55Þ

The same depolarization effect accounts for the scattered
field and, in this case, Eq. (3) becomes

Eðr0;ωsÞ ¼ d
↔
�
ω2
s

ε0c2

Z þ∞

−∞
dxG

↔ðr0; x;ωsÞpγðx;ωsÞ
�
: ð56Þ

For totally symmetric modes in 1D systems, the scattered
signal in the TST configuration [Eq. (16) for the 2D case] is
given by

Sðr0Þ ¼ 2π
ω4
s

ε20c
4

X
l

~αγ�xx ~αγxx
Z þ∞

−∞
dkxF̂

�
lxðkxÞF̂lxðkxÞe−ðk2xL2

cÞ=4: ð57Þ

The Fourier components F̂�
lxðkxÞ in Eq. (57) can be evaluated as

F̂lxðkxÞ ¼
1

2π

ω2ω2
s

ε20c
4
α∥ðωÞα∥ðωsÞ Go

lzðr0; z;ωsÞE0zðz;ωÞ ×
Z þ∞

−∞
dx Go

zxðx; y; z;ωsÞ Go
xzðx; y; z;ωÞe−ikxx: ð58Þ

Using the same approximations as for the TST scattering in 2D systems [see Eq. (31)], we obtain

F̂lxðkxÞ ¼
9

128π5=2ε20z
5
α∥ðωÞα∥ðωsÞ Go

lzðr0; z;ωsÞE0zðz;ωÞĥxðkx; zÞ; ð59Þ

where

ĥxðkx; zÞ ¼
�
a0ð2b0 − k2xz2Þ

b5=20

e−ðk2xz2Þ=4b0 þ c0ð2d0 − k2xz2Þ
d5=20

e−ðk2xz2Þ=4d0
�
; ð60Þ

with a0 ¼ 0.74, b0 ¼ 4.0, c0 ¼ 0.08, and d0 ¼ 1.5 (same values as those obtained for the TST scattering in 2D systems).
To calculate the Raman signal (57), we define the expression

lxxðz; LcÞ ¼
Z þ∞

−∞
dkxĥ

�
xðkx; zÞĥxðkx; zÞe−ðk2xL2

cÞ=4; ð61Þ

which can be solved analytically. It has the properties

FIG. 8. Distance dependence of the ST signal for the G and G0
bands. Panels (a-d) account for different values of the correlation
length Lc: 0, 15, 30, and 45 nm, respectively, as indicated in the
graphics. In all cases, we used ~fe ¼ 3 and rtip ¼ 15 nm. The
signal Sðr0Þ is normalized to 1 at zmin ¼ 20 nm. Compared to
the TST signal shown in Fig. 5, the ST signal presents a weaker
decay and therefore contributes to the measured signal only for
larger tip-sample distances.
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lxxðz; Lc → ∞Þ ¼ 1=Lc; lxxðz; Lc → 0Þ ¼ 1=z: ð62Þ
Inserting Eq. (61) into Eq. (57) yields

STSTðr0Þ ¼
81

512

ω4
s

ε20c
4

r12tip ~feðωÞ4
z10

X
l

jGo
lzðr0; z;ωsÞE0zðz;ωÞ ~αDðωs;ωÞj2lxxðz; LcÞ; ð63Þ

where we have used ~αγxx ¼ 1, according to Eq. (9). We find
that for a 1D system with zero correlation length (Lc → 0),
the TST signal from a totally symmetric mode decays as
z−11, whereas for infinite correlation length (Lc → ∞), it
decays as z−10, consistent with the theory described in
Ref. [25]. Figure 9 shows the plot of the distance depend-
ence of the TST signal for the D band [according to
Eq. (63)] for different correlation lengths Lc, assuming
rtip ¼ 15 nm and ~fe ¼ 3. The signal is normalized to 1 at
zmin ¼ 20 nm. The smaller the correlation length, the
steeper the distance dependence.
ST/1D.—Starting from Eq. (16), the ST component of

the scattered signal for the 1D case can be calculated as

SSTðr0Þ ¼ 2π
ω4
s

ε20c
4

X
l

~αγ�xx ~αγxx

×
Z þ∞

−∞
dkx; F̂

�
lxðkxÞF̂lxðkxÞe−ðk2xL2

cÞ=4; ð64Þ

where, according to Eq. (26), the Fourier F̂lxðkxÞ compo-
nent has the form

F̂lxðkxÞ ¼
1

2π

ω2

ε0c2
α∥ðωÞ Go

lxðr0; z;ωsÞE0zðz;ωÞ

×
Z þ∞

−∞
dx Go

xzðx; z;ωÞe−ikxx: ð65Þ

Considering the same approximations as for the 2D case
[Eq. (43)], the Fourier component (65) can be evaluated as

F̂lxðkxÞ ¼
ð−iÞ3

16π3=2ε0z
α⊥ðωÞ Go

lxðr0; z;ωsÞE0zðz;ωÞĥxðkxÞ;

ð66Þ
with

ĥxðkxÞ ¼ kx

�
a00

b003=2
e−ðkxzÞ2=4b00 þ c00

d03=20

e−ðkxzÞ2=4d00
�
; ð67Þ

where the fitting parameters a00, b
0
0, c

0
0, and d

0
0 are the same

as those obtained for the 2D case (a00 ¼ 0.78, b00 ¼ 2.4,
c00 ¼ 0.18, and d00 ¼ 0.56). We introduce the function

lxxðz; LcÞ ¼
Z þ∞

−∞
dkxĥ

�
xðkxÞĥxðkxÞe−ðk2xL2

cÞ=4; ð68Þ

which can be calculated analytically and has the properties

lxxðz; Lc → ∞Þ ¼ 1=L3
c ; lxxðz; Lc → 0Þ ¼ 1=z3:

ð69Þ

Inserting Eqs. (66)–(68) into Eq. (64) yields

SSTðr0Þ¼
9

32

ω4
s

ε20c
4z2

r6tip ~feðωÞ2

×
X
l

jGo
lxðr0;z;ωsÞE0zðz;ωÞ ~αG0 ðωs;ωÞj2lxxðz;LcÞ;

ð70Þ

where we have used ~αγxx ¼ 1. According to Eqs. (69) and
(70), forLc ¼ 0, the D band signal in theST configuration is
proportional to z−5, and for Lc → ∞, the signal is propor-
tional to z−2 (see Fig. 10). Similar to the 2D case for the
Raman G and G0 bands, we find that the ST term has a
weaker distance dependence than the TST term, and there-
fore, it contributes to the measured signal only for large tip-
sample distances. It should be noticed that, unlike the 2D
case for which the lateral position of the tip is irrelevant, for

FIG. 9. Dependence of the TST of the D band on tip-sample
separation z. Panels (a-d) account for different values of Lc: 0, 15,
30, and 45 nm, respectively, as indicated in the graphics. In all
cases, we used ~fe ¼ 3 and rtip ¼ 15 nm. The signal Sðr0Þ is
normalized to 1 at zmin ¼ 20 nm.
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1D systems, the symmetry is broken at y ¼ 0 (considering
the sample along the x direction). Therefore, the correlation
lengthLc could also be determined in 1D systems by varying
the position of the tip along the y direction.
Finally, we summarize our findings and discuss the main

results. We have presented the theory of near-field Raman
scattering accounting for spatial source correlations and
associated coherence properties of the scattered signal. Our
calculations were performed for a TERS configuration,
where a metal tip acting as an optical antenna is positioned
near the sample. We considered the TST and ST compo-
nents of the scattered field, and the calculations were
performed for 1D and 2D scatterers. The theory was
applied specifically to graphene, namely, the D, G, and
G0 Raman bands. While the D and G0 bands are associated
with totally symmetric (A1) phonons, the G band originates
from a double degenerate mode with E2g symmetry. On the
other hand, while the G and G0 bands are allowed over the
whole graphene area, the D band is strongly localized at the
edges which define a one-dimensional scatterer.
For samples with finite correlation length Lc, the TST

term gives rise to a characteristic difference between the G
and G0 Raman signals. This difference is associated with
near-field interferences which, in the case of the Raman G
band, are destructive, and in the case of the G0 band, turn out
to be constructive (see Fig. 6 and associated discussion). The
near-field interferences give rise to a weaker tip-sample
distance dependence for the G band than for theG0 band, and
they make it possible to extract the correlation length Lc

from measured data. Moreover, when the D band signal
originates from the edges (1D geometry), a further modi-
fication of the distance dependence is observed. All these
effects are summarized in Fig. 11, which shows the plot of
theTSTþ ST signal versus the tip-sample separation (z) for
different values of Lc (0, 15, 30, and 45 nm). In all cases, we
used ~fe ¼ 3 and rtip ¼ 15 nm. TheG andG0 curves coincide
for Lc ¼ 0, as expected. The D band signal presents a
different trend, showing a steeper tip-sample distance
dependence (stronger enhancement). For finite values of
Lc, the distance dependence drops for all bands as Lc
increases. Simultaneously, G and G0 distance curves become
different, with the G band showing a markedly weaker
enhancement. Therefore, the experimental observation of
different tip-sample distance dependencies for the G and G0
bands provides strong evidence for near-field interference
effects associated with finite correlation lengths Lc.
The curves shown in Fig. 11 were reproduced in exper-

imental measurements in Ref. [15], wherewe havemeasured
the near-field Raman signal of the D, G, and G0 bands on
graphene samples. In these experiments, the correlation
length of the G and D optical phonons were obtained by
fitting the near-field experimental data with the theory
presented here. For both cases (D and G phonons), we found
Lc ≈ 30 nm. Note that it is possible to extract Lc from the
width of theRaman lines in nano-structured systems [31], but
the obtained value is an average over the laser-irradiated
sample area. On the other hand, the near-field procedure
developed here allows for the measurement of Lc in single

FIG. 11. Distance dependence of the TSTþ ST signals for the
D, G, and G0 bands. Panels (a-d) account for different values of
Lc: 0, 15, 30, and 45 nm, respectively, as indicated in the
graphics. In all cases, we used ~fe ¼ 3 and rtip ¼ 15 nm. The
signal Sðr0Þ is normalized to 1 at zmin ¼ 20 nm.

FIG. 10. Distance dependence of the ST signal for the D
band. Panels (a-d) account for different values of Lc: 0, 15, 30,
and 45 nm, respectively, as indicated in the graphics. In all
cases, we set ~fe ¼ 3 and rtip ¼ 15 nm. The signal Sðr0Þ is
normalized to 1 at zmin ¼ 20 nm.
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crystals and with nanoscale spatial resolutions, which makes
it applicable to the analysis of transport properties of a wide
range of materials. Most importantly, our work demonstrates
that it is not a priori legitimate to treat Raman scattering as an
incoherent process in which the signal from different sample
regions is simply summed up.
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