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Chapter 2 1

Raman Spectroscopy: Characterization 2

of Edges, Defects, and the Fermi Energy 3

of Graphene and sp2 Carbons 4

M.S. Dresselhaus, A. Jorio, L.G. Cançado, G. Dresselhaus, and R. Saito 5

Abstract From the basic physical concepts relating to the Raman spectra of 6

graphene, we can develop characterization methods for point defects and the edge 7

structure. Furthermore, the Fermi energy can be studied by the phonon softening 8

phenomena of the Raman spectra. Finally, we also discuss recent progress on near- 9

field optics. 10

2.1 Introduction to the Resonance Raman Spectra of Graphene 11

Raman spectroscopy has been widely used to characterize sp2 carbon systems, from 12

graphite to carbon nanotubes. Especially interesting is the richness of the Raman 13

spectral response to lattice symmetry breaking and to changes in the Fermi level. 14

These two aspects are very important when moving from bulk 3D materials down to 15

nanomaterials, where single defects, edges, and interactions with the environment 16

become frequent and important. In this scenario, two-dimensional (2D) graphene 17

becomes an important prototype system to study such effects, as we discuss in this 18

chapter. We start by giving, in this section, introductory material with the basic 19

concepts behind the Raman spectroscopy of sp2 carbon systems. 20
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Fig. 2.1 (a) Raman spectrum of a graphene edge, showing the main Raman features, the D, G, D0,
and G0 bands taken with a laser excitation energy of 2.41 eV [1]. (b) On the left are the calculated
Raman frequencies for the double-resonance condition in graphene as a function of Elaser (bottom
horizontal axis) and the corresponding q vector along the K (top horizontal axis). Solid and open
circles correspond to phonon modes around the K and � points, respectively. The qKK vectors
from � to K=4 are shown by open circles and the qKK vectors from 3K=4 to K are shown by solid
circles. The six calculated phonon dispersion curves (lines) and experimental Raman observations
(symbols) are plotted and shown to be consistent with double resonance theory [2]

2.1.1 The Raman Spectra of sp2 Carbons 21

The Raman spectrum of crystalline graphite is characterized by the presence of 22

two strong symmetry-allowed peaks at 1,580 and 2,700 cm�1, the G and G0 bands, 23

respectively, where the G label refers to spectral features1 originating from graphene 24

(see Fig. 2.1). The G band is a first-order Raman signal originating from the zone- 25

centered, in-plane optical-phonon modes as shown in Fig. 2.1a as a spectral feature, 26

while Fig. 2.1b shows that the G0-band phonon has a frequency near 1,600 cm�1 and 27

a very small wave vector q often approximated as q D 0 [3, 4]. Because graphene 28

is a zero-gap semiconductor, there is a strong electron–phonon interaction. We will 29

see in Sect. 2.1.5 that because of this strong electron–phonon interaction the q D 0 30

G-band phonon, and consequently the G-band phonon frequency, intensity, and 31

lineshape are strongly dependent upon doping. The G0 band is a second-order, two- 32

phonon feature that is specially strong in sp2 carbons. The G0 band is important for 33

many reasons, due to the fact that the G0 depends upon the phonon wave vector 34

q and allows study of the electronic structure of sp2 carbons through study of 35

their phonons [5, 6]. Many of the unusual properties of the G0 band arise from the 36

mechanism responsible for the large intensity of the G0 band, which is a multiple 37

resonance process. These topics are further clarified in Section 2.1.5. 38

1In this chapter, we frequently use the word “feature” to refer to spectral features. For example,
“The first-order Raman feature” means that the Raman spectral line originates from a first-order
Raman scattering process.
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Disorder-induced symmetry-breaking effects are important in the determination 39

of several material properties, such as transport properties and the relaxation of 40

photoexcited carriers [7, 8]. This applies specially to sp2 carbons, which have high 41

symmetry and, consequently, are highly sensitive to symmetry-breaking defects. 42

Raman spectroscopy is particularly sensitive to symmetry-breaking phenomena in 43

sp2 carbons. Thus Raman spectroscopy is widely used to identify the presence 44

of defects and disorder in sp2 networks of different carbon structures, such as 45

diamond-like carbon, amorphous carbon, and nanostructured carbon, as well as 46

carbon nanofibers, nanotubes, nanohorns and most recently graphene [9–12]. 47

In the Raman spectra obtained from graphene and other sp2 carbon samples 48

containing defects, several additional symmetry-breaking features are found. The 49

feature with highest intensity is the D band which occurs near 1,350 cm�1 for laser 50

excitation energies of 2.41 eV (a commonly used laser excitation energy) and the D 51

band is associated with near-K point phonons. Another common symmetry-breaking 52

feature in the first-order spectrum is the D0 band near 1,620 cm�1, associated with 53

near-� (q ¤ 0) point phonons, where q refers to the phonon wave vector. The 54

D and D0 bands can also give rise to overtones and combination modes, thereby 55

resulting in additional symmetry-breaking modes in the Raman spectra. Now we 56

give a brief description of the wave vectors for these modes. 57

The D band is associated with a breathing-like motion of the carbon atoms 58

located in carbon hexagons that becomes Raman active due to the loss of the lattice 59

symmetry. The most common reasons for symmetry breaking are the presence 60

of vacancies and interstitial or substitutional atoms which can also be introduced 61

intentionally as for example by ion implantation [13] or by introducing interfaces 62

at the borders of crystalline areas [3, 4]. The frequency of the D band is about half 63

of the second-order G0 frequency .!G0 =2/. The mechanism involved in the G0-band 64

process is a symmetry-allowed two-phonon process that is also present in ideally 65

crystalline graphene. However, the �1,350 cm�1 D-band peak is only observed 66

in the presence of defects or at the edge of a graphene sample in an otherwise 67

perfect infinite graphene structure. The intensity of the D band is proportional to the 68

amount of disorder (as, for example, at a point defect or at a crystallite boundary) 69

in the sample. The ratio between the intensities of the disorder-induced D band and 70

the first-order graphite G band (ID=IG) provides a parameter that can be used for 71

quantifying the amount of disorder. 72

Tuinstra and Koenig showed in 1970 that the ID=IG intensity ratio [3, 4] is 73

correlated with the crystallite size La by the relation ID=IG D A=La, where A 74

is a constant for a fixed laser excitation energy Elaser.2 This means that the ID=IG 75

intensity ratio depends on the laser excitation energy Elaser [14]. The Tuinstra and 76

Koenig relationship has been frequently used to characterize carbon sp2 crystallites 77

large enough to have a well-established graphene-like structure. On the other hand, 78

Lucchese et al. showed recently that in the limit of amorphization, the ratio ID=IG 79

2This means that A changes for different Elaser and we cannot directly compare the ID=IG values
of two different samples observed by two different values of Elaser.
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decreases as the crystallite goes down to very small La values [15]. In this limit, the 80

sp2 carbon hexagonal crystal structure for graphene is not well defined. 81

The so-called D0 band, centered at 1,620 cm�1, is usually observed in the 82

Raman spectra of graphene and other disordered sp2 carbon materials, although 83

the D0 band has a weaker intensity when compared to the D band. The D0 band 84

feature, reported in 1978 by Tsu et al. [16], also depends on La and Elaser [10] but 85

involves a different scattering process. The D band involves an intervalley scattering 86

process, as explained below, while the D0 band involves an intravalley scattering 87

process [17]. 88

Vidano et al. showed in 1981 [18] that the D and G0 bands are dispersive, 89

i.e., their Raman shift frequencies change with Elaser according to the relations 90

�!D=�Elaser � 50 cm�1/eV and �!G0=�Elaser � 100 cm�1/eV. The out-of-plane 91

stacking order has also been shown to affect the G0-band Raman lineshape and 92

intensity [19–21]. The explanation for the exceptionally large dispersive behavior 93

of both the D band and G0 band as well as the large G0-band intensity came in 94

2000, through the work of Thomsen and Reich [22], and their model described in 95

Section 2.1.3 was extended by Saito et al. to explain the mechanism behind many 96

other dispersive Raman peaks observed in the Raman spectra [17,23] of sp2 carbon 97

materials. 98

2.1.2 Edge Structure of Graphene 99

In the characterization of defects of graphene, the edges are the dominant source 100

of defect-related features in the Raman spectra. There are two symmetrical edge 101

structures, armchair and zigzag edges (see Fig. 2.2). The general structure of 102

edges are random but we can treat the general edge as a mixture of zigzag and 103

armchair edges. When we heat a graphene sample to more than 2,000ıC in an 104

electron microscope in the presence of the electron beam, the armchair and zigzag 105

edge structures become increasingly dominant and especially the zigzag edges are 106

observed predominately at the highest heat treatment temperatures [24]. In such 107

samples, the more general chiral edges tend to break up into small segments of 108

zigzag and chiral edges (see Fig. 2.2) [25,26]. Characterization of the edge structure 109

by Raman spectroscopy and the related theory is discussed in Sect. 2.3.AQ3 110

2.1.3 The Multiple-Resonance Raman Scattering Process 111

Both the D band and the D0 band are double-resonance processes, as briefly 112

described below, except that the D band involves an intervalley scattering process 113

from the K point to the K 0 point in the Brillouin zone, whereas the D0 band is 114

an intravalley scattering process involving wave vectors q located near the same K 115

point or the same K 0 point in reciprocal space [see Fig. 2.3a]. 116
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graphene

zigzag
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armchair
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Fig. 2.2 Zigzag and armchair edges in monolayer graphene nanoribbons. The geometrical edge
structure and the number of atomic rows of carbon atoms normal to the ribbon axis determine the
electronic structure and ribbon properties (Images courtesy of M. Hofmann, MIT.)
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Fig. 2.3 (a) Schematics showing the electronic dispersion near the Fermi level at the K and K 0

points in the hexagonal Brillouin zone of graphene. The light-induced electron–hole formation is
indicated by a gray arrow. The two resonant electron–phonon scattering processes associated with
the D (intervalley) band and the D0 (intravalley) band are indicated by black arrows. The dashed
arrows indicate elastic scattering induced by defects. (b) Laser energy dependence or dispersion
of the frequencies of the D, D0, and G0 bands which are all dispersive with Elaser, but each has a
different slope, the smallest slope for the D0 band and the largest slope being for the G0 band [10]

Defects in the solid are expressed in terms of an impurity potential Vimp.q/ 117

which couples two electron wave functions with the wave vector k and k C q to 118

each other. Thus the wave vector k is no longer a good quantum number of an 119

electron, which implies that phonons in the interior of the Brillouin zone (q ¤ 0) 120

can contribute to the Raman spectra as a higher order Raman process. This is the 121
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origin of disorder-induced Raman spectra. On the other hand, when we consider the 122

multiple-resonance Raman scattering process, phonons with q ¤ 0 can be observed 123

without any defect. The intensities of the D band and the D0 band I.!; Elaser/ 124

in sp2 carbons are all enhanced by the double-resonance processes described in 125

Fig. 2.3a [17,23] (the G0 band has a similar process). This resonance produces strong 126

coupling between real electronic states. More specifically, when the denominators 127

in the expression for the resonance Raman intensity (or cross section) become small 128

by introducing two real states in the resonance denominators of I.!; Elaser/ which 129

are given in (2.1) [12]: 130

I.!; Elaser/ D
X

i

ˇ̌
ˇ̌
ˇ̌

X

a;b;c;!ph

Mop.k; ic/Md.�q; cb/Mep.q; ba/Mop.k; ai/

�Eai .�Ebi � „!ph/.�Eai � „!ph/

ˇ̌
ˇ̌
ˇ̌

2

; (2.1)

then the intensity I.!; Elaser/ can become very large. Here �Eai in each of the 131

resonance denominators is given by 132

�Eai D .Elaser � .Ea � Ei/ � i�r /; (2.2)

where �r denotes a broadening factor. In (2.1) the subscripts i; a; b, and c, respec- 133

tively, denote the initial state, the excited state, the first scattered state of an electron 134

by a phonon, and the second scattered state of an electron by a defect. In this double- 135

resonance process, an electron at wave vector k near the K point is first excited to the 136

conduction band state a by a photon absorption process involving the matrix element 137

Mop.k; ai/ (see Fig. 2.3 and (2.1)). Next a phonon scatters the electron from a to b 138

with the wave vector q in a crystal momentum-conserving process involving matrix 139

element Mep.q; ba/, after which the electron at b near the K 0 point in reciprocal 140

space is elastically scattered by a defect back to c near the K point with the wave 141

vector �q by the matrix element Md.�q; cb/. Finally the excited electron emits a 142

photon and returns to the valence band to complete the D-band process, which is 143

seen to include a phonon emission process and an inelastic defect scattering process. 144

The symbols Mop, Mep and Md denote the electron–photon, electron–phonon and 145

electron defect scattering matrix elements, respectively. In this double-resonance 146

process, two of three factors in the denominator becomes almost zero (double 147

resonance), which enhances the intensity significantly, resulting in a process with an 148

intensity close to that of a first-order process. The phonon scattering process and the 149

defect scattering process can occur in either order, thereby resulting in a broadening 150

of the Raman linewidth. When these processes are resonant as described above, they 151

enhance the scattering amplitude much more than for nonresonant processes, so that 152

the observed Raman spectra are dominated by the double-resonance D and D0-band 153

scattering processes, both processes fulfilling energy and momentum conservation. 154

Momentum conservation in the presence of disorder can thus be satisfied through 155

an elastic scattering process by a defect, represented by dashed arrows in Fig. 2.3a 156

in addition to the electron–phonon scattering process for the D and D0 bands, each 157

of which involves phonons with very different wave vectors, which are known as 158
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intervalley and intravalley wave vectors, respectively [23]. In contrast, the G0 band 159

only involves two-phonon processes with intervalley wave vectors q and �q. 160

In Fig. 2.3b, the dispersions (or slopes) of the frequencies of the D, D0, and G0
161

bands are plotted as a function of Elaser, whose dependencies are well explained 162

by the double-resonance model [17, 22, 23]. The slope associated with the G0 band 163

is about 100 cm�1/eV and it is two times larger than the slope of the D band 164

(50 cm�1/eV). The D0 band also exhibits a weakly dispersive behavior, the slope 165

being �10 cm�1/eV [10]. 166

When we consider the double-resonance Raman scattering processes, the D and 167

D0 bands are not the only disorder-induced one-phonon peaks in the Raman spectra 168

for disordered sp2 materials. Any combination or overtone of the six dispersive 169

phonon energy branches in sp2 carbons can occur and disorder-induced Raman 170

frequencies can be related to any of the six phonon branches of graphene with 171

the appropriate wave vector which fulfills the double resonance condition and 172

with nonzero electron–phonon matrix elements [17]. The intravalley and intervalley 173

double-resonance processes involve phonons near the � and K (or K 0) points, 174

respectively, and we can vary both the resonant k and q values by changing 175

Elaser, as determined by conservation of energy and momentum requirements 176

[23, 27, 28]. Thus by using electronic band structure information, we can determine 177

the phonon dispersion relations around the K and the � points, by considering 178

intervalley and intravalley processes, respectively. This approach has been used for 179

obtaining the graphene phonon dispersion relations (see Fig. 2.1b) using Raman 180

spectroscopy [17, 27]. 181

2.1.4 Concept of the Kohn Anomaly 182

The Kohn anomaly refers to the softening of phonon frequencies due to electron– 183

phonon coupling and this effect is very important for describing the G band for 184

graphene and metallic carbon nanotubes. According to this effect, a phonon can 185

bring an electron from the valence band to the conduction band, thus creating an 186

electron–hole pair. This process thus renormalizes the phonon energies and lowers 187

the phonon lifetime [29–32]. This phonon effect is dominant near the � and K 188

points of the graphene Brillouin zone, thus generating a highly dispersive phonon 189

branch. These phonons are mainly responsible for the G, G0, D, and D0 band 190

signals, therefore making the Raman spectra from graphene highly sensitive to this 191

phenomena. Interestingly, the Kohn anomaly effect can be suppressed by changing 192

the Fermi level, since the electrons or holes that are occupied by doping suppress the 193

electron–phonon interaction, causing a strong dependence of the G-band frequency 194

upon doping (see Sect. 16.4 for details). 195

This effect is specially interesting in carbon nanotubes [33]. The fundamental 196

difference between metallic carbon nanotubes and semiconducting nanotubes is 197

the presence of a band gap in semiconducting nanotubes and the absence of a 198

band gap in metallic nanotubes, as well as the carrier concentration in metallic 199
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nanotubes at the Fermi energy, leading to a greater importance of the electron– 200

phonon interaction as a phonon scattering process. In practice, the Kohn anomaly 201

is important in modifying the phonon dispersion for metallic nanotubes near the � 202

and K (K 0) points in the Brillouin zone, resulting in both a substantial lowering (by 203

tens of cm�1) of the LO phonon frequency relative to the TO phonon frequency and 204

a broadening in the LO phonon Raman linewidths. 205

2.1.5 Introduction to Near-Field Raman Spectroscopy 206

Before ending this introductory section, we mention a technique that has strong 207

potential to provide information about local effects in nanostructures, i.e., the near- 208

field technique. Raman spectroscopy will become an even more powerful tool 209

to characterize disorder in sp2 materials when we learn how to relate specific 210

defects to their corresponding disordering processes and how to obtain quantitative 211

information about the amount of each type of lattice defect. Some important 212

progress has been achieved in this area, as discussed in this chapter, but substantial 213

achievements will come from single-defect spectroscopy. In this sense, near-field 214

Raman spectroscopy is important in providing more spectroscopic information at 215

a smaller length scale �x than the diffraction limit of �laser=2, where �laser is the 216

wavelength of the laser. Near-field Raman spectra of sp2 carbons, such as SWNTs 217

and graphene, have been taken with the help of a sharp tip which enhances the near- 218

field signal [9] and allows detection of localized defects on a length scale of 30 nm 219

when looking at G-band or D-band spectra. Of particular interest would be the 220

study of localized defect features in the vicinity of graphene edges, ion-implanted 221

defects [13], and dopant atom impurities [9]. In the world of sp2 carbons, near-field 222

Raman spectroscopy has been highly informative for high spatial resolution studies 223

of one-dimensional carbon nanotubes, and high expectations are in place for the 224

use of near-field Raman spectroscopy to study edges and defects in graphene (see 225

further details in Sect. 2.5). 226

2.2 Characterization of Defects 227

Accurate defect quantification has been a hard task in the field of sp2 carbons. 228

To achieve a really accurate quantitative description of defect phenomena, Raman 229

spectroscopy has to be combined with microscopy experiments of the structure. 230

Transmission electron microscopy (TEM) or scanning tunneling microscopy (STM) 231

can characterize structural disorder of the crystal in r-space by probing the local 232

surface density of electronic states, with atomic level resolution. Simultaneous 233

in situ TEM and Raman measurements are, in principle, possible. However, a 234

special experimental setup and special sample preparation methods would be needed 235

for such an experiment. Usually, STM and Raman spectroscopy cannot be easily 236

correlated with each other, since optical spectroscopy probes a volume that is limited 237
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by the light penetration depth, while STM is mostly sensitive to surfaces. In this 238

context, the possibility of exfoliating graphite to pull out a single graphene sheet 239

provides an ideal situation in which microscopy and spectroscopy can be correlated 240

to probe disorder effects in both r-space and k-space for the same sample. We 241

describe here some early examples of such work. 242

There are two different major classes of defects in sp2 carbon systems that have 243

been largely used to study the Raman signature of disorder. One can be said to 244

have point (or zero-dimensional) defects, and this is the case of the point defects 245

produced by ion bombardment. The other system is composed of small graphitic 246

crystallites, where the disorder is actually related mostly to the graphite borders 247

or edges and, therefore, this disorder relates to a one-dimensional defect. This 248

difference in the “dimensionality” of the defect causes differences in the defect 249

behaviors, as discussed below. 250

2.2.1 Point Defects Induced by Ion Bombardment 251

There are different ways of introducing point defects in a crystalline lattice, but the 252

use of ion implantation to study defects in graphite is a well-established technique 253

[13]. These experiments are normally carried out as a function of ion dose and for 254

different ion species and different ion energies. Low mass ions at low ion fluence 255

introduce point defects. Increasing the ion dose causes an increasing density of point 256

defects and eventually causes the damaged regions to overlap as discussed for ion- 257

bombarded HOPG and graphene [9, 13, 15, 34, 35]. The work on graphite brings in 258

the complicated aspect of penetration depth and cascade effects. Cascade effects are 259

effects whereby a scattered C atom with a large amount of energy hits another C 260

atom iteratively, similar to the chain reaction of dominoes. 261

Raman spectroscopy of monolayer graphene, which is intentionally damaged by 262

ArC ion bombardment, was performed in which the energy of ion is kept low to 263

avoid cascade effects[15,34]. The ion doses range from very low, so that only a few 264

lattice atoms are perturbed, up to ion doses so high as to come close to full disorder. 265

More specifically for ArC ions this corresponds to ion doses varying from 1011 to 266

1015ArC/cm2, which correspond, respectively, to one defect per 4 � 104 C atoms for 267

the lower limit and to the onset of full disorder in graphene for the upper limit. The 268

defect density in real space was monitored by STM (scanning tunneling microscopy) 269

images which allowed the extraction of the defect density or alternatively values of 270

the average distances between defects [15]. 271

In Fig. 2.4a we show the Raman spectra of a graphene monolayer subjected to 272

different ion bombardment intensities. From Fig. 2.4a it is clear that the Raman spec- 273

tra for graphene, mildly disordered graphene, and very highly disordered graphene 274

(close to amorphization) are distinctly different from one another. From the pristine 275

sample (bottom spectrum) to the lowest bombardment dose in Fig. 2.4a (1011
276

ArC/cm2), the D-band process is activated, showing a very small intensity relative 277

to the G peak (ID=IG). Within the bombardment dose range 1011–1013 ArC/cm2, 278
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Fig. 2.4 (a) Evolution of the first-order Raman spectra (using a � D 514 nm laser (2.41 eV))
taken from a graphene monolayer sample deposited on an SiO2 substrate, subjected to ArC

ion bombardment. The ion doses are from the bottom to the top, 1010, 1011 , 1012, 1013, and
1014 ArC/cm2 [15]. (b) The ID=IG data points from three different monolayer graphene samples
as a function of the average distance LD between defects. The solid line is a modeling of the
experimental data using (2.3). The inset shows a plot of ID=IG vs. LD on a log scale for LD for
two samples: (i) open points for a �50-layer graphene sample and solid circles are for a small
piece of HOPG near a graphene piece. (ii) solid diamond points, for a 2 mm-thick bulk HOPG
sample, whose measured values are here scaled by (ID=IG ) �3:5 [15]

the intensities of the disorder-induced peaks increase in intensity. The second 279

disorder-induced peak around �1; 620 cm�1 (the D0 band) also becomes evident 280

within this bombardment dose range. However, above 1013 ArC/cm2, the graphene 281

Raman spectra start to broaden significantly and end up exhibiting a profile similar 282

to the graphene phonon density of states (PDOS) for the highest ion dose of 283

1015 ArC/cm2 [15]. 284

In Fig. 2.4b we plot the ID=IG as a function of the average distance between 285

defects LD , in which we can quantify the degree of disorder. As seen in this figure, 286

the ID=IG ratio has a nonmonotonic dependence on LD , increasing initially with 287

increasing LD up to LD � 3:5 nm, where ID=IG in Fig. 2.4b has a peak value, 288

and then decreasing for LD > 3:5 nm. Such a behavior suggests the existence of 289

two disorder-induced competing mechanisms contributing to the Raman D-band 290

intensity, which we describe next. 291

2.2.2 Model for the D-Band Activated Region 292

To explain the ID=IG dependence on LD , we propose the so-called D-band 293

activation model which is illustrated in Fig. 2.5 [15]. This model assumes that a 294

single impact of an ion on the graphene sheet causes modifications on two length 295

scales, here denoted by rA and rS (with rA > rS ), which are, respectively, the radii 296
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Fig. 2.5 (a) Definition of the “activated D0” A-region (darkest gray) and “structurally disordered
D0” S-region (dark gray). The radii are measured from the ion impact point which is chosen
randomly in our simulation. (b–e) shows 55 nm�55 nm portions of the graphene simulation cell,
with snapshots of the structural evolution of the graphene sheet for different defect concentrations:
(b) 1011 ArC/cm2; (c) 1012 ArC/cm2; (d) 1013 ArC/cm2; (e) 1014 ArC/cm2, like the five spectra
in Fig. 2.4a [15]

of two circular areas measured from the ion impact point (see Fig. 2.5). Within the 297

shorter radius rS , a structurally disordered S -region occurs relative to the point 298

of impact. For distances larger than rS but shorter than rA, the lattice structure 299

is preserved, but the Raman D band is activated. We call this the activated or 300

A-region. In qualitative terms, an electron–hole excitation will only be able to “see” 301

the structural defect if the electron–hole pair is created sufficiently close to the defect 302

site and if the excited electron (or hole) lives long enough for the defective region 303

to be probed by Raman spectroscopy. 304

For understanding this model, stochastic simulations were performed for each 305

disorder levels [15]. Snapshots of each disorder concentration are shown in 306

Fig. 2.5b–e for the same argon ion concentrations as in Fig. 2.4a. In the stochastic 307

simulations of the bombardment process, we randomly chose the impact points for 308

the ions, combined with (2.3) and select the parameters rA D 3 nm and rS D 1 nm, 309

which give the full line curve in Fig. 2.4b. The calculated result is in excellent 310

agreement with the experimental results (points) in this figure [15]. The length 311

scale rS D 1 nm, which defines the structurally disordered area, is in excellent 312

agreement with the average size of the disordered structures seen in the STM 313

images. This parameter should, however, not be universal, but it should be specific 314

to the bombardment process, the ion bombardment conditions, and the specific 315

ions used for the ion bombardment. The Raman relaxation length ` for the defect- 316

induced resonant Raman scattering in graphene for Elaser D 2.41 eV (514 nm) is 317

found to be ` D rA � rS D 2 nm. It is impressive how short this relaxation length is 318

for this type of point defect. 319

It is important to have an equation relating ID=IG to LD . Such an equation can 320

be obtained by solving the rate equations for the bombardment process. The entire 321

regime (0 < LD < 1) can be fitted using 322

ID

IG

D CA

r2
A � r2

S

r2
A � 2r2

S

�
exp

���r2
S

L2
D

�
� exp

���.r2
A � r2

S/

L2
D

��

CCS

�
1 �

���r2
S

L2
D

��
; (2.3)
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where the fitted parameters are CA D .4:2 ˙ 0:1/, CS D .0:87 ˙ 0:05/, rA D 323

.3:00 ˙ 0:03/ nm and rS D .1:00 ˙ 0:04/ nm [15]. The CA parameter is a measure 324

of the maximum possible value of the ID=IG ratio in graphene, which would occur 325

in a hypothetical situation in which K–K0 wave vector mixing would be allowed 326

everywhere, but no damage would be made to the hexagonal network of carbon 327

atoms. CA should then be defined by the electron–phonon matrix elements, and the 328

value CA D 4:2 is then in rough agreement with the ratio between the electron– 329

phonon coupling for the iTO phonons evaluated between the � and K points in the 330

Brillouin zone [36]. The CS parameter is then the value of the ID=IG ratio in the 331

highly disordered limit, which has not yet been addressed theoretically. For large 332

values of LD (LD > 6 nm), a much simpler formula can be used, i.e., ID=IG D 333

A=L2
D , where A D .102 ˙ 2/ nm2. 334

This model has been extended to account also for the evolution of the D0- and 335

G0-band intensities. Ferreira et al. [34] also described carefully the evolution of 336

the frequencies, intensities, and full-width at half maximum intensity for all the 337

observed peaks in the Raman spectra of graphene, as a function of ion induced 338

disordering and the number of graphene layers. 339

2.2.3 Line Defects at the Edges of Nanographene 340

Now we turn into the other class of defects, i.e., the one-dimensional defects repre- 341

sented by the graphene borders or edges. By scanning the focused laser light of an 342

optical microscope on a graphite nanocrystallite or graphene, we can observe Raman 343

signals as a function of position, which is known as confocal Raman imaging. The 344

G-band intensity is uniform over the whole graphene surface, while the D-band 345

intensity is localized where the crystalline structure is not perfect, mostly at the 346

edges of the crystallite. We therefore expect to see elastic scattering events at the 347

edges which contribute to the D-band intensity [37–39]. Notice also that the D-band 348

intensity varies from edge to edge, and this D-band intensity is dependent on the 349

light polarization direction and the atomic structure at the edge, as discussed later. 350

As pointed in the introduction, the intensity ratio of the D band to the G band, 351

ID=IG , is frequently used for the evaluation of crystallite dimensions La [3]. The 352

model described for point defects in Sect. 2.2.2 also applies to the edges after 353

several additional effects are taken into account [9]. When we consider a square of 354

crystallite size La, the intensity of the G band will vary as IG / L2
a . The intensity of 355

the D band will, however, depend on the width ı of the “border” (of around 2–3 nm) 356

where the D band is activated and is given by ID / L2
a � .La �2ı/2 consistent with 357

the findings in Sect. 2.2.2. The intensity ratio will then be given by 358

ID

IG

D ˛

�
4

�
ı

La
� ı2

L2
a

��
; (2.4)

where the scaling factor ˛ is dependent on the appropriate matrix elements [9]. 359
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a b

Fig. 2.6 Scanning tunneling microscopy (STM) images with atomic resolution obtained from the
surface of a nanographite crystallite of a sample with La D 65 nm. (a) A Moire pattern at the
crystallite surface is observed. (b) Magnification of the region delineated by the white square in
part (a) [40]

When we take a limit La � ı, where the crystallite size is large compared 360

to the heavy damage range, (2.4) can be simplified to yield the Tuinstra–Koenig 361

relation [3] 362

ID

IG

D C.Elaser/=La; (2.5)

in which the value of the empirical constant C.Elaser/ depends on Elaser. One 363

could then expect that, once the relaxation length and matrix element ratio were 364

measured for the D-band scattering in ion-bombarded graphene (Sect. 2.2.2), these 365

values could just be used to obtain ˛ and ı. However, the relaxation length and 366

matrix element ratio depend on the structurally disordered area (SS ) shown in 367

Fig. 2.5, which is not well defined for nano-graphite. Figure 2.6 shows two scanning 368

tunneling microscopy (STM) images with atomic resolution obtained from the 369

surface of a crystallite in a nanographite sample with La D 65 nm. The atomic 370

arrangement of the carbon atoms observed in these images indicates that the samples 371

are formed by nanographitic crystallites, with a disordered grain boundary between 372

crystallites [40]. Variability associated with grain boundaries such as in Fig. 2.6 may 373

also be responsible for the different ID=IG vs. La results obtained by different 374

groups, as reported in the literature. However, ID=IG also depends on Elaser, the 375

laser excitation energy. 376

This important fact that the constant C.Elaser/ depends on Elaser is known since 377

1984 [14], but C.Elaser/ has been quantitatively determined only more recently [41], 378

using experimental results from nanographites with different La values prepared 379

from diamond-like carbon (DLC) films heat treated at different temperatures Thtt 380

[41]. In Fig. 2.7a Raman spectra for the Thtt D 2,000ıC sample (La D 35 nm) for 381

five different Elaser values are shown. The spectra are normalized to the G-band 382

intensity, and clearly the ratio .ID=IG/ increases with decreasing Elaser. To clarify 383

this point, we show in Fig. 2.7b, the Raman spectra for different crystallite sizes La 384

using the same excitation laser energy Elaser D 1:92 eV [41], where the La sizes 385

were determined by using both STM and X-ray measurements. These La values 386

were thus correlated with the ID=IG intensity ratios measured at different laser 387

energies leading to a general equation for determining La as a function of both 388

the laser excitation energy and the (ID=IG) intensity ratio [41]. 389
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a b

Fig. 2.7 The first-order Raman spectra of (a) a nanographite sample heat treated at 2,000ıC
(La D 35 nm), for five different laser excitation energies (1.92 eV, 2.18 eV, 2.41 eV, 2.54 eV, and
2.71 eV). (b) Nanographite samples with different crystallite sizes La using 1.92 eV laser excitation
energy [41]

a b

Fig. 2.8 (a) The intensity ratio ID=IG for nanographite samples is plotted vs. 1=La using five
different laser excitation energies (see text). (b) All curves shown in part (a) collapse onto the
same curve in the (ID=IG/E4

L vs. .1=La/ plot where EL denotes the laser excitation energy [41]

Figure 2.8a shows a plot of (ID=IG) vs. 1=La for all samples shown in Fig. 2.7. 390

It is clear in Fig. 2.8b that ID=IG for a given sample can be scaled by Elaser as 391

(ID=IG/E4
laser vs. La. From this relation we can estimate La using any laser line in 392

the visible range [41]: 393

La.nm/ D 560

E4
laser

�
ID

IG

��1

D .2:4 � 10�10/�4
laser

�
ID

IG

��1

; (2.6)
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where the laser excitation is given in terms of both Elaser (eV) and the corresponding 394

wavelength �laser (nm). This behavior is consistent with D-band intensity calcula- 395

tions [37]. A similar analysis has also been made for carbon foams [42]. In the 396

literature, the (ID=IG) ratio is often reported at 2.41 eV, where the ID=IG ratio is 397

relatively low. 398

2.3 Characterization of Edges 399

As discussed in Sect. 2.1.2, finite size graphene can have two symmetric edge 400

structures which are known as zigzag and armchair edges [43]. Unlike single 401

wall carbon nanotubes where no edge structures exist along the walls of the nan- 402

otubes, experiments show that armchair and zigzag edges of heat-treated graphene 403

nanoribbons are stable and dominant. Here we discuss how to characterize the edge 404

structures of graphene by Raman spectroscopy. 405

2.3.1 Overview of Graphene Edges 406

The electron and phonon states exhibit edge-specific properties for armchair or 407

zigzag edges of graphene nanoribbons which can be observed by Raman spec- 408

troscopy. A graphene nanoribbon is defined as a one-dimensional graphene strip 409

with edges at both sides and with a fixed width whose structure is specified by a 410

vector in the direction of the ribbon width, similar to the chiral vector of single 411

wall carbon nanotubes [43, 44]. A graphene nanoribbon is obtained either by (1) 412

unrolling nanotubes by heating [14,15], (2) by cutting a graphene sheet by electron- 413

beam lithography [47], or by (3) heating nanodiamond [25, 48]. 414

In the case of the zigzag edge, localized electron states which are called edge 415

states appear and form a flat energy band at the Fermi energy from the K point to 416

the M point in the two-dimensional Brillouin zone [43, 44]. Since the edge states 417

are partially occupied by � electrons, the magnetic properties of edge states show 418

ferromagnetic behavior because of the exchange interaction between spins in the flat 419

energy band structure [49]. Another important fact about the edge state is that the 420

amplitude of the wave function has a large value only on one of the two sublattices of 421

graphene. This fact enhances the electron–phonon interaction [50,51] only near the 422

zigzag edge. The fact that the wave function has a large value only on one sublattice 423

corresponds to the pseudospin polarized state of graphene [51]. Here the pseudospin 424

of graphene is defined by the two component wave function of � electrons [52]. 425

Using this fact, possible superconductivity may appear at these edges [53,54]. Igami 426

et al. discussed the possible phonon edge states of graphene nanoribbons with zigzag 427

edges [55]. Similar edge phonon modes are observed at the tube edges in a single 428

wall carbon nanotube (SWNT) with finite length [56]. 429
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For the armchair edges of nanoribbons, double-resonance theory (see Sect. 2.1.3) 430

tells us that the D band is strong for the armchair edges since the scattering at 431

the armchair edge corresponds to the intervalley scattering which is relevant to 432

the D-band Raman intensity, while the scattering at the zigzag edge corresponds 433

to intravalley scattering and is very weak [39]. Further, edge-localized phonon 434

modes are observed for thin graphene nanoribbons [57]. Combined with the phonon- 435

softening phenomena of the G band (see Sect. 16.4), the polarization dependence of 436

the Raman signal characterizes the signal of the LO and TO phonon modes for the 437

G band [58], and we can use these polarization techniques to characterize and to 438

distinguish between the different edge structures by Raman spectroscopy. Hereafter 439

we discuss each subject one by one. 440

2.3.2 The Characterization of Graphene Edges 441

from Their D-Band Scattering 442

In nanographitic samples formed by aggregates of small crystallites, the crystallite 443

borders form defects in real space. Since the crystallites have different sizes and 444

their boundaries are randomly oriented, the defect wave vectors exhibit all possible 445

directions and values. Therefore, the existence of a defect with momentum exactly 446

opposite to the phonon momentum is always possible, giving rise to double- 447

resonance processes [17, 22] connecting any pair of points (electron wave vectors) 448

around the K and K 0 points in the first Brillouin zone of graphite or graphene. 449

In this case, the intensity of the D band is isotropic and does not depend on the 450

light polarization direction. However, in the case of edges, the D-band intensity 451

is anisotropic because the double-resonance process cannot occur for any arbitrary 452

pair of k points [39]. Since, in real space, the edge defect is well localized in the 453

direction perpendicular to the edge, it is completely delocalized in this direction in 454

reciprocal space and, therefore, the wave vector of such a defect assumes all possible 455

values perpendicular to the edge. Hence, the defect associated with an edge has a 456

one-dimensional character and it is only able to transfer momentum in the direction 457

perpendicular to the edge. 458

Here we show that the disorder-induced D band obtained from graphene edges 459

provides useful information about the atomic structure of these edges. The D- 460

band scattering is strongly anisotropic and depends on the orientation of the carbon 461

hexagons with respect to the edge, in the armchair or zigzag arrangements [39]. This 462

anisotropy can be used to define the local degree of order of the atomic structure at 463

the edge. The physics leading to this structurally selective effect is explained on 464

the basis of the well-established double-resonance effect [17, 22] applied to a semi- 465

infinite crystal bounded by a one-dimensional defect. 466

In Fig. 2.9a, we show three Raman spectra at three different regions of a highly 467

oriented pyrolytic graphite (HOPG) [39]. The inset to Fig. 2.9a shows a high- 468

resolution STM (scanning tunneling microscopy) image of the sample. Further 469

details about the STM technique can be found in Chap. 3. Regions 1 and 2 are at 470
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Fig. 2.9 (a) Raman spectra at different regions of a highly oriented pyrolytic graphite (HOPG).
The inset shows an optical image of the sample. Regions 1 and 2 are at HOPG edges, while region
3 is on the flat HOPG surface. (b) Idealized structure of the edges shown at the inset to part (a).
The bold lines highlight the edge structures, armchair for edge 1 and zigzag for edge 2. The wave
vectors of the defects associated with these edges are represented by da for armchair and d z for the
zigzag edges. (c) The first Brillouin zone of graphene oriented according to the lattice in the real
space shown in part (b). Note that only the armchair da vector is able to connect points belonging
to equienergy contours surrounding two inequivalent K and K 0 points (Adapted from Ref. [39].)

HOPG step edges, while region 3 is taken at an interior point of the HOPG sample. 471

In all spectra, the light propagation is perpendicular to the HOPG basal plane and 472

the polarization of the incident light is parallel to the edge direction in spectra 1 and 473

2. The G band (centered at approximately 1,580 cm�1) is present in all spectra with 474

the same intensity. The Raman features at approximately 1,340 and 1,620 cm�1 are 475

the disorder-induced D and D0 bands, respectively. The disorder-induced D and 476

D0 bands are observed in spectra 1 and 2, but not in spectrum 3, since spectrum 477

3 was taken at an interior region of the HOPG with a crystalline order (see inset 478

to Fig. 2.9a). As shown in Fig. 2.9a, the D band is about four times less intense in 479

spectrum 2 compared to spectrum 1, whereas the D0-band intensity remains almost 480

constant for both spectra. The different intensities observed for the D band in spectra 481

1 and 2 indicate that the the D-band intensity is coming from graphite edges. 482

The STM images of the edges revealed that edge 1 shown in Fig. 2.9a has an 483

armchair structure, whereas edge 2 has a zigzag structure. To clarify this picture, 484

Fig. 2.9b shows the idealized structure of the edges. The bold blue lines highlight 485

the edge structures, armchair for edge 1 and zigzag for edge 2. The wave vectors 486

of the defects associated with these edges are represented by da for armchair and 487

d z for the zigzag edge. Figure 2.9c shows the first Brillouin zone of graphene 488

oriented according to the lattice in the real space shown in Fig. 2.9b. Note that only 489

the armchair da vector is able to connect points belonging to equienergy contours 490

surrounding two inequivalent K and K 0 points. An important fact is the change of 491

the wave vector by scattering at the zigzag edges dz does not connect K and K 0
492

points but connects K and K or K 0and K 0, which means intravalley scattering. This 493

means that the intervalley double-resonance process associated with this defect can- 494

not occur for a zigzag edge, thereby explaining why the D band is much less intense 495
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in the spectra obtained in zigzag edge 2. On the other hand, the D0 band is given 496

by an intravalley process, which connects points belonging to the same equienergy 497

contour around the K (or K 0) point [17]. In this case, momentum conservation 498

can be satisfied by both da and d z vectors3 and, therefore, the observation of the 499

D0 band must be independent of the edge structure though the relative intensity 500

might be different. This conclusion is confirmed by the experimental result shown 501

in Fig. 2.9a, where the D0 band has a similar intensity in both spectra 1 and 2, with 502

armchair and zigzag structures, respectively. It is important to note the observation 503

of a weak D band in spectrum 2, where it should be absent. This weak D band 504

is related to the actual atomic structure of the edge, allowing the scattering of the 505

electron by phonons and defects with wave vectors not perpendicular to the edge. 506

Similar measurements performed on different closely related armchair and zigzag 507

graphene edges show different D-band intensity ratios, indicating different degrees 508

of order for the local atomic arrangement at the different edges [59–61]. 509

We now turn our attention to the dependence of the D-band scattering intensity 510

on the polarization of the incident light relative to the edge direction. Figure 2.10a 511

shows the topographic image of a single graphene layer on a glass substrate [40]. 512

Figure 2.10b–d shows the corresponding Raman intensity images showing the G, 513

G0 and D-band intensities, respectively. Notice that the G-band intensity is roughly 514

uniform along the graphene surface. A similar situation occurs for the G 0 band, 515

which is the overtone of the D band but does not require a disorder-induced process 516

to become Raman active, since momentum conservation is guaranteed in two- 517

phonon Raman processes occuring for the G 0 band [62]. On the other hand, the 518

D band can be detected only near the graphene edges. Figure 2.10e shows Raman 519

scattering spectra acquired at two different locations (indicated in Fig. 2.10a). The 520

upper spectrum was acquired near the edge of the graphene layer whereas the lower 521

spectrum was recorded � 1 �m from the edge. The D band appears only in the 522

spectrum acquired near the edge, indicating that the graphene sheet is essentially 523

free of structural defects. The Raman scattering spectra also reveal that the G0
524

band is composed of a single peak, which confirms that the sample is a single 525

graphene sheet [63]. All confocal Raman images shown in Fig. 2.10b–d were 526

recorded with the polarization vector P of the excitation laser beam oriented parallel 527

to the graphene edge (y direction in Fig. 2.10b). Notice that the D-band intensity 528

associated with the top edge in Fig. 2.10d is weaker than that obtained from the side 529

edges, as we explain below. 530

In 2003, Grüneis et al. predicted an anisotropy in the optical absorption coef- 531

ficient of graphene given by Wabs / jP � kj2, where P is the polarization of 532

the incident (scattered) light for the absorption process, and k is the wave vector 533

of the electron measured from the K or K 0 point [64]. The thickness of the gray 534

region around the K and K 0 points at the corners of the first Brillouin zone of 535

graphene shown in Fig. 2.10g illustrates this anisotropy in the optical absorption 536

relative to P . Note that the light absorption has a maximum efficiency for electrons 537

3It is noted that da connects two k points on a constant energy contour.
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Fig. 2.10 (a) Topographic image of a single graphene layer on a glass substrate. (b)–(d)
Corresponding Raman intensity images showing the G-, G0- and D-band intensities, respectively.
(e) Raman scattering spectra acquired at two different locations of the graphene layer shown in
part (a). The upper spectrum was acquired near the edge of the graphene layer [position indicated
by the white square in panel (a)] whereas the lower spectrum was recorded � 1 �m from the
edge [position indicated by the white circle in panel (a)]. (f) The idealized structure of the edges
of the graphene layer shown in panel (a). The wave vectors of the defects associated with these
edges are represented by d s for the left side edge and d t for the top edge. Notice that both edges
have the same symmetry, which based on the strong D-band scattering intensity from the side
edges, we suppose to be armchair. (g) The first Brillouin zone of graphene oriented according to
the lattice in real space shown in part (f). P is the polarization vector of the incident light according
to the experiment that is responsible for the images shown in parts (b)–(d). The thickness of the
gray region around the K and K 0 points illustrates the anisotropy in the optical absorption relative
to P . Note that the light absorption (emission) has a maximum for electrons with wave vectors
perpendicular to P , and it is null for electrons with wave vectors parallel to P (Adapted from [40].)

with wave vectors perpendicular to P , and the efficiency is null for electrons with 538

wave vectors parallel to P . A singularity in the density of phonons that participates 539

in the one-dimensional double-resonance intervalley process gives rise to the D 540

band. This singularity in the phonon density of states [64] restricts the wave vector 541

of the electron to the direction perpendicular to the armchair edge (k0 and k0
0 in 542

Fig. 2.10g). However, as pointed out before, such electrons will only absorb light 543

efficiently if the polarization vector of the incident light is perpendicular to the 544

electron wave vector, and therefore a strong double-resonance process will occur 545

only if the polarization vector of the incident light is parallel to the edge. As shown 546

in Fig. 2.10g, this is the case for D-band scattering that originates from the side 547

edges of the graphene piece shown in Fig. 2.10a, which generate defects whose 548

wave vector dS (see Fig. 2.10f) connects electron wave vectors k0 and k0
0 that are 549

located at maxima in the light absorption efficiency around the K and K 0 points, 550
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respectively. On the other hand, the top edge in Fig. 2.10a generates defects whose 551

wave vectors d t (see Fig. 2.10f) connect electron wave vectors k0 and k0
0 which are 552

located near nodes in the light absorption efficiency around the K and K 0 points, 553

respectively (see Fig. 2.10g). This is the reason why the intensity of the D-band 554

signal obtained from the top edge in Fig. 2.10d (forming a relative angle of � 60ı
555

with P) is weaker than that obtained from the side edges. Notice that if the incident 556

light polarization vector is perpendicular to the edge, the D-band Raman scattering 557

cannot be observed even for armchair edges [39, 59, 60]. 558

2.3.3 Polarization Dependence of the Raman Spectra at Edges 559

Next we discuss Raman-active phonon modes of graphene edges within non- 560

resonance Raman theory [65]. In the case of graphene, since we always satisfy 561

the resonance condition for Raman spectra, the relative Raman intensity is directly 562

determined by the Raman tensor. Thus a nonresonance Raman calculation can give 563

reasonably reliable information. In Fig. 2.11, we show the unit cell of a graphene 564

ribbon with (a) armchair and (b) zigzag edges. The graphene ribbons lie in the xy 565

plane in which the edges (or the 1D periodicity direction) lie along the x direction. 566

The direction of the incident and scattered light is selected as the z (y) direction for 567

the XX , XY , and Y Y (ZZ) polarizations. Here we should mention that the in-plane 568

and out-of-plane bond polarizabilities need not be the same, which has been shown 569

for boron nitride BN [66]. Thus we cannot always compare the Raman intensity for 570

ZZ and the in-plane polarization, but we can discuss the relative intensity within 571

the ZZ configuration. 572

The ribbon width N is defined from the number of C–C lines parallel to the 573

ribbon direction, and the corresponding numbers of carbon atoms in the unit cell of 574
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Fig. 2.11 The unit cell of an (a) armchair and (b) zigzag nanoribbon. The graphene ribbon lies in
xy plane and the edge (periodic) direction is along x [65]
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the armchair and zigzag nanoribbons are 2N for both cases (see Fig. 2.11). Here, 575

we consider, for simplicity, only N D odd for armchair (zigzag) nanoribbons in 576

which the corresponding point group symmetry is D2h (C2v). The case N D even 577

for armchair (zigzag) nanoribbons corresponds to C2v (D2h) symmetry. Further, in 578

the special case of the zigzag nanoribbons with N D half integer, a different type of 579

edge (the so-called the Klein edge) appears [49]. As far as we discuss edge phonons, 580

we did not find any odd–even dependence of N on the phonon properties. 581

The scattering geometry is specified by the symbols iISs (i , s D x, y, z and 582

I , S D X , Y , Z) in which i and s (I and S ) denote propagating (polarization) 583

directions of the incident and scattered light, respectively. In bond polarization 584

theory, we cannot specify the propagating direction but we can only specify the 585

polarization direction, because the electromagnetic wave propagations i and I (or s 586

and S ) should be perpendicular to each other. Here we consider the following four 587

back-scattering geometries zXX Nz, zXY Nz, zY Y Nz, and yZZ Ny in which the overlines 588

Nz and Ny refer to the negative z and negative y directions, respectively. 589

The Raman-active modes belong to irreducible representations of D2h point 590

group: (Ag, x2; y2; z2), (B1g, xy), (B2g , xz), and (B3g , yz); C2v: (A1, x2, y2, z2), 591

(A2, xy), (B1, xz), (B2, yz). In particular, for the scattering geometries zXX Nz and 592

zY Y Nz, the Ag (A1) mode is Raman active, while for zXY Nz and zYX Nz, the B1g (A2) 593

mode is Raman active for D2h (C2v). 594

In Fig. 2.12, calculated results of the Raman spectra are shown for four different 595

geometries of the polarization directions. Here RBLM (RBLM3), EDGE, LO and 596

TO denote, respectively, the radial breathing-like phonon mode (its third overtone), 597

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000

Raman Shift [cm–1]

R
am

an
 I

nt
en

si
ty

LO

EDGE

RBLM

TO

LO

EDGERBLM

XX

RBLM3

RBLM3

RBLM3

RBLM

XY

YY ZZ

a b

dc

*

*

*

Fig. 2.12 The nonresonance Raman spectra of an N D 9 armchair nanoribbon for the scattering
geometries of (a) zXX Nz, (b) zXY Nz, (c) zY Y Nz, and (d) yZZ Ny . The Raman intensity is normalized
to the one for the largest Raman signal for the four geometries shown [65]
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(c) EDGE (d) LO (e) TO(a) RBLM (b) RBLM3Fig. 2.13 Phonon
eigenvectors of an N D 19

armchair nanoribbon for (a)
RBLM, (b) RBLM3, (c)
EDGE (d) LO, and (e) TO
phonon modes [65]

the edge phonon modes, the longitudinal optical and the in-plane transverse optical 598

phonon modes, whose vibration amplitudes are illustrated in Fig. 2.13. It is noted 599

that the out-of-plane optical phonon mode is not a Raman-active mode. The LO, 600

RBLM (RBM3), and edge modes belong to Ag symmetry, while the TO belongs to 601

B1g (xy) symmetry, which are all Raman active. The TO and LO modes are related 602

to the Raman G band of sp2 carbon materials whose vibrational amplitudes are 603

perpendicular and parallel, respectively, to the armchair edge and are homogeneous 604

in the interior region of the nanoribbon. In the RBLM, the ribbon width is vibrating, 605

which is similar to the radial breathing mode of a single wall carbon nanotube 606

[67]. The RBLM appears at relatively lower (300cm�1) frequency regions and 607

the frequency is inversely proportional to the ribbon width. In the experimental 608

situation, the observation of the RBLM is possible only when a fixed ribbon width 609

is made. Further we should consider the interaction of the nano ribbon with the 610

substrate which modifies the RBLM frequency. 611

The frequencies of the edge phonon modes are around 1,250cm�1 if we used 612

the force constant set for sp2 carbon. However, around the armchair edges without 613

any termination, the C–C bond at the edge becomes triple bonds and thus the 614

calculated edge phonon frequency by first principles calculations becomes relatively 615

high (around 2,200 cm�1). When the dangling bond is terminated by H atoms, 616

then the edge phonon modes of armchair edges are downshifted to 1,530 cm�1, 617

which is consistent with the recent Raman measurements on very thin nanographene 618

ribbons[57]. The amplitude of the edge phonon mode is localized only near the 619

armchair edge and its vibrating direction is parallel to the edge. Thus, the Raman 620

intensity for the edge mode is large for the XX polarization geometry compared 621

with the Y Y geometry. The TO phonon modes have a large Raman intensity 622

for the XY geometry since TO belongs to B1g . RBLM has a significant Raman 623

intensity for all XX , Y Y , and ZZ geometries which are common to Ag symmetry 624

modes [67, 68]. 625
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In the ZZ geometry, the G-band modes (TO and LO) disappear and only weak 626

signals of RBLM (RBLM3) and edge phonon modes can be seen. A relatively strong 627

peak at 889 cm�1, which can be seen also in the XX and Y Y geometries, belongs 628

to a higher frequency RBLM with three nodes of vibration (RBLM3). Although 629

the wavelength of the three node mode is one third of the fundamental RBLM 630

(317 cm�1), the corresponding phonon frequency (880 cm�1) is slightly smaller 631

than three times RBLM. This is because the longitudinal acoustic phonon energy 632

dispersion deviates from a linear energy dispersion near the zone boundary region 633

of the Brillouin zone. 634

In Fig. 2.14, the Raman intensity for an N D 9 zigzag nanoribbon is plotted 635

for the scattering geometries of (a) zXX Nz, (b) zXY Nz, (c) zY Y Nz, and (d) yZZ Ny. 636

The Raman signal for the ZZ geometry is 10 times enlarged relative to that for the 637

XX , XY , and Y Y geometries. The vibrational directions of the RBLM, RBLM3, 638

EDGE, TO, and LO phonon modes are illustrated in Fig. 2.15. In the case of zigzag 639

nanotubes, the TO, RBLM (RBLM3), and edge modes belong to A1 symmetry while 640

the LO mode belongs to A2 symmetry. Thus the TO, RBLM, (RBLM3) and edge 641

phonon modes can be seen in the XX , Y Y , and ZZ geometries, while the LO 642

phonon mode can be seen in the XY geometry. Generally we cannot distinguish 643

between LO and TO phonon modes from these experiments. However, we will 644

show in the following section that only LO phonon modes show phonon-softening 645
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Fig. 2.14 The nonresonance Raman spectra of an N D 9 zigzag nanoribbon for the scattering
geometries of (a) zXX Nz, (b) zXY Nz, (c) zY Y Nz, and (d) yZZ Ny . The Raman intensity in each
spectrum is normalized to the one for the largest Raman signal for the four indicated scattering
geometries. The ZZ signals in (d) are 10 times enlarged relative to the other geometries [65]
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(e) TO(d) LO(a) RBLM (c) EDGE(b) RBLM3Fig. 2.15 Phonon
eigenvectors of an N D 11

zigzag nanoribbon for (a)
RBLM, (b) RBLM3, (c)
Edge, (d) TO, and (d) LO
phonon modes [65]

phenomena (the Kohn anomaly) and in this way we can assign LO and TO for 646

graphene edges. 647

The vibrational direction of the edge states for a zigzag nanoribbon is perpendic- 648

ular to the zigzag edge direction, while that for the armchair nanoribbon is parallel 649

to the armchair edge. This difference of the vibrational direction can be enhanced by 650

terminating the dangling bond by other heavy element such as F atoms. The edge 651

phonon frequency of the zigzag edge is around 1,450 cm�1, which is consistent 652

with previous calculations [69] and experiments [57]. Two intermediate frequency 653

spectra show higher RBLM modes with five and seven nodes. 654

2.3.4 Polarization Dependence of the Raman Intensity 655

To discuss the Raman intensity as a function of the polarization dependence and 656

the edge dependence, we need to calculate the electron-optical transition amplitude. 657

In Fig. 2.16, the square of calculated optical matrix elements jM opt.A/j2 for the 658

electromagnetic interaction of an electron in an optical field which depends on the 659

vector potential A and the direction of the polarization of the laser light � is plotted 660

as a function of the angle � relative to the edge of the nanoribbon [70]. 661

Here, � D 0 corresponds to the polarization of A (or electric field) being parallel 662

to the edge. In this case, the amplitude M opt.A/ (or dipole vector in reference [64]) 663

is given by [70] 664

M opt.A/ D h	 c
k jH em

K j	 v
k i; (2.7)

where 	 v
k .r/ is the wave function in the valence energy band, which is related to 665

that in the conduction energy band 	 c
k.r/ via 	 v

k .r/ D 
z	
c
k.r/ and H em

K D �vFe
 � 666

A is the perturbation Hamiltonian of the optical dipole transition and vF and 
 are, 667

respectively, the Fermi velocity of graphene and the Pauli matrix which operates 668

on the wave functions at the edges [70]. Using the wave functions at zigzag and 669
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Fig. 2.16 The polarization dependence of the square of the optical transition amplitude
(jM opt.A/j2) is plotted as a function of the angle of laser polarization (�) with respect to the
orientation of the edge. For a pure zigzag (armchair) edge, as shown by the dotted (solid) line at
the top) the intensity is a maximum when the laser polarization is perpendicular (parallel) to the
edge. “zigzag@armchair” denotes the case when a small fraction of zigzag edges is introduced into
part of a perfect armchair edge. Here the parameter of r means randomness with r D 0 (armchair
only), r D 0:5 (partial), and r D 1 (random: a mixture of zigzag and armchair edges) [70]

armchair edges which consist of incident and reflecting waves at each edge, we can 670

obtain the polarization (�) dependence of M opt.A/. 671

In the case of pure zigzag edges (dotted line at the top of Fig. 2.16), the Raman 672

intensity is proportional to jM opt.A/j2 / sin2 �, while for the pure armchair edges 673

(solid line), jM opt.A/j2 / cos2 �. In the case of a general graphene ribbon, the 674

edge consists of short segments of zigzag and armchair edges. Here we introduce 675

a randomness factor r into the components of zigzag edges in the armchair edges 676

(zigzag@armchair) in which r D 0 corresponds to the pure armchair edges and 677

r D 1 is a completely random mixture of zigzag and armchair edges. In Fig. 2.16, 678

we show jM opt.A/j2 vs. � for three different r values. It is clear that there is no 679

angle � dependence for r D 0, since in this case the dependence would be the sum 680

of cos2 � C sin2 � which is unity. In an actual measurement of this polarization 681

dependence, we can get results for intermediate polarization dependencies such as 682

r D 0:5, which is consistent with the recent experiments [71, 72]. 683

For distinguishing between LO and TO phonon modes, the phonon softening 684

effects observed for LO mode in graphene (the Kohn anomaly) can be used. 685

Depending on the intravalley and intervalley scattering at the armchair or zigzag 686

edges, the occurrence of the Kohn anomaly shows clear edge differences. In 687

Table 2.1, we show a list of the expected Raman signal (Raman), the occurrence 688

of the Kohn anomaly (Kohn), and the polarization effect for zigzag edges, armchair 689

edges, and the interior region of graphene. The detailed derivation of this calculation 690
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Table 2.1 Dependencies of the Raman intensities and Kohn anomalies on the � point optical
phonon modes. The symbols � and � for the Raman intensity and the Kohn anomaly represent
“occurrence” and “absence,” respectively. There is asymmetry between the Raman intensity and
the Kohn anomaly; that is, the Kohn anomaly occurs only for the LO mode, while the mode with
a strong Raman intensity changes according to the edge shape. The Raman intensity is enhanced
when the polarization of the incident laser light is parallel (LO) to the armchair edge or when it is
perpendicular (TO) to the zigzag edge [70]

Position Mode Raman Kohn Polarization

Zigzag LO � � �
TO � � �

Armchair LO � � �
TO � � �

Bulk LO � � �
TO � � �

is discussed in [70]. From Table 2.1, if we get a G-band signal without phonon 691

softening, we can say that the Raman spectra comes from the TO phonon modes 692

at zigzag edges, while the phonon softening (around 30 cm�1) that occurs in 693

the Raman spectra comes from the LO phonon modes at armchair edges, whose 694

behavior is observed in a graphene with two edges that differ by an angle of 30ı
695

between them [58]. 696

2.4 The Fermi Energy Dependence: The Kohn Anomaly 697

Next we discuss the effect of doping on the G band of single-layer graphene in 698

Sect. 2.4.1, and the corresponding effect of doping on the G band of double-layer 699

graphene is explicitly considered in Sect. 2.4.2. 700

2.4.1 Effect of Gate Doping on the G -Band of Single-Layer 701

Graphene 702

In Fig. 2.17, the G-band spectra of single-layer graphene as a function of gate 703

voltage is shown [73]. For achieving high doping levels, electrochemical doping 704

is often used. The G-band frequency is upshifted ((a) and (b)) and the spectral 705

width decreases (see (c)) by doping, as predicted by time-dependent perturbation 706

theory in which the phonon frequency downshifts as a result of the electron–phonon 707

interaction. This effect is known as the Kohn anomaly [29, 30, 58, 74, 75]. In the 708

electron–phonon interaction, an electron–hole pair is virtually excited by a phonon 709

near the Fermi energy. The gate voltage dependence of the Raman frequency in 710

Fig. 2.17 comes from the fact that either the initial (or final) states for electron– 711

hole pair excitation becomes empty (or occupied) for hole (electron) doping and 712

that the corresponding perturbation processes are suppressed. The lower (higher) 713

energy excitation of the electron–hole pair below (above) „!G=2, where !G is 714
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Fig. 2.17 The Raman G peak of doped monolayer graphene. (a) The G-band spectra observed
at 295 K for many values of the gate voltage Vg. The darkened spectrum corresponds to the
undoped case. (b) The G peak position (frequency) and (c) the linewidth as a function of electron
concentration are deduced from the applied gate voltage data. Black circles: measurements; solid
line: finite-temperature non-adiabatic calculation (Adapted from [73].)

the G-band phonon frequency, contributes to phonon hardening (softening). Thus 715

the phonon softening becomes a maximum when the Fermi energy is located at 716

„!G=2 from the Dirac point energy. The two anomalies at ˙„!G=2 are not clearly 717

seen in this experiment due to temperature-induced broadening. However, a gate 718

voltage dependence for the G-band frequency !G was measured at T D 12 K, 719

where phonon anomalies at Eg D ˙„!G=2 could be clearly distinguished [76]. 720

The 12 K experiment was, however, carried out on bilayer graphene, where another 721

interesting effect occurs, as described in Sect. 2.4.2. The broadening of the Raman 722

spectra comes from the shortening of the lifetime of the G-band phonon by the 723

electron–phonon interaction, and thus the broadening should be a maximum around 724

the Dirac point energy, as is confirmed experimentally in Fig. 2.17c. 725

Using the pseudospin and the field for the pseudospin [51,52], Sasaki et al. gave 726

an analytic formula for the electron–phonon interaction for the LO and TO phonon 727

modes for carbon nanotubes [33] and graphene [58]. Although we do not here go 728

into detail regarding this theory, this theoretical analysis will be useful for gaining 729

a general understanding of both the Raman spectra and the physical properties of 730

graphene. 731
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2.4.2 Effect of Gate Doping on the G Band of Double-Layer 732

Graphene 733

The gate doping of double-layer graphene in particular has been investigated by 734

many groups. Part of the interest focuses on the fact that double-layer graphene 735

may exhibit an energy gap under the application of an electric field perpendicular 736

to the graphene surface, which can be used to vary the Fermi level. This effect is 737

important for the application of double-layer graphene for semiconductor devices. 738

Thus the characterization of the Raman spectra of gated double-layer graphene has 739

become an important research topic. 740

In bilayer or double-layer graphene, the unit cell has four C atoms which gives 741

two � and two �� energy bands at the K point (see Fig. 2.18). In this case, there 742

will be more than two Kohn anomalies in the G band depending on how the two � 743

bands are occupied by doping (see the right-hand side of Fig. 2.18) [73, 76]. When 744

the Fermi energy reaches ˙„!G=2, the ���� transition shown in Fig. 2.18(I) is no 745

longer allowed, as it is in single-layer graphene, but the transition from the now filled 746

lowest energy �� band to the higher energy �� band, shown in Fig. 2.18(II), is possi- 747

ble. When the gate voltage rises further and reaches the second �� band, another sin- 748

gular behavior now occurs in the renormalization process, as shown in Fig. 2.18(III). 749

These effects are seen in the G-band frequency and linewidth of bilayer graphene 750

(see Fig. 2.18), where a distinctly different behavior with respect to the monolayer 751

case (see Fig. 2.17) is clearly observed for both the frequency and linewidth. There- 752

fore, when discussing graphene systems above, we see that the renormalization 753

effect changes significantly in going from single to bilayer graphene, and it would 754

change further by increasing the number of layers, although the renormalization 755

effect will become less and less evident with increasing layer number. 756

In the case of double-layer graphene, the G-band phonon is split into symmetric 757

(S) and antisymmetric (AS) components corresponding to the symmetry between 758

the upper and lower graphene layers, as shown in Fig. 2.19b [77]. An important 759

point is that the electron-hole excitations for the S and AS G-band phonons are 760

different for the two �� energy bands [77, 78] (see Fig. 2.20). For electron and hole 761

pair creation by a phonon that couples the �1 and ��
1 energy bands, only the S 762

symmetry component of the G band is coupled by the electron–phonon interaction 763

(Fig. 2.20a), while for hole doping (Fig. 2.20b) both the S and AS G-band phonons 764

are coupled. Thus an asymmetric behavior in the phonon softening effect appears 765

for electron and hole doping, as shown in Fig. 2.19a. 766

2.5 Near-Field Raman Spectroscopy 767

The last subject of Chap. 2 is near-field Raman spectroscopy. The investigation of 768

sp2 carbons via conventional Raman spectroscopy has usually been limited by the 769

spatial resolution of usual confocal systems. The spatial resolution � x of a standard 770
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Fig. 2.18 Position of the peak frequency [Pos(G)] and the linewidth [FWHM(G)] measured at
full width half maximum intensity for the Raman G-band feature of doped bilayer graphene.
Black circles: measurements; thin line: finite-temperature nonadiabatic calculation. On the right,
schematics of the electron–phonon coupling at three different doping levels, as indicated by the
thicker lines on the electronic bands (Adapted from [73].)

Fig. 2.19 (a) Raman G band of bilayer graphene for –80 V, –40 V, –20 V and +40 V gate voltages.
Two Lorentzian curves (corresponding to the different displacements of the carbon atoms in (b))
are needed to fit the G band for –80 V, –40 V, and –20 V. (b) Displacement of the atoms for the S
and AS symmetry phonon modes in bilayer graphene [77]
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Fig. 2.20 Parabolic band
structure of bilayer graphene
near the K point where the
Fermi level is indicated by the
dotted horizontal line. The
vertical arrows illustrate the
possible transitions induced
by symmetric (green) and
antisymmetric (red) q ¤ 0

phonons for (a) interband
electron–hole pair creation
and (b) intraband
electron–hole pair creation.
The gap opening in bilayer
graphene is not considered in
this diagram [77]

optical microscope is limited by diffraction to roughly the Abbé criterion [79]: 771

� x D 0:61�

NA
; (2.8)

where � is the wavelength of light and NA is the numerical aperture of the objective 772

lens. Although the NA can be optimized by performing experiments in a medium 773

with a large index of refraction n that surrounds the sample, or by engineering 774

objectives with large collection angles, conventional microscopes can only achieve 775

resolutions on the order of �=2 (�200 nm). As a consequence, the investigation 776

of structural details at the mesoscopic level becomes a difficult task for Raman 777

spectroscopists. 778

Tip-enhanced near-field Raman spectroscopy (TERS) [80] has, however, pro- 779

vided an alternative way to overcome this barrier by performing spectroscopic 780

imaging with ultrahigh spatial resolution. TERS studies on sp2 carbons have been 781

limited mostly to carbon nanotubes until now [79,81–89], while strong enhancement 782

effects in two-dimensional systems are unlikely. However, the use of TERS to 783

study disorder in carbon nanotubes, as discussed in this text, has been largely 784

successful. For this reason, we here discuss the basics for the TERS approach in 785

one-dimensional systems, and some interesting results on carbon nanotubes are 786

presented. 787

2.5.1 The Spatial Resolution in Optical Microscopes 788

In general, conventional optical systems are not able to collect the whole spectrum 789

of spatial frequencies associated with optical fields generated by a light source 790

located at a distance sufficiently far from the detector (far-field regime). The angular 791
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spectrum representation of a scattered electric field Es in a plane z D const. far from 792

the light source is given by [79] 793

Es.x; y; z/ D
Z Z 1

�1
OEs.kx; ky I 0/ei.kxxCkyy/e	ikzzdkxdky; (2.9)

where kx , ky , and kz are the spatial frequencies related to the Cartesian coordinates 794

x, y, and z, respectively, and OEs.kx; ky I 0/ are the Fourier amplitudes of the electric 795

field at z D 0. 796

The exponential term e	ikzz in (2.9) influences the propagation of the electric 797

field Es along the z-axis. The k-vector (kx; ky; kz) and the frequency ! D 2�c=� 798

are related by the free-space dispersion relation, and hence kz is given by [79] 799

kz D
q

.2�n=�/2 � k2
k ; (2.10)

where we have defined k2
k D k2

x C k2
y . According to (2.9) and (2.10), for 800

kk 	 2�n=�, the wave vector kz is a real number. In this case, the electric field 801

Es propagates along the z-axis oscillating with e	ikzz, giving rise to the far-field 802

component of the optical field. On the other hand, if kk > 2�n=�, the wave vector 803

kz becomes an imaginary number, and the electric field Es decays exponentially 804

along the z direction. If the image plane at z D const. is sufficiently well separated 805

from the source at z D 0, the contribution from this decaying part (evanescent waves) 806

will be lost. Therefore, there is always a loss of information between the near-field 807

and the far-field optical limits. 808

2.5.2 The Principle of TERS 809

The goal of tip-enhanced Raman spectroscopy (TERS) is to obtain the spectral 810

response from nanoscopic structures with an optical resolution beyond the diffrac- 811

tion limit. For this purpose, a sharp metal tip is placed sufficiently near the sample 812

surface [90,91]. The tip provides a channel through which the near-field components 813

of the scattered light (evanescent waves) become propagating waves in the far zone. 814

In other words, by using a confined source field with a large bandwidth of spatial 815

frequencies, the high spatial frequencies generated by the sample become accessible 816

in the far field, and the spatial resolution is defined by the diameter of the tip apex 817

[80]. However, there is a fundamental issue involved in such an experiment, which 818

is the fact that the signal generated by the near-field and far-field components of the 819

scattered light will be intermixed in the far zone. To solve this issue, the tip might 820

be able to perform its secondary function, which is to enhance the optical fields 821

generated in the near-field regime. 822
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Fig. 2.21 Schematics for the spatially resolved Raman scattering by a carbon nanotube. The
position vectors r, r0, and ro denote the location of the center of the tip apex, the Raman dipole
moment p, and the detector, respectively. The dashed circumference represents a small sphere of
radius rtip centered at the tip apex, and ´ is the distance between the tip and the nanotube. The
inset depicts an SEM image of the gold tip used in the experiment, where the scale bar denotes
200 nm [92]

2.5.3 Mechanism of Near-Field Enhancement 823

This section provides a brief analytical theory for local field enhancement. The 824

theory is given in terms of one-dimensional (1D) systems, which can be directly 825

applied to the well-studied carbon nanotubes [92]. 826

Figure 2.21 shows the experimental configuration and the coordinates used in 827

the theoretical analysis. The electric field E near the laser-irradiated gold tip is 828

axially symmetric and interacts locally with a single wall carbon nanotube (SWNT) 829

at frequency !. The induced dipole p per unit length at the Raman frequency !s and 830

at location r0 can be represented as [92] 831

p.r0; !s/ D ˛R.r0I !s; !/ Etot.r0�rI !/; (2.11)

where r denotes the position of the center of the tip apex, ˛R is the Raman 832

polarizability (per unit length), and Etot is the total electric field interacting with 833

the electron density at r0 in the carbon nanotube. 834

The analysis that we discuss here applies to one-phonon Raman processes involv- 835

ing vibrations belonging to the totally symmetric A1g irreducible representation 836

which could describe the radial breathing mode and the lower and upper components 837

G� and GC of the G band. In this case, the Raman polarizability tensor ˛ R is 838

written as [92] 839

˛ R
q D

2
64

˛ R
?;q 0 0

0 ˛ R?;q 0

0 0 ˛ R
k;q

3
75 ; q 2 fRBM; GC; G�g : (2.12)
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The field Etot in (2.11) is the sum of the external driving field E and screening 840

fields due to neighboring charges, where the depolarization effect has to be 841

considered. The external driving field E corresponds to the superposition of the 842

incident laser field Eo and the localized field generated by the gold tip acting as an 843

optical antenna. Close to the tip apex, the external driving field E.r0I !/ resembles 844

the field of an induced dipole � located at the center of a small sphere of radius rtip 845

(location r in Fig. 2.21). 846

Analysis of the above fields lead to an expression for determining the near-field 847

enhancement as a function of the tip–sample distance �. Considering that near-field 848

(NF) and far-field (FF) components are always intermixed, the relative intensity of 849

the scattered signal is given by the sum of these two contributions, i.e., I= Imax D 850

.IFF C INF/= Imax. Crossterms originating from the interference between the FF and 851

NF components can be neglected. The ratio Imax=IFF corresponds to the maximum 852

Raman enhancement factor M , which allows us to represent the relative intensity of 853

the scattered signal as [92] 854

I

Imax
D 1

M
C C

.´ C rtip/10
: (2.13)

The M , C , and rtip parameters are to be determined by fitting experimental data, 855

while rtip has to be related to the tip geometry. What is remarkable here is that theory 856

predicts that near-field Raman intensity is inversely proportional to the 10th power 857

of the tip–sample distance, thereby providing a large enhancement of spatial details. 858

2.5.4 Application to Carbon Nanotubes 859

Advances in the science of carbon nanotubes generated by tip-enhanced Raman 860

measurements include the detection of local defects, chirality changes, and local 861

dopants [86–89]. The technique of tip-enhanced Raman spectroscopy can be readily 862

applied to study nanostructured features appearing in monolayer or bilayer graphene 863

or at the edges of graphene nanoribbons. 864

Figure 2.22a shows a large-scale confocal Raman image of a self-organized 865

carbon nanotube serpentine [92]. The contrast (color scale) in the image renders 866

the intensity of the graphitic ( C–C stretching) G band (�1,580 cm�1). Figure 2.22b 867

shows a confocal Raman image corresponding to the G-band intensity acquired in 868

the boxed area in Fig. 2.22a. Figure 2.22c shows the near-field image recorded in the 869

same area as panel (b). The resulting resolution of 25 nm is defined by the tip radius. 870

A linecut along the dashed line in image Fig. 2.22c is depicted in Fig. 2.22d. It is 871

evident that near-field imaging not only improves the resolution but also improves 872

the signal-to-noise ratio. 873

Figure 2.22e shows the corresponding Raman spectra for the smallest (�2 nm) 874

and largest (�38 nm) tip–sample separation. The two spectra are offset for clarity. 875

The radial breathing mode (RBM) frequency !RBM D 262 cm�1 identifies the 876

sample as a semiconducting tube whose energy gap for the second E� ! E� 877
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c d

e

Fig. 2.22 (a) Confocal Raman image corresponding to the G-band intensity of a semiconducting
nanotube. The scale bar denotes 6 �m. (b) Confocal Raman image corresponding to the G-band
intensity recorded in the boxed area in panel (a). (c) Near-field Raman image corresponding to
the G-band intensity recorded in the same area as panel (b). The scale bars in panels (b) and
(c) denote 800 nm. (d) Intensity profile obtained along the dashed line in panel (c). (e) Far-field
Raman spectrum (red curve) and near-field Raman spectrum (black curve) recorded at the largest
(�38 nm) and smallest (�2 nm) tip–sample separation, respectively. (f) Approach curves for the
intensity of the RBM, IFM, G� and GC phonon bands vs. � in Fig. 2.22 [92]
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optical transition is in resonance with the incident laser energy. The near-field 878

spectrum also clearly features the intermediate frequency mode (IFM) occurring 879

at 865 cm�1, and the G� and GC peaks occurring at 1,545 cm�1 and 1,585 cm�1, 880

respectively. Notice that the disorder-induced D band (�1,350 cm�1) is so weak 881

that it cannot be observed, indicating that the serpentine nanotube has a very low 882

defect density. Within the experimental resolution, no differences in the lineshape 883

and resonant frequency of any phonon bands are observed for the far-field and 884

near-field Raman spectra. 885

Figure 2.22f shows the intensities (integrated areas) of several Raman peaks as a 886

function of the tip–sample separation �. All Raman intensities are normalized to the 887

corresponding values at shortest separation (� � 2 nm). The red curve in Fig. 2.22f 888

is a fit to the experimental data according to (2.13). It can be seen from Fig. 2.22f 889

that the theoretical predictions from [92] are in good agreement with the exper- 890

imental data. The fitting parameters obtained were M D 16, C D 4.5�1015 nm10, 891

and rtip D 35 nm. All the Raman modes show the same distance dependence, that is, 892

within the resolution of these measurements, all phonon modes get enhanced by the 893

same factor. 894

2.6 Summary and Perspective 895

In summary, recent studies on graphene and sp2 carbons and defects in these 896

systems have significantly advanced our understanding of how Raman spectroscopy 897

can be used to characterize these material systems. Powerful new experimental 898

techniques such as near-field Raman spectroscopy have become available and have 899

been applied to these materials, and at the same time new theoretical works using 900

the pseudospins of graphene have pushed graphene research in new directions. 901

Especially important also has been the advances in the fabrication and processing 902

of graphene ribbons and their subsequent annealing to form well-defined and 903

stable armchair and zigzag edge structures. Because of the well-defined edge 904

structures that can now be prepared, the theoretical investigation of electron– 905

phonon and electron–photon interactions at the edges can be formulated much better 906

analytically, and theoretical results can now be compared directly with experiments. 907

Near-field measurements of the Raman spectra of carbon nanotubes have greatly 908

enhanced the spatial resolution which can now be achieved, reaching resolutions 909

much smaller than the wavelength of light. This means that a scanning Raman 910

image can now be directly compared with observations made with other high spatial 911

resolution techniques, such as transmission electron microscopy, scanning probe 912

microscopy (SPM), and x-ray Photo emission spectroscopy (XPS) imaging. Since 913

we now know much more about the physics of the electron–phonon interaction, we 914

can now tune the electron–phonon interaction by varying the Fermi energy. This can 915

be accomplished reliably using electrochemical doping, which now becomes a new 916

parameter that can be varied controllably during Raman spectroscopy experiments. 917

Varying the gate voltage using back gates or top gates or both at once in taking the 918
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Raman spectra is now allowing researchers to obtain a better understanding of the 919

Raman spectral width and phonon softening phenomena associated with the Kohn 920

anomaly in both graphene and metallic carbon nanotubes. These techniques are also 921

important for characterizing the Fermi energy position in graphene devices. In the 922

future, we can imagine a possible application of using a Raman signal as a sensor 923

for monitoring the behavior of devices as a function of the gate voltage. 924

An essential factor in the Raman spectroscopy of carbon nanotubes is the 925

resonance condition for the optical transition energies which can be used to specify 926

the geometrical structure of a SWNT through their one-dimensional van Hove 927

singularities. The Raman intensity of SWNTs is determined by how close the optical 928

transition energies are to the laser light energy „!, while the resonance width in 929

the Raman excitation profile provides an important parameter for observing the 930

Raman signal of a SWNT for a given laser excitation energy even though the Raman 931

intensity (through the exciton–photon and exciton–phonon interactions) is strongly 932

chirality dependent. On the other hand, in the case of graphene, there are no one- 933

dimensional van Hove singularities for optical transitions except for the case of a 934

very narrow graphene ribbon which would be denoted as a graphene nanoribbon. 935

Such graphene nanoribbons can be considered as a one-dimensional system with 936

properties somewhat analogous to a carbon nanotube except that the graphene 937

nanoribbon has edges which have interesting properties as described elsewhere [26]. 938

The effective resonance condition of an infinite graphene sheet is satisfied for any 939

value of the laser excitation energy. Thus, although the Raman signal of single layer 940

graphene is not as strong as that for SWNTs, we can always get a Raman signal for 941

any number of layers of graphene and for any laser energy that promotes an electron 942

from an occupied state to an empty state. In this sense, the relative Raman intensity 943

depends not on the resonance condition but primarily on the Raman tensor and 944

the electron–phonon interaction. Since the electron–phonon interaction is known 945

to be anisotropic in k space, especially around the K point in the two dimensional 946

Brillouin zone, the analysis of this anisotropy of the electron–phonon interaction 947

can be used to determine the edge direction relative to the polarization of the light, 948

and in particular to distinguish between armchair and zigzag edges. Enhancement 949

of the Raman intensity for graphene is needed for carrying out quick measurements 950

of the Raman spectra, and in such cases tip-enhanced and/or interference-enhanced 951

Raman spectra can now be used to enhance the spatial resolution of pertinent Raman 952

features. 953

An important issue for discussing the difference between SWNTs and graphene 954

is the dimensionality of the materials because the effect of the Coulomb interaction 955

plays a different role in 2D graphene relative to 1D SWNTs. For example, in 956

SWNTs, the exciton is essential for describing the photoexcited electron and hole 957

pair, whereas an electron and hole are freely moving in graphene and therefore 958

localization effects are less important. Nevertheless, it is expected that the Coulomb 959

interaction in graphene will be studied in detail in the near future through inves- 960

tigation of the photo-current and electronic transport near the Fermi energy, and 961

the origin of the asymmetric lineshapes observed in the Raman spectra (known as 962

Breit–Wigner–Fano lineshapes) should then be further elucidated in the near future. 963
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Ion bombardment measurements have provided us with important information 964

about the area of the Raman-active spatial regions that are associated with the D- 965

band Raman signal. This spatial region is closely related to the phase coherence 966

length (or area) for an electron in which the electron retains its information about 967

the phase of the wave function throughout the elastic scattering events experienced 968

by the electron in the D-band scattering processes. In fact, an interference effect 969

between the incident and scattered electrons at a graphene edge gives selective 970

Raman signals for LO and TO phonon modes, which allows one to distinguish 971

between armchair and zigzag edges by applying theoretical considerations to the 972

interpretation of such Raman spectra. Microscopic analysis of the elastic scattering 973

will become more important in the future in the study of the D-band spectra 974

for different nanostructures containing defects originating from different types of 975

defects (interstitial atoms, impurity atoms, line defects vs. point defects, etc.). The 976

systematic generation of specific types of defects should provide a key approach 977

for obtaining defect type-related information in the Raman spectra through, for 978

example, joint Raman and TEM studies. We can therefore expect that in the 979

future we will be doing more systematic studies on point defects in graphene as 980

a function of ion species of different atomic species, different isotopes of ions with 981

the same atomic number, ions with different energies, etc. The present studies, as 982

described above, of defects in graphene associated with point defects caused by 983

ion implantation already constitute a broad subject. But this is only the beginning. 984

There are many different kinds of defects that can be produced in graphene and 985

carbon nanotubes such as vacancies, divacancies, interstitial atoms of the same or 986

different species, and complexes of impurity/vacancy pairs. Systematic studies of 987

such effects by Raman spectroscopy can teach us a lot about graphene and carbon 988

nanotubes as well as the potential of what Raman spectroscopy can teach about 989

each of these types of defects as they occur in a simple well-characterized system 990

like graphene. 991

Also in the realm of future work are major opportunities to use the controlled 992

and systematic introduction of defects, such as by ion implantation, into bilayer 993

graphene, for Raman characterization studies, as has been discussed above for 994

monolayer graphene. For bilayer graphene, for example, it would be interesting 995

also to study Raman spectra comparatively from the sample face exposed to the ion 996

beam and from the back side of the sample. The major differences in the electronic 997

structure of monolayer graphene, with its linear E.k/ relation, and of bilayer 998

graphene, with its quadratic dispersion relation, could show different behaviors of 999

interest with regard to the modifications of these electronic structures through the 1000

introduction of defects. 1001

Another area for future work would be a systematic Raman study of the 1002

controlled defects introduced into graphene nanoribbons by ion implantation where 1003

the defects could be confined, for example by the use of masks, to the interior of 1004

the ribbons or to the edges, including such studies on both zigzag and armchair 1005

edges. Graphene nanoribbons are important as a means for introducing band gaps 1006

into graphene, with electronic and transport properties that depend on the width of 1007

the ribbon as well as on the crystalline orientation and the quality of the structure 1008
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established at each of the edges.[26] Combined transport, Raman, and electron 1009

microscopy measurements would likely prove highly informative for such studies. 1010

Thus many research opportunities remain open for exploration in the systematic 1011

study of defects, edges, and the defect/edge combination in monolayer and bilayer 1012

graphenes. The exploration of the special properties of trilayer graphene is presently 1013

a largely unexplored arena. 1014

Raman spectroscopy has been used successfully for characterizing carbon mate- 1015

rials for many years both in research laboratories and industrially. Thus we expect 1016

that Raman spectroscopy and graphene will become increasingly important as more 1017

industrial applications of graphene and sp2 carbons are found. As more industrial 1018

applications are found, the demands for developing standards for describing the 1019

quality of graphene materials will increase. Making a thin graphene ribbon with a 1020

small width introduces an energy gap. Therefore we can expect graphene ribbons to 1021

become more important for applications just because the use of ribbons with narrow 1022

widths introduce an energy gap. Furthermore controlling the edge structure of the 1023

graphene ribbon so that the edge is atomically smooth allows the introduction of 1024

well-defined armchair and zigzag edges [26] with well-defined electronic properties. 1025

Thus we can expect increasing attention to be given to Joule heating techniques 1026

for increasing the structural perfection of edges and we can expect more use to be 1027

made of enhanced edge passivation by functionalization. We can also expect to see 1028

more use of multiple measurement techniques including Raman spectroscopy for 1029

the characterization of graphene and sp2 carbon materials based on promising work 1030

that has already been carried out using multiple characterization techniques. Many 1031

applications would like to combine the exceptional properties of graphene with the 1032

special properties of a semiconducting material with a band gap, and for this reason 1033

we can expect thin narrow graphene ribbons to receive increasing attention. 1034

Even within the scope of what is discussed in this chapter, many topics relevant 1035

to defects in graphene and carbon nanotubes that have already been studied and 1036

documented in the literature have not been discussed here. For example, we 1037

did not describe time-dependent phenomena relevant to Raman spectroscopy in 1038

graphene, or in other carbon nanostructures, nor did we discuss coherent phonon 1039

measurements in which the transmission of the probe light is vibrating at frequencies 1040

where phonons are excited coherently. This is a large research field with many 1041

interesting regimes depending on the pulse length and intensity. Combining the 1042

polarization dependence measurements with coherent phonon measurements should 1043

yield important information about the defect type and its special characteristics, 1044

but such studies remain as work for the future. Further, we did not mention 1045

measurements that have been made on the stress and temperature dependence or 1046

the electrochemical dependence of the Raman signal which are also very promising 1047

probes that can be used for characterizing the local physical properties of graphene 1048

and carbon nanotubes. 1049
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