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a b s t r a c t

In the last decade, many theoretical and experimental achievements have been made in the

photophysics of single wall carbon nanotubes (SWNTs). Such accomplishments allowed us to gain a

deep understanding of the photophysics behind the transition energy (Eii) and the radial breathing

mode frequency ðoRBMÞ dependence on nanotube chirality (n, m). This work is devoted to assemble and

discuss what has been done on the research of the SWNT electronic and vibrational properties, based on

the radial breathing mode (RBM) resonance Raman spectroscopy. Attention is directed to the

understanding of how a change in the environment changes the correlation between ðEii;oRBMÞ and

(n, m). From the analysis of several data in the literature, we derive a simple routine for the

ðEii;oRBMÞ-ðn;mÞ assignment.

& 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Due to their 1D character, single-walled carbon nanotubes
(SWNTs) exhibit unique electronic and vibrational properties that
ll rights reserved.

ca, Universidade Federal de

mpulha, Belo Horizonte, MG

1 34095600.
make them an interesting material for technological applications
in electronics and optoelectronics [1–8]. Associated with each
individual SWNT is a unique pair of indices (n, m) that fingerprints
all of its properties [9,10]. Therefore, the knowledge of (n, m) is of
great importance for defining the properties and applications for
each SWNT [9,10]. Quantum confinement is responsible for the
rise of van-Hove singularities in the SWNTs electronic and
vibrational density of states resulting in (n, m)-dependent optical
properties [9,10]. The most frequently used optically based

www.elsevier.com/locate/physe
dx.doi.org/10.1016/j.physe.2010.01.015
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Table 1

A and B values for the relation oRBM ¼A=dtþB reported in the literature.

Sample A B

Alcohol-assisted CVD SWNTs [11] 217 15

Water-assisted CVD SWNTs [13] 227 0

Laser ablation bundled SWNTs [14] 232 0

SWNTs at silicon substrate [15] 248 0

HiPco SWNTs SDSa-dispersed [16] 223.5 12.5

HiPco SWNTs SDSa-dispersed [19] 214.4 18.7

HiPco SWNTs SDSa-dispersed [21] 218 17

Free-hanging SWNTs [22] 204 27

HiPco SWNTs SDSa-dispersed [47] 227 7.3/11.8b

a SDS stands for sodium dodecyl sulfate.
b Different values of B were found for semiconducting/metallic SWNTs.

Fig. 1. Experimental radial breathing mode frequency ðo Þ as a function of tube
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experimental technique to properly assign the (n, m) indices is
resonance Raman spectroscopy (RRS). By knowing (1) the SWNT
optical transition energies Eii and (2) its radial breathing mode
frequency ðoRBMÞ as measured by RRS, together with their
ðEii;oRBMÞ changes with a changing environment it is possible to
uniquely assign the (n, m) for an individual SWNT [10–21].

The last decade has been marked by an impressive develop-
ment in understanding the nature of the optical transition
energies Eii in quasi-1D SWNTs, where i¼ 1;2;3; . . . denotes the
inter-subband transitions between the i th valence and the i th
conduction band for a given SWNT [11–32]. While the interest in
the excitonic nature of Eii and the dielectric screening in 1D
structures dates back to research in p- conjugated polymers [10],
in carbon nanotubes the interest to these topics started in 2003
with the identification of the so-called ‘‘ratio problem’’ [33]. In
2007, Araujo et al. [11] and Michel et al. [12] showed that the
scaling law for the exciton energies explaining the ‘‘ratio
problem’’ [33] breaks down for transitions with energies greater
than E11

M .1 These results led to the discussion of the excitonic
nature of the higher energy levels, where quantum-chemistry
calculations and solid-state physics (tight-bind and first-princi-
ples) calculations give contradictory pictures [11,34] due to a lack
of knowledge about the dielectric screening in SWNTs. A large
amount of information about the Eii transitions is now available
for a large range of tube diameters ð0:7odt o6 nmÞ [11–32],and
the Eii for SWNTs are now understood theoretically in terms of the
bright exciton energy [10,34,35]. The Eii can now be accurately
described by tight-binding calculations, including corrections for
curvature optimization and many-body effects [10,33–40], plus
an empirically based diameter dependence for the dielectric
screening in SWNTs [41].

Parallel to this progress on understanding the Eii in greater
detail was the development of the physics behind the radial
breathing mode (RBM) frequency ðoRBMÞ. The RBM provides the
spectroscopic signature of SWNTs [10,42], and the oRBM depends
on the SWNT diameter (dt), which is related to the SWNT (n, m)
structural indices by dt ¼ 0:142

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn2þmnþm2Þ

p
=p [10]. The

experimental results in the literature have been fitted with the
relation oRBM =A=dtþB, with values for A and B varying from
paper to paper (see Table 1) [11,14–22]. The empirical constant
factor B prevents the expected limit of a graphene sheet from
being achieved, where the oRBM should go to zero when dt

approaches infinity. Therefore, B is supposedly associated with an
environmental effect on oRBM, rather than an intrinsic property of
SWNTs. An environmental effect here implies the effect of the
surrounding medium, such as bundling, molecules adsorbed from
the air, surfactant used for SWNT bundles dispersion, or sub-
1 The superscripts of Eii
S,M for i¼ 1;2;3; . . . stand, respectively, for semicon-

ducting and metallic SWNTs.
strates on which the tubes are sitting. Nowadays, the relation

between oRBM and dt is described by oRBM ¼ ð227=dtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þCe � d2

t

q
,

where Ce is the only adjustable constant that weights the effect of
the medium surrounding the SWNTs [13].

This article reviews the experimental efforts made to establish
the Eii and oRBM physics of carbon nanotubes thus making
possible a reliable RRS-based (n, m) assignment.

2. The xRBM vs. dt relation and the role of
a changing environment

Recently, resonance Raman scattering has been used to
measure the RBMs of SWNTs grown by the water-assisted
chemical vapor deposition (CVD) method [43–46]. This water-
assisted CVD process has been called ‘‘super-growth’’ and
generates millimeter-long isolated SWNTs of high-purity. The
‘‘super-growth’’ SWNTs exhibit a broad dt distribution (dt from 1
to 6 nm) and all tube chiralities ð03ryr303

Þ. The SWNTs are
vertically aligned from a silicon substrate to form a very low
density material, where SWNTs represent only 3.6% of the
total volume [43–46]. With the ‘‘super-growth’’ sample, 125
Raman spectra, each at a different Elaser excitation energy,
are used to assign the (n, m) structure of 197 different SWNTs
(of which 73 are metallic and 124 semiconducting) [13]. Using
all the 197 (n, m) SWNTs assigned and the relation dt ¼

0:142
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn2þmnþm2Þ

p
=p, the experimental oRBM can be plotted

as a function of dt, as shown in Fig. 1. Fitting the data shown in
Fig. 1 using the relation oRBM ¼A=dtþB, the values of the fitting
parameters A¼ ð227:070:3Þ cm�1 nm and B¼ ð0:370:2Þ cm�1

are obtained. Therefore, these SWNTs follow a simple linear
relation between oRBM and dt, with the proportionality constant
A¼ 227:0 cm�1 nm, in agreement with the elastic properties of
graphite [48], and with a negligible environmental effect ðB� 0Þ.
All the observed oRBM values reported in the literature are
upshifted from this fundamental relation [11,14–22].

By gathering most of the results presented in the literature and
comparing them with the results obtained for the ‘‘super-growth’’
(S.G.) sample, all the oLit:

RBM presented in the literature
are upshifted with relation to the oS:G:

RBM. Fig. 2(a) shows the
difference between several oRBM =A=dtþB found in the literature
RBM

diameter (dt). Open circles represent the SWNT oS:G:
RBM data and the solid line is a fit

to the data, given by oRBM ¼ 227:0=dtþ0:3 cm�1. The inset plots the difference

between the experimental oRBM and 227:0=dtþ0:3 cm�1 as a function of SWNT

chiral angle ðyÞ [13].
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Fig. 2. (a) Difference between oRBM relations from the literature ðoLit:Rel:
RBM Þ and oRBM ¼ 227:0=dt as a function of tube diameter ðdtÞ. Different line styles stand for different

references, as listed in Ref. [13]. (b) Difference between oRBM data from the literature ðoLit:
RBMÞ and oRBM data from the S.G. SWNTs ðoS:G:

RBMÞ as a function of dt. Each symbol

represents data from a different reference, as given in Ref. [13]. The thick solid line is a fit to the data in (b), as discussed in the text, and it is also shown in (a) [13].
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[11,13–16,19,21,22] and the oRBM ¼ 227:0=dt established for the
S.G. sample. All the curves in the literature converge within the
1–2 nm dt range, that is where most of the experimental data
were actually obtained. Fig. 2(b) shows the difference between
the oRBM experimental values from the literature ðoLit:

RBMÞ [11,15–
22] and from Ref. [13] ðoS:G:

RBMÞ, as a function of dt. All the published

results for oLit:
RBM are grouped in Fig. 2(b) on a dt dependent trend

for which DoRBM ¼oLit:
RBM�oS:G:

RBM is upshifted.

The DoRBM upshift is explained by a molecular dynamics
calculation considering van der Waals interactions between
SWNTs and a shell of adsorbed fluid around the SWNT [49]. The
van der Waals interactions occur between the SWNT p orbital and
p or s orbitals of the environment system [50]. Longhurst and
Quirke [49] proposed a model that fits their molecular dynamics
calculations, considering the RBM of a coupled system SWNT/
environment composed of two spring constants: one coming from
the C–C bond strength and the other coming from the interaction
strength between the SWNT and its surroundings. The problem of
addressing the environmental effect on oRBM is now reduced to
solve a simple harmonic oscillator for a cylindrical shell subjected
to an inwards pressure (p(x)) given by

2xðtÞ

d2
t

þ
r
E
ð1�n2Þ

@2xðtÞ

@t2
¼�
ð1�n2Þ

Eh
pðxÞ; ð1Þ

where x(t) is the displacement in the radial direction,
pðxÞ ¼ ð24K=s2

0ÞxðtÞ, K (in eV=Å
2
) gives the van der Waals interac-

tion strength, s0 is the equilibrium separation between the SWNT
wall and the environment shell, E is Young’s modulus, r is the
mass density per unit volume, n is Poisson’s ratio and h represents
the thickness of the shell. If p(x) is null, Eq. (1) gives the
fundamental o0

RBM for a pristine SWNT

o0
RBM ¼

1

pc

Eh

rhð1�n2Þ

� �1=2
( )

1

dt
; ð2Þ

where the term inside the curly bracket is established here as
227.0 cm�1 nm, in agreement with the theoretical results using
parameters from graphite [48]. Solving Eq. (1) for a non-null p(x),
one obtain

oRBM ¼
227

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þCe � d2

t

q
; ð3Þ

where Ce ¼ ½6ð1�n2Þ=Eh�½K=s2
0�nm�2.

The difference DoRBM between the pristine relation
oRBM ¼ 227=dt and Eq. (3) is given by

DoRBM ¼oRBM�o0
RBM ¼ 227=dt½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þCe � d2

t

q
�1�: ð4Þ
This equation fits the results in Fig. 2(b) considering Ce=0.057
nm�2, as shown by the black-solid curve.
3. The effect of the environment on the xS:G:
RBM

The result discussed above gave rise to two different scenarios:
one for the ‘‘super-growth’’ oS:G:

RBM ¼ 227=dt and another for all the
other RBMs reported in the literature, which were shown to be

fitted by oRBM ¼ ð227=dtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð0:057Þ � d2

t

q
. For this reason, reso-

nance Raman spectroscopy was used to study the oRBM of the
‘‘super-growth’’ SWNTs under three different conditions: (I) an as-
grown carpet-like sample, (II) in solution, dispersed with a
surfactant and (III) in bundles [51]. To quantify the changes in
the RBM frequencies due to a change in the environment, Fig. 3
shows the spectrum for the ‘‘super-growth’’ SWNTs in a sodium
dodecyl sulfate SDS solution (top), the Raman spectrum obtained
for the bundled sample (middle) and the Raman spectrum for the
as-grown ‘‘super-growth’’ SWNTs (bottom). In each spectrum, the
raw spectra are fitted by Lorentzians representing the RBM
features from SWNTs that are in resonance with the excitation
laser and contribute to the spectra.

The arrows in Fig. 3 serve as a guide to the eyes, whereby we
can easily realize that the frequencies for the solution and bundled

samples, which from now on are called, respectively, osolut:
RBM and

obundl:
RBM , are upshifted with respect to the as-grown values oS:G:

RBM. In

agreement with what is reported in Ref. [18], the larger the dt

value, the greater is the frequency upshift. No difference is
observed between the osolut:

RBM and the obundl:
RBM , which suggests that

the interactions between the tubes with their respective environ-
ments are in the same range of strength. Its worth to comment that
the surfactant dramatically suppresses the Raman response of
tubes with diameters higher than 0.9 nm ðdt q0:9 nmÞ when in
solution. When drying the bundled sample, the RBM response for
tubes with diameters ranging from 0.9 to 1.3 nm is recovered. This
result is consistent with experiments of absorption, photolumines-
cence and Raman scattering in other SWNTs samples [27–32].

Fig. 4 shows the differences between osolut:=bundl:
RBM and oS:G:

RBM

plotted as a function of dt. The open circles stand for

Dobundl:
RBM ¼obundl:

RBM �oS:G:
RBM and the down triangles stand for

Dosolut:
RBM ¼osolut:

RBM �oS:G:
RBM. The black solid line in Fig. 4, which fits

the symbols, is given by Eq. (4) with Ce=0.056. This result shows
that the oRBM for both solution and bundles are upshifted in
relation to the frequencies observed in the as-grown sample,
following exactly the same van der Waals interaction model that
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As-grown

Bundled

Solution

Fig. 3. The Raman spectrum obtained for: (top) the solution of ‘‘super-growth’’

SWNTs in SDS (middle) the bundled ‘‘super-growth’’ sample and (bottom) the as-

grown sample. All the spectra were obtained by using Elaser ¼ 2:41 eV (514.5 nm)

and normalized to the highest intensity peak. The open circles represent the raw

data and the solid gray curves are Lorentizians representing the RBMs from the

SWNT species in resonance. The black solid line is the result obtained from the

Lorentizian fitting procedure. The arrows are a guide to the eyes showing that

the oRBM is upshifted for the solution and bundled samples, in comparison with

the as-grown sample [51].

Fig. 4. The as-grown super-growth frequencies ðoS:G:
RBMÞ are subtracted from the

frequencies of both solution ð,Þ and bundled ð�Þ samples represented,

respectively, by oSolut:
RBM and oBundl:

RBM , and plotted as a function of dt. The solid curve

describes the frequency shift behavior due to van der Waals interactions between

the tube walls and their environment. Inset: osolut:=bundl:
RBM plotted as a function of

1=dt , where the dashed line is given by oS:G:
RBM ¼ 227=dt and the solid line is given

by osolut:=bundl:
RBM ¼ ð227=dtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ0:056 � d2

t

q
[51].
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describes all the oRBM in the literature [13]. The two scenarios are
now merged indicating that the as-grown ‘‘super-growth’’ SWNTs
are, somehow, free from environmental effects.
4. The evolution of the experimental determination of Eii

As briefly stated in the Introduction, quantum confinement is
responsible for the occurrence of van-Hove singularities in the
electronic structure of SWNTs, resulting in strong resonance
processes. The last decade assembled much important experi-
mental information about Eii that, piece by piece, was supported
by theoretical approaches by means of tight-binding and first-
principles calculations [10,33–40,54]. In 2001, Jorio et al. [15]
described Eii by means of a first-neighbor tight-binding calcula-
tion combined with a zone-folding procedure. They successfully
explained their experimental results using this simple model
because the range of tube diameters ð1odt o3 nmÞ and laser
energy (Elaser=1.58 eV) covered a region where curvature and
excitonic effects were not evident [15]. In 2002, Bachilo et al. [16]
performed Raman scattering and photoluminescence experiments
on high-pressure carbon monoxide (HiPco) grown SWNTs
dispersed in SDS and, by analyzing the experimental E11

S and
E22

S values for semiconducting SWNTs, they figured out that the
simple first-neighbor tight-binding calculation was not able to
accurately describe the experimental E11

S and E22
S transition

energies for SWNTs within the ð0:7odt o1:3 nmÞ range.
For this reason, the so-called ‘‘ratio-problem’’ and the

curvature effect were introduced, providing evidence that
excitons and the s2p hybridization should be take into account.
Popov et al. [36,37] and Samsonidze et al. [38] described the
curvature effects by including many neighbors and a mixing of s
and p orbitals (s2p hybridization) in their tight-binding calcula-
tions, and these extensions became known as the extended tight-
binding (ETB) model, while Spataru et al. [39], performing
first-principle calculations, described the exciton structure directly.
The ETB model was efficient in describing all (2n+m)-family trends,
as reported by Telg et al. [19] and Fantini et al. [21]. Telg et al. and
Fantini et al. used resonance Raman spectroscopy with a set of
tunable lasers to map the RBM signal from HiPco SWNTs dispersed
in SDS, building a 3D plot (see Fig. 5) from which they
experimentally assigned more than 45 SWNTs, including
S-SWNTs and M-SWNTs. Later, Wang et al. [52] and Maultzsch
et al. [53] performed two-photons experiments giving rise to
strong experimental evidence that the electronic transitions in
SWNTs arise from excitons.

In 2007, the RBM spectra of as-grown vertically aligned SWNTs
synthesized by the chemical vapor deposition method from
alcohol were measured over a broad diameter (0.7–2.3 nm) and
energy (1.26–2.71 eV) ranges [11]. Over 200 different SWNT
species and about 380 different optical transition energies were
probed, going up to the fourth optical transition of semiconduct-
ing SWNTs, thus establishing the (n, m) dependence of the poorly
studied E33

S and E44
S transitions [11]. Over 95 different laser lines

were used to generate the 2D plot giving the Raman intensity as a
function of the laser excitation energy (Elaser) and the inverse of
Raman frequency shift, as showed in Fig. 6. As stated in Section 2,
the dt is known to be related to the inverse oRBM, so that the
resonance profile of each RBM Raman peak can be directly related
to a given SWNT diameter.

Using the 2D plot exhibited in Fig. 6, 84 different SWNTs
species were unambiguously indexed, allowing a careful analysis
of Eii to be made from E22

S to E44
S . For a fixed SWNT chirality, the Eii

values are expected to exhibit a simple scaling behavior when
plotted as a function of p/dt, where p=1, 2, 3, 4, 5 for E11

S , E22
S , E11

M ,
E33

S , E44
S , respectively [40]. To a first approximation, considering

the linear dispersion of the graphene close to the high-symmetry
K-point and wavevector quantization along the circumference of
the SWNT, the optical transition energies in carbon nanotubes are
given by Eii ¼ ‘vF ð4p=3dtÞ [10], where vF is the Fermi velocity. The
tube is metallic if p is a multiple of 3, and semiconducting
otherwise [10]. For a fixed diameter, the Eii values are expected to
exhibit a comparably smaller dependence on the chiral angle y
(ranging from 0 to 303) [10]. The chirality correction is null for
armchair tubes ðy¼ 303

Þ and is a maximum for zigzag tubes
ðy¼ 0Þ, given approximately by bpcos3y=d2

t [11].
Fig. 7(a) shows a plot of the assigned transition energies E11

S ,
E22

S , E11
M , E33

S , E44
S as a function of p/dt, after correction for their
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Fig. 5. (color online) (a) Contour plot of the Raman intensity of the RBM from HiPco SWNTs dispersed in a SDS aqueous solution as a function of excitation energy and

reciprocal RBM frequency. The dotted and dashed lines connect maxima originating from tubes of the same (2n+m)=const. branch. In each branch the member with the

smallest chiral angle ðy-0Þ is labeled [19]. (b) RBM Raman measurements of a similar sample, measured with 76 different laser lines Elaser and showing results consistent

with (a) [21].

Fig. 6. (color online) 95 different laser lines were used to generate a 2D color map

showing the RBM spectral evolution as a function of excitation laser energy for

SWNTs growth by the alcohol assisted CVD method. The intensity of each

spectrum is normalized to the strongest peak, and we plot the inverse Raman shift.

The Eii subbands are labeled with S/M superscripts standing for semiconducting/

metal tubes [11].
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chirality dependence obtained by subtracting ðbpcos3y=d2
t Þ from

the experimentally obtained Eii values (see inset to Fig. 7(a) and
respective caption for bp values, 1rpr5). Such a chirality
correction is expected to collapse all Eii values onto a single
(p/dt) dependent curve [40]. Note that the points do not scale
linearly as p/dt. As discussed by Kane and Mele [40], the non-
linear scaling is due to many-body effects and can be fit with a
logarithmic correction (see Eq. (5) further in the text). Its
interesting to note is that the E33

S and E44
S transitions clearly do

not follow the same scaling law as the E11
S and E22

S transitions,
indicating that there is something fundamentally different
between the first two lowest energy optical transitions and the
subsequent transitions in semiconducting SWNTs. Fig. 7(b) shows
evidence for the difference between the (E33

S , E44
S ) and (E11

S , E22
S ,

E11
M ) experimental data. The E11

S , E22
S and E11

M values plotted in
Fig. 7(a) can be fitted by [40]

Eiiðp; dtÞ ¼ a
p

dt
1þblog

c

p=dt

� �
þbpcos3y=d2

t ; ð5Þ

with a¼ 1:049 eV nm, b=0.456 and c¼ 0:812 nm�1. This
functional form carries both the linear dependence of Eii on p/dt,
expected from the quantum confinement of the 2D electronic
structure of graphene, and the many-body logarithmic corrections
[40]. Fig. 7(b) shows the deviation ðDEÞ of the chirality
dependence corrected ðEii�bpcos3y=d2

t Þ values from the right
side of Eq. (5). The deviations DES

33 and DES
44 from the zero line in

Fig. 7(b) shows a clear 1/dt dependence, and can be successfully fit
by a single expression DE¼ g=dt , with g¼ ð0:30570:004Þ eV nm.
Michel et al. [12] observed the same odd behavior finding also a
1/dt dependent deviation.

Quantum-chemistry calculations were used to explain the
scaling-law breakdown showing that the excitons related to
higher transitions ðES

33;E
S
44; Þ are weakly bound (or are even

unbounded e–h pairs) [11] due to the mixing of the DOS of
E11

S and E22
S with E33

S . At the bottom of the E33
S zone there is a large

DOS from E11
S and E22

S , corresponding to delocalized and unbound
states. This effect is enhanced at the E33

S and E44
S levels compared

to the E22
S states (the latter overlaps only with the E11

S band). The
calculations estimate less than 0.001 eV separation in the density
of states at the E33

S transition, attributed to other molecular states,
compared to about a 0.02 eV separation at the E22

S transition. Any
small perturbation (e.g. dielectric environment inhomogeneity,
tube ends or vibrational coupling) will strongly mix the nearly
isoenergetic states at the E33

S and E44
S levels. Consequently the

mixing of all these states and non-Condon effects might become
important with E33

S and E44
S only marginally reflecting the

character of ‘‘pure’’ states [11].
However, predictions based on solid-state physics calculations,

both tight binding and first-principles, actually give an opposite
picture, i.e. that the excitons which are related to the higher
transitions are more strongly bounded than the lower ones, and
the stronger many-body effects cause the breakdown of the
scaling law [34,35]. A reason why higher transitions exciton states
are strongly bounded is that the effective mass of electron and
hole in these higher transitions are heavier than in the lower
transitions [34]. Thus the corresponding Coulomb energy
(electron self-energy and exciton biding energy) increases as a
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Fig. 7. (color online) (a) Experimental optical transition energies as a function of p/dt, after correcting for the chiral angle dependence ðEEXP
ii �bpcos3y=d2

t Þ. The chirality

dependence corrected E11
S (black and white diamonds from Ref. [16]), E22

S (green/olive stars) and E11
M (red stars) are fitted with Eq. (5). Inset: the experimental bp values for

the lower (upper) Eii branches are �0.07(0.05), �0.19(0.14), �0.19 (not measured), �0.42(0.42) and �0.4(0.4) for p=1, 2, 3, 4 and 5, respectively. (b) Deviation ðDEÞ of the

ðEEXP
ii �bpcos3y=d2

t Þ data from the fitting curve in (a), versus 1/dt. The solid line ðDE¼ 0:305=dt Þ fits the DES
33 (green/olive circles) and DES

44 (squares) [11].

Fig. 8. (color online) (a) 2D color map showing the ‘‘super-growth’’ SWNT RBM

spectral evolution as a function of laser excitation energy. The intensity of each

spectrum is normalized to the strongest peak. (b) Plot of all transitions energies

(Eii) experimentally obtained as a function of oRBM. (c) The Kataura plot for ‘‘super-

growth’’ SWNTs. The transition energies were calculated using Eq. (5), that is

obtained by fitting the available Eii (panel (b)) and plotted as a function of oRBM,

given by oRBM ¼ 227=dt (see Section 2). In (b) and (c) the gray stars stand for

metallic tubes, the black bullets stand for type I semiconducting tubes and the

opened bullets stand for type II semiconducting tubes. Type I and II are defined by

ð2nþmÞmod 3¼ 1;2, respectively [55].
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function of the exciton wavevector measured from the high
symmetry K-point in the 2D brillouin zone. Therefore, the
opposite conclusions come from opposite pictures given by
different theoretical models. While solid state physics based
calculations impose periodic boundary conditions on a perfect
tube and the exciton wavevector constitutes a good quantum
number, which allows efficient separation of ‘‘pure’’ E11

S , E22
S , and

E33
S bands, quantum-chemistry calculations do not impose
periodic boundary conditions and do not allow such separation.
On the other hand, quantum chemistry calculations are based on
a short SWNT segments (about 500 atoms in Ref. [11]). The
experimental results themselves did not offer a conclusive answer
towards one or the other theoretical model, which led us to a deep
search for the missing physics; i.e. the dielectric screening
discussed in Section 5.

In 2008, similar resonance Raman experiments were per-
formed in the ‘‘super-growth’’ SWNTs. The scaling law breakdown
mentioned above was confirmed [55,56]. Using over 125 different
laser lines, 197 SWNTs were properly assigned with transition
energies ranging from E11

S to ES
66 (see Fig. 8). By doing a similar Eii

analysis as performed for the ‘‘alcohol-assisted’’ CVD SWNTs, the
new parameters for Eq. (5), which fit the experimental data for the
S.G. SWNTs are: a¼ 1:074 eV nm, b=0.467 and c=0.812 nm�1. For
transition energies higher than E11

M , the p=dt dependent term
0:059p=dt has to be added. The bp values for the lower (upper)
Eii branches are �0.07(0.09), �0.18(0.14), �0.19(0.29),
�0.33(0.49), �0.43(0.59), �0.6(0.57), �0.6(0.73) and �0.65
(not measured) for p¼ 1;2;3; . . . ;8, respectively. A comparative
analysis with data available in the literature revealed that all the
Eii for the ‘‘super-growth’’ SWNTs were upshifted by � 40 meV in
average, relative to all the other values reported in the literature,
although this upshift is dt dependent [55].

Interestingly, while the higher energy branch of the E11
M values

was not observed for the measurements shown in Figs. 5 and 6,
the S.G. sample gave a set of data for both the higher and lower
energy E11

M for metallic nanotubes [56]. When the scaling law
analysis is applied to the metallic Eii, the data for both upper and
lower branches closely match the semiconducting trendlines [56],
i.e. E11

M follows (E11
S , E22

S ), while E22
M follows (E33

S , E44
S ). The excellent

representation of the trend in the metallic transition energies by
the semiconductor logarithmic scaling law is indirect evidence
that the metallic transitions are also excitonic in nature. If one
first assumes no exciton, then it is possible that significant
metallic screening reduces the E11

M self-energies sufficiently to
allow for a coincidental overlap with the E11

S and E22
S scaling line. A

simultaneous overlap of E22
M with the E33

S and E44
S scaling line,

however, is unlikely in the absence of the exciton. Lack of a
binding-energy stabilization for E22

M would cause its scaling line to
appear above the E33

S and E44
S line, which is not the case. Thus, the

existence of excitons in these 1D metals is strongly suggested
over the full diameter and energy ranges measured [56].
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5. The role of dielectric screening on Eii

The assignments of Eii for SWNTs over a large region of both dt

(0.7–3.8 nm) and Eii (1.2–2.7 eV) values and for a variety of
surrounding materials are now available [11–32], thus making it
possible to accurately determine the effect of changing environ-
ment in Eii. The calculated Eii values can be renormalized by
explicitly considering the dielectric constant k in the Coulomb
potential energy VðqÞ=eðqÞk [41]. Here, k represents the screening
of the e–h (electron–hole) pair by core (1s) and s electrons ðktubeÞ

and by the surrounding materials ðkenvÞ. eðqÞ explicitly gives the
polarization function for p- electrons calculated within the
random phase approximation (RPA) [14,35,57,58]. Fig. 9 shows a
map of the ‘‘super-growth’’ experimental Eii values ðEexp:

ii Þ (black
dots) plotted as a function of their oRBM. The ‘‘super-growth’’
sample was chosen for the initial analysis because the sample has
a homogeneous environment and a large variety of SWNT
diameters, as measured by RRS. Furthermore, this sample shows
the fundamental relation oRBM ¼ 227=dt [13] and the highest Eii

values in the literature [55]. This last result indicates that the
tubes are surrounded by the lowest environmental dielectric
constant ðkenv-1Þ reported in the literature. Furthermore, the
previously elusive high energy branches for the transitions for
metallic tubes are observed, indicating the lowest degree of
perturbation to this sample. The Eii

exp. are compared with the
calculated bright exciton energies Eii

cal (open circles and stars).
Although Eii

cal includes SWNT curvature and many-body effects
[35], the Eii

exp. values are clearly red shifted when compared with
theory, and the red shift depends on oRBM, i.e. on dt, and on the
optical levels (i in Eii). To fully account for the observed energy-
dependent Eii red shift, we must fit the total k values
ð1=k¼ Cenv=kenvþCtube=ktubeÞ to minimize Eexp

ii �Ecal
ii and the

results will be discussed in connection with Fig. 11.
However, to gain more insights about the influence of k on Eii,

the ‘‘alcohol-assisted’’ SWNTs [11] were chosen for a comparative
analysis with the ‘‘super-growth’’ SWNTs. This comparative
analysis led us to a semi-empirical understanding of the role of
Fig. 9. Black dots show Eii
exp vs. oRBM results obtained from resonance Raman

spectra taken from the ‘‘super-growth’’ SWNT sample [13,55]. The black open

circles (semiconducting) and the dark-gray stars (metallic) give Eii
cal for the bright

exciton calculation with dielectric constant k¼ 1 [35]. Along the x-axis, Eii
cal are

translated using the relation oRBM ¼ 227=dt [13]. Due to the long computer time

needed for this calculations, only Eii for tubes with dt o2:5 nm (i.e.

oRBM 491 cm�1) have been calculated. Transition energies ES
ii (i¼ 125) stand for

semiconducting and EM
ii ði¼ 1;2Þ stand for metallic SWNTs [41].
the dielectric constant in Eii. Fig. 10 shows the experimental
Kataura’s plot for these two samples, where both Eii and oRBM

change from one sample to another. The ‘‘alcohol-assisted’’
SWNTs were chosen for comparison because: (1) this sample
also has a broad diameter distribution ð0:7odt o2:3 nmÞ; (2) the
observed Eii are similar to many other samples in the literature
[11,13,55]; (3) the sample is morphologically similar to the
‘‘super-growth’’ sample (both are carpet-like free standing
SWNTs). Looking at Fig. 10, the Eii values for the ‘‘alcohol-
assisted’’ SWNTs are all downshifted with relation to the Eii values
for the ‘‘super-growth’’ SWNTs. Since the ktube does not change for
any SWNT, the kenv: must be higher for the ‘‘alcohol-assisted’’
tubes.

Fig. 11 show the fitted k values as a function of p/dt, which
reproduce each experimental Eii value for the assigned (n, m)
SWNTs for the ‘‘super-growth’’ SWNT sample (bullets). The stars
stand for the ‘‘alcohol-assisted’’ SWNTs. For E22

S and E11
M

(Fig. 11(a)), up to p=3, we see a clear difference for k. However,
for E33

S and E44
S (Fig. 11(b)), no difference in k can be seen between

these two types of sample. This means that the electric field of the
E33

S and E44
S excitons do not extend much outside the SWNT

volume, in contrast to the E22
S and E11

M excitons for which the kenv

effect is significant. Since the effect of kenv is relatively small for
energies above E11

M , it is possible to assign the (n, m) values from
E33

S and E44
S even if the dielectric constant of the environment is

not known, even though the E33
S and E44

S values are seen within a
large density of dots in the Kataura plot. The data in Fig. 11 were
fitted with the relation

k¼ Ck
p

dt

� �1:7

; ð6Þ

where the exponent 1.7 was found to work for all Eii
exp, but

different Ck parameters are needed for different samples. For E11
S ,

E22
S and E11

M , Ck ¼ 0:75 for the ‘‘super-growth’’ SWNTs and
Ck ¼ 1:02 for the ‘‘alcohol-assisted’’ SWNTs (dashed and dotted
curves in Fig. 11(a), respectively). The E33

S and E44
S are fitted using

Ck ¼ 0:49 for both samples, as shown by the dashed line in
Fig. 11(b). As reported in Ref. [41], by renormalizing the calculated
Eii using Eq. (6) with the Ck parameters given above, all the
experimental Eii for both the ‘‘super-growth’’ and the ‘‘water-
assisted’’ SWNT samples can be understood within an accuracy
of 70 meV.
Fig. 10. Eii
exp vs. oRBM results obtained for the ‘‘super-growth’’ (filled circles) and

‘‘alcohol assisted’’ (open circles) SWNT samples [41].
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Fig. 11. The calculated k, which are fitted to the experimental Eii values from the ‘‘super-growth’’ (bullets) [55] and ‘‘alcohol-assisted’’ (stars) [11] samples. (a) E22
S (black)

and E11
M (dark-gray). The dashed and dotted curves are given by Eq. (6) with Ck ¼ 0:75 and 1.02, respectively. (b) E33

S (black) and E44
S (dark-gray). The dashed curve is for Eq.

(6) with Ck ¼ 0:49 [41].

Fig. 12. (a) Raman spectrum (bullets) obtained with a 644 nm laser line (1.925

eV). This spectrum was fitted by using 34 Lorentizians (curves under the spectra)

and the solid line is the fitting result. (b) The Kataura plot from Eq. (5). The dashed

line indicates Elaser and the solid line gives the width of the resonance window

ðElaser 70:06Þ eV [11].

P.T. Araujo et al. / Physica E 42 (2010) 1251–12611258
6. A guide for the (n, m) assignment

The Raman-based (n, m) assignment is straightforward if the
sample has isolated tubes or even bundles with small diameter
tubes. In this case, the RBM spectra have well defined oRBM peaks
(Fig. 5). The (n, m) assignment becomes more difficult when the
sample is composed of SWNTs with a broad range of dt (Fig. 8). The
larger the dt, the larger the overlap in the resonances among different
RBMs for tubes of similar dt. In this case, the assignment must be
performed based on anchors, as discussed further in the text.

Let us begin with just one laser line. Fig. 12(a) shows one RBM
spectrum obtained using the 644 nm laser line ðElaser ¼ 1:925 eVÞ.
Fig. 12(b) shows the Kataura plot used to analyze the
spectra, obtained from Eq. (5) using the parameters for the
‘‘alcohol-assisted’’ CVD grown SWNTs. Each bullet represents one
transition energy (Eii

M, S). From the bottom to the top, the first
group is associated with the E22

S (E11
S is below and only a single

point can be seen at the right-bottom corner), the second group is
the E11

M , the third group is the E33
S , and so on. The light green

bullets are associated with semiconductor carbon nanotubes with
modð2nþm;3Þ ¼ 1 (type one—SI), the olive bullets are associated
with semiconductor carbon nanotubes with modð2nþm;3Þ ¼ 2
(type two—SII) and the red bullets are associated with metallic
carbon nanotubes ðmodð2nþm;3Þ ¼ 0Þ. In each group, we can
realize several branches, called families, that are characterized by
2nþm¼ const. The geometrical patterns are crucial for the fitting
(mainly in case one has a map with many laser lines), and they
work for larger diameter tubes as well.

In Fig. 12(a) the bullets show the data and the solid line shows
the fit obtained using 34 Lorentzian curves (the peaks below the
spectral curve). Each Lorentzian curve can be related to one RBM
from one carbon nanotube. The red Lorentzians represent the RBM
from metallic tubes and the green (olive) Lorentzians represent the
RBM from semiconducting SI (SII) tubes. To know how many
Lorentzians should be used to fit each resonance spectrum, we use
the Kataura plot. Fig. 12(b) has a dashed line that represents the
excitation energy for the spectrum shown in Fig. 12(a), and the two
bold lines (above and below the dashed line) give the approximate
boundary for the RBM resonance profiles (see the detailed
discussion about the resonance profile in the next section). To fit
the spectrum shown in Fig. 12(a) we expect that all the circles
inside the rectangle ðElaser70:06Þ eV made by the two bold lines
should show up. The vertical bold lines connecting Figs. 12(a) and
(b) indicate the metallic 2n+m=30 family in resonance. Note that
while the Kataura plot usually presents Eii as a function of dt, in
Fig. 12(b), we plot Eii as a function of oRBM for a direct comparison
with each spectrum. Here we have the first constraint:
�
 The conversion between oRBM and dt must be performed

considering the relation oRBM ¼ ð227=dtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þCe � d2

t

q
. By prop-

erly adjusting the constant Ce one can overlap the bullets in
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Kataura’s plot within ðElaser70:06Þ eV and RBM peaks in the
spectrum.

The difficulty in performing the spectral fitting occurs because a
large number of Lorentzian curves are needed to fit a broad RBM
profile. The fitting program tends to broaden and increase some
peaks, while eliminating others. If for the same fit, one Lorentzian
is shifted by a couple of cm�1, the fitting program will return a
completely different fitting result. Therefore, another constraint,
this time for the linewidths (full width at half maximum—

FWHM), must be adopted:
�
 We require all the Lorentzian peaks in one spectrum to share
the same FWHM. The value is free to vary as a fitting
parameter, but it should be the same for all Lorentzian peaks.
Fluctuations of the RBM FWHM with (n, m) can be expected.
However, such fluctuations do not change the picture of the
results obtained after a self-consistent, many-cycles, fitting
procedure.

After the fitting, one is ready to associate each pair
ðElaser;oRBMÞ with a specific (n, m). With just one laser line
ðElaser70:06Þ eV, the assignment procedure is reliable enough to
Fig. 13. Raman spectra (bullets) obtained with a (a) 630 nm (1.968 eV), (b) 637 nm

(1.947 eV) and (c) 644 nm (1.925 eV) laser lines. All the spectra are fit with a sum of

Lorentizians (solid line). (d) The resonance profile for the carbon nanotube with

oRBM � 192 cm�1, (n, m)=(12,6). (e) The resonance profile for the carbon nanotube

with oRBM � 186 cm�1, (n, m)=(11,8). The vertical lines indicate the three excitation

energies used to measure the spectra displayed on panels (a), (b) and (c) [11].
associate a given oRBM to a couple (n, m) if the Eii values are well
known. However, as we said in Section 4, a change in k changes Eii

and adds uncertainty in energy. For those using just one laser line
this uncertainty is accounted for considering that a change in the
environment changes Eii by � 40 meV in average (see Section 5),
although this value can go up to 100 meV giving rise to a new
freedom in the fitting. An additional anchor here, to decrease the
uncertainty, is the fact that, as the chiral angle gets smaller ðy-0Þ,
the Raman signal gets more intense, as discussed in Section 7. In
fact, the uncertainty in Eii is promptly overcome by using many
laser lines, allowing measurement of resonance profiles of each
SWNT. After analyzing all the spectra obtained experimentally
using the procedure described above for one laser line, we select
each RBM frequency and plot its intensity as a function of Elaser.
Such a plot gives the resonance profile for the SWNT that has the
specified RBM mode frequency. Fig. 13 shows three Raman
spectra for three Elaser values that are different but close to each
other, so that the same RBMs should be close to resonance for the
three spectra. In each spectrum we selected two Lorentzian
curves (with frequencies around 192 and 186 cm�1) and we
show, in Figs. 13(d) and (e), their resonance profiles (intensity vs.
Elaser). These resonance profiles should then be fit by using the
RRS intensity equation:

IðElaser; EphÞ ¼
M

ðElaser�Eii�igÞðElaser�Eii�Eph�igÞ

����
����2; ð7Þ

whereM represents the matrix elements, Elaser is the laser energy,
Eii is the optical transition energy, g is the resonance window
linewidth and Eph is the RBM energy. We assume the matrix
elements and g do not change within one resonance profile. From
the fits it is then possible to obtain the Eii for that specific RBM, i.e.
for that specific (n, m) SWNT.
7. The (n, m) dependence of the RBM intensity

Figs. 6 and 8 show the experimental RRS map where each
spectrum was normalized to the strongest peak. Specially
noticeable is the change in intensity within a given ð2nþmÞ ¼

constant branch. The RBM signal gets stronger when going to
smaller chiral angles ðy-0Þ. Since each spectrum ðSðo;ELÞ;Þ is the
sum of the individual contributions of all SWNTs, it can be written
as [59]

Sðo;ELÞ ¼
X
n;m

Popðn;mÞIðElaser;EphÞ
G=2

ðo�oRBMÞ
2
þðG=2Þ2

" #
; ð8Þ

where Popðn;mÞ is the population of the (n, m) nanotube species,
G¼ 3 cm�1 is the experimental average value for the full width at
half maximum intensity of the tube’s RBM Lorentzian, oRBM is the
frequency of its RBM and o is the Raman shift.

Each nanotube in the sample contributes to the RBM RRS
spectra with one Lorentzian, whose intensity ðIðElaser; EphÞÞ for the
Stokes process at a given excitation laser energy ðELÞ is given by
Eq. (7). M represents the matrix elements for the Raman
scattering by one RBM phonon of the (n, m) nanotube. The values
Table 2
Fitted parameters Mi and gi for metallic, semiconductor type I and type II tubes.

Type MA MB MC cA cB cC

M 1.68 0.52 5.54 23.03 48.84 1.03

S1 �19.62 29.35 4.23 �3.45 65.10 7.22

S2 �1.83 3.72 1.61 �10.12 42.56 �6.84

These parameters are to be used in Eqs. (9) and (10) with dt in nm, yieldingM in

arbitrary units and g in meV.
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for Eii and Eph ¼ ‘oRBM are determined experimentally, as stated
earlier in the text.M and g were found by fitting the experimental
RBM RRS map in Fig. 8 with Eq. (8) using the functions:

M¼ MAþ
MB

dt
þ
MCcosð3yÞ

d2
t

� �2

ð9Þ

and

g¼ gAþ
gB

dt
þ
gCcosð3yÞ

d2
t

; ð10Þ

where Mi and gi ði¼ a;b; cÞ are adjustable parameters. The best
values forMi and gi, considering the excitonic transitions E22

S and
the lower branch of E11

M are listed in Table 2 for dt in nm, g in meV
and M in arbitrary units. Using these values in Eq. (8), we can
model the map shown in Fig. 8, representing very well the
experimentally observed results [59]. Thus is an important
procedure for quantifying (n, m) dependent population, as
described in Ref. [59].
8. Conclusions

Section 2 showed that a special class of SWNTs, called ‘‘super-
growth’’, has their oRBM related to the dt by the oRBM ¼ 227=dt

relation. This relation is noticeable because it recovers the SWNT
graphene sheet limit which says that oRBM�!0 when dt�!1.
Furthermore, all the oRBM in the literature were found to be
upshifted with relation to the ‘‘super-growth’’ oS:G:

RBM. This upshift
was explained with basis on the van der Waals forces which
mediate the interactions between the tube wall and the
surrounding environment. In Section 3 it was shown that, by
dispersing the ‘‘super-growth’’ tubes in sodium dodecyl sulfate
(SDS) or bringing them into bundles, the ‘‘super-growth’’ oRBM is
upshifted following the same behavior as the oRBM from the
literature for other SWNT samples. Therefore, any measured
oRBMðdtÞ for an arbitrary experimental sample are fitted to the
formula oRBM ¼ ð227=dtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þCe � d2

t

q
where only a single para-

meter ðCeÞ is used to account for the observed dt-dependent
environmental effects. For the case of the ‘‘super-growth’’ SWNTs,
we have a fit to the oRBM data for Ce ¼ 0, while for an arbitrary
sample measured in the laboratory, a least squares fit is made by
the researchers themselves to determine the best fit value for Ce.

Section 4 brought an overview of the RRS research on Eii and
gave a general equation for Eii as a function of ðdt ; yÞ, i.e for
building Kataura’s plot. Section 5 showed that the effective
dielectric constant k scales with dt as: k¼ Ckðp=dtÞ

1:7. For E11
S ,

E22
S and E11

M , Ck was found equals to 0.75 for the ‘‘super-growth’’
SWNTs and equals to 1.02 for the ‘‘alcohol-assisted’’ SWNTs.
However, E33

S and E44
S are fitted using Ck ¼ 0:49 for both samples,

showing evidence that these higher transitions are not sensitive
to a changing environment, while E11

S , E22
S and E11

M are.
Section 6 gave a routine for performing (n, m) assignment of

SWNTs in case one is using one or many laser lines. It was shown
how the dt scale in Kataura’s plot must be converted into oRBM in
order to directly compare to the experimental resonant Raman
spectrum. Such conversion must be performed by using the

relation oRBM ¼ ð227=dtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þCe � d2

t

q
. Once this adjustment is

done, one is ready to associate each pair ðElaser;oRBMÞ to a specific
(n, m) if the Eii values are well known. For those using one laser
line, although the Eii value cannot be precisely obtained, the
assignment is reliable enough for correlating a given oRBM to its
(n, m) index. Many laser lines are needed in case one wants to
have reliable information about Eii. Finally, Section 7 briefly
discussed the (n, m) dependence of the RBM Raman intensity.
Acknowledgments

P.T.A., P.B.C.P and A.J. acknowledge financial support from
FAPEMIG, Rede de pesquisa em nanotubos de carbono MCT/CNPq
and AFORS/SOARD (award #FA9550-08-1-0236). M.S.D. acknowl-
edges support from NSF Grant DMR07-04197. K.S. is supported by
JSPS Research Fellowships for Young Scientists (No. 20-4594).
R.S. acknowledges support from NEXT Grants (No. 20241023).
References

[1] C. Dekker, Phys. Today 52 (1999) 22.
[2] A. Javey, Nature 424 (2003) 654.
[3] P.L. McEuen, M.S. Fuhrer, H.K. Park, Nanotechnol. 1 (2002) 78.
[4] A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294 (2001) 1317.
[5] P.G. Collins, M.S. Arnold, P. Avouris, Science 292 (2001) 706.
[6] M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Carbon 38 (2000) 183.
[7] E. Kimakis, G.A.J. Amaratunga, Appl. Phys. Lett. 80 (2002) 112.
[8] E. Kimakis, G.A.J. Amaratunga, Rev. Adv. Mater. Sci. 10 (2005) 300.
[9] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409 (2005) 47.

[10] A. Jorio, M.S. Dresselhaus, G. Dresselhaus, Carbon Nanotubes: Advanced
Topics in the Synthesis, Structure, Properties and Applications, Springer
Series on Topics in Applied Physics, vol. 111, Springer, Berlin, 2008, p. 111.

[11] P.T. Araujo, S.K. Doorn, S. Kilina, S. Tretiak, E. Einarsson, S. Maruyama,
H. Chacham, M.A. Pimenta, A. Jorio, Phys. Rev. Lett. 98 (2007) 067401.

[12] T. Michel, M. Paillet, J.C. Meyer, V.N. Popov, L. Henrard, J.-L. Sauvajol, Phys.
Rev. B 75 (2007) 155432.

[13] P.T. Araujo, I.O. Maciel, P.B.C. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian,
A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Phys. Rev. B 77 (2008)
241403(R).

[14] M. Milnera, J. Krti, M. Hulman, H. Kuzmany, Phys. Rev. Lett. 84 (2000) 1324.
[15] A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure,

G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86 (2001) 1118.
[16] S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman,

Science 298 (2002) 2361.
[17] A. Hartschuh, H.N. Pedrosa, L. Novotny, T.D. Krauss, Science 301 (2003) 1354.
[18] M. Strano, S.K. Doorn, E.H. Haroz, C. Kittrell, R.H. Hauge, R.E. Smalley, Nano

Lett. 3 (2003) 1091.
[19] H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen, Phys. Rev. Lett. 93

(2004) 177401.
[20] S.K. Doorn, D.A. Heller, P.W. Barone, M.L. Usrey, M.S. Strano, Appl. Phys. A 78

(2004) 1147.
[21] C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta,

Phys. Rev. Lett. 93 (2004) 147406.
[22] M. Paillet, T. Michel, J.C. Meyer, V.N. Popov, L. Henrard, S. Roth, J.L. Sauvajol,

Phys. Rev. Lett. 96 (2006) 257401.
[23] J. Lefebvre, J.M. Fraser, Y. Homma, P. Finnie, Appl. Phys. A 78 (2004) 1107.
[24] Y. Ohno, S. Iwasaki, Y. Murakami, S. Kishimoto, S. Maruyama, T. Mizutani,

Phys. Rev. B 73 (2006) 235427.
[25] H. Son, A. Reina, Ge.G. Samsonidze, R. Saito, A. Jorio, M.S. Dresselhaus, J. Kong,

Phys. Rev. B 74 (2006) 073406.
[26] M.Y. Sfeir, T. Beetz, F. Wang, L. Huang, X.M.H. Huang, M. Huang, J. Hone,

S. O’Brien, J.A. Misewich, T.F. Heinz, L. Wu, Y. Zhu, L.E. Brus, Science 312
(2006) 554.

[27] A. Jorio, A.P. Santos, H.B. Ribeiro, C. Fantini, M. Souza, J.P.M. Vieira,
C.A. Furtado, J. Jiang, R. Saito, L. Balzano, D.E. Resasco, M.A. Pimenta, Phys.
Rev. B 72 (2005) 075207.

[28] S. Giordani, S.D. Bergin, V. Nicolosi, S. Lebedkin, M.M. Kappes, W.J. Blau,
J.N. Coleman, J. Phys. Chem. B 110 (2006) 15708.

[29] C. Fantini, A. Jorio, A.P. Santos, V.S.T. Peressinotto, M.A. Pimenta, Chem. Phys.
Lett. 439 (2007) 138.

[30] D.A. Tsyboulski, E.L. Bakota, L.S. Witus, J.-D.R. Rocha, J.D. Hartgerink,
R.B. Weisman, J. Amer. Chem. Soc. 130 (2008) 17134.

[31] S.D. Bergin, V. Nicolosi, H. Cathcart, M. Lotya, D. Rickard, Z. Sun, W.J. Blau,
J.N. Coleman, J. Phys. Chem. C 112 (2008) 972.

[32] C. Fantini, J. Cassimiro, V.S.T. Peressinotto, F. Plentz, A.G. Souza Filho,
C.A. Furtado, A.P. Santos, Chem. Phys. Lett. 473 (2009) 96.

[33] C.L. Kane, E.J. Mele, Phys. Rev. Lett. 90 (2003) 207401.
[34] K. Sato, R. Saito, J. Jiang, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 76

(2007) 195446.
[35] J. Jiang, R. Saito, Ge.G. Samsonidze, A. Jorio, S.G. Chou, G. Dresselhaus,

M.S. Dresselhaus, Phys. Rev. B 75 (2007) 035407.
[36] V.N. Popov, New J. Phys. 6 (2004) 17.
[37] V.N. Popov, L. Henrard, Phys. Rev. B 70 (2004) 115407.
[38] Ge.G. Samsonidze, R. Saito, N. Kobayashi, A. Grneis, J. Jiang, A. Jorio, S.G. Chou,

G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 85 (2004) 5703.
[39] C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Phys. Rev. Lett. 92

(2004) 077402.
[40] C.L. Kane, E.J. Mele, Phys. Rev. Lett. 93 (2004) 197402.
[41] P.T. Araujo, A. Jorio, M.S. Dresselhaus, K. Sato, R. Saito, Phys. Rev. Lett. 103

(2009) 146802.



ARTICLE IN PRESS

P.T. Araujo et al. / Physica E 42 (2010) 1251–1261 1261
[42] P. McEuen, Nanostructures, in: C. Kittel (Ed.), Introduction to Solid State
Physics, Wiley, New York, 2005 (Chapter 18).

[43] K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306
(2004) 1362.

[44] D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Phys. Rev.
Lett. 95 (2005) 056104.

[45] D.N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu,
M. Yumura, S. Iijima, J. Phys. Chem. B 110 (15) (2006) 8035.

[46] D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate,
O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nature Mater. 5 (2006) 987.

[47] A. Jorio, C. Fantini, M.A. Pimenta, R.B. Capaz, Ge.G. Samsonidze, G.
Dresselhaus, M.S. Dresselhaus, J. Jiang, N. Kobayashi, A. Grneis, R. Saito,
Phys. Rev. B 71 (2005) 075401.

[48] G.D. Mahan, Phys. Rev. B 65 (2002) 235402.
[49] M.J. Longhurst, N. Quirke, J. Chem. Phys. 124 (2006) 234708.
[50] L.A. Girifalco, M. Hodak, R.S. Lee, Phys. Rev. B 62 (2000) 13104.
[51] P.T. Araujo, C. Fantini, M.M. Lucchese, M.S. Dresselhaus, A. Jorio, Appl. Phys.

Lett. 95 (2009) 261902.
[52] F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, Science 308 (2005) 838.
[53] J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini,

E. Molinari, M.S. Strano, C. Thomsen, C. Lienau, Phys. Rev. B 72 (2005)
241402(R).

[54] G. Dukovic, et al., Nanoletters 5 (2005) 2314.
[55] P.T. Araujo, A. Jorio, Phys. Stat. Sol. (b) 245 (2008) 2201.
[56] S.K. Doorn, P.T. Araujo, K. Hata, A. Jorio, Phys. Rev. B 78 (2008) 165408.
[57] Y. Miyauchi, R. Saito, K. Sato, Y. Ohno, S. Iwasaki, T. Mizutani, J. Jiang,

S. Maruyama, Chem. Phys. Lett. 442 (2007) 394.
[58] V. Perebeinos, J. Tersoff, Ph. Avouris, Phys. Rev. Lett. 92 (2004) 257402.
[59] P.B.C. Pesce, P.T. Araujo, P. Nikolaev, S.K. Doorn, K. Hata, R. Saito,

M.S. Dresselhaus, A. Jorio, Appl. Phys. Lett., in press, doi:10.1063/1.3297904.


	Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes
	Introduction
	The omegaRBM vs. dt relation and the role of a changing environment
	The effect of the environment on the omegaRBMS.G.
	The evolution of the experimental determination of Eii
	The role of dielectric screening on Eii
	A guide for the (n, m) assignment
	The (n, m) dependence of the RBM intensity
	Conclusions
	Acknowledgments
	References




