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A systematic resonance Raman study has been carried out on DNA-wrapped single walled carbon
nanotubes �SWCNTs� of three different average lengths �Ltube� using seven different values of laser
excitation energy Elaser. The dependence of the intensity ratio of the D-band and G-band Raman
features �ID / IG� on �Ltube� indicates that nanotube length can be used as an important structural
parameter for Raman characterization. By systematically varying Elaser, the ratio ID / IG is found to
be much stronger for metallic than for semiconducting SWCNTs but appears to have the same
functional dependence on Elaser and �Ltube� or crystallite size as does nanographite. © 2007
American Institute of Physics. �DOI: 10.1063/1.2713121�

Raman spectroscopy is widely utilized as a structural
characterization tool for graphitic materials, and one of the
most informative parameters in the Raman characterization
of carbon materials is the ratio between the integrated inten-
sities of the D and G bands, ID / IG.1–3 Since the D-band scat-
tering process involves broken in-plane translational symme-
try, the D-band peak appears for sp2 samples containing
structural disorder.3,4 The ID / IG ratio can thus be used as a
gauge for determining the crystallite size La.1,5 Although
ID / IG ratios have been studied for different graphitic material
systems since 1970,1 it is only recently that systematic stud-
ies have been made to understand the correlation between
ID / IG and both La and laser excitation energy Elaser.

5,6

Over the past 13 years, single walled carbon nanotubes
�SWCNTs� have arisen as a new class of highly confined
carbon materials with properties that both mirror and con-
trast the parent material graphite.7 Even though ID / IG is used
qualitatively to characterize the relative defect concentration
in SWCNTs, no systematic study has been carried out to
understand the correlation between the ID / IG ratio and the
crystalline size La or the tube length Ltube which are both

important parameters for SWCNT device performance. In
addition to La and Ltube, the one dimensional �1D� resonance
enhancement in SWCNTs, as well as the intrinsically differ-
ent electronic structure associated with the semiconducting
SWCNTs �S-SWCNTs� or metallic SWCNTs �M-SWCNTs�,
is expected to affect ID / IG and its dependence on Elaser and
La or Ltube compared to other graphitic materials.8–14

In this study, a systematic resonance Raman investiga-
tion is carried out for DNA-wrapped CoMoCAT �cobalt Mo-
lybdenum catalyst� SWCNT samples15 using three different
average nanotube lengths �Ltube� and seven values of Elaser

and the results are compared with the behavior of the ID / IG

ratio in two dimensional �2D� nanographite samples.5 In con-
trast to 2D nanographite, the crystallite size La for 1D sys-
tems such as SWCNTs can be conceptualized by two inde-
pendent parameters: the diameter �dt� and length �Ltube�. We
further consider the effect of the special 1D resonance Ra-
man phenomenon of SWCNTs as different SWCNTs come
into resonance with different values of Elaser. The effects of dt

and SWCNT metallicity on ID / IG are also studied.
Three samples of DNA-wrapped CoMoCAT SWCNTs

with average lengths �Ltube� equal to �50, �70, and
�100 nm were prepared using size exclusion chromatogra-
phy, following previously established procedures.16,17 �Ltube�
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for each sample was previously determined by atomic force
microscopy measurements,17 and the variation in Ltube for
each sample was estimated to be 10%.17 The dried samples
used for optical characterization were deposited onto sap-
phire substrates as previously described.18 Resonance Raman
measurements were carried out using a micro-Raman system
in a backscattering geometry and the intensity of each spec-
trum was normalized to its G-band intensity. The seven Elaser
values used in this study were generated by a Kr+ ion laser
and a dye laser �using DCM �4-�dicyanomethylene�-2-
methyl-6-�4-dimethylaminostyryl�-4H-pyran� and rhodamine
6G dyes�, pumped by an Ar+ ion laser. A thermoelectrically
cooled Si charge coupled device detector was used in con-
junction with the dye laser. The laser power level on the
SWCNT sample was kept below 0.45 mW through a 50�
microscope objective in the backscattering geometry to pre-
vent overheating the sample.

Figures 1�a�–1�c� show the Raman spectra for the three
samples, each with a different �Ltube�, excited at 640 nm
�1.937 eV�. The relative intensities �IRBM/ IG� for the radial
breathing modes �RBMs� shown in Fig. 1�a� remain un-
changed as �Ltube� is decreased from 100 to 50 nm. Since the
RBM and G band are both first-order scattering processes
associated with totally symmetric vibrations, we expect
IRBM/ IG to be independent of �Ltube�.

As �Ltube� becomes shorter, the intensity ratio �ID / IG�
increases, as in Fig. 1�d�. This is expected since the fraction
of the total surface associated with the end caps increases as
�Ltube� decreases. However, the relative G� band intensities
�IG� / IG�, shown in Fig. 1�c�, remain relatively unchanged
with decreasing �Ltube�. In contrast to the D band, the scat-
tering process for the second harmonic of the D band �the G�
band� is symmetry allowed by momentum conservation.19

Thus, the broken translational symmetry in short nanotubes
�short compared to �, the laser wavelength� is not expected
to change �IG� / IG�, in agreement with our observations.

To clarify the effect of �Ltube� on the increase in ID / IG,
Fig. 2�a� shows ID / IG as a function of �Ltube�−1 at seven
values of Elaser. Table I lists the observed RBM frequency
��RBM� and the corresponding metallicity �M or S� for reso-
nant SWCNTs for each Elaser. With decreasing �Ltube�, a

larger ID / IG is observed for all values of Elaser. From Fig.
2�a�, a clear correlation is also seen between ID / IG and the
�Ltube�−1 for each set of SWCNTs, excited at a particular
Elaser. Thus, for the same Elaser, where similar dt SWCNTs are
in resonance, ID / IG can be used as an indicator to estimate
�Ltube� of the SWCNT sample when �Ltube��� /4, where � is
the wave length of light. ID / IG. The ID / IG ratio is seen to be
larger for M-SWCNTs �Elaser=2.330 eV� than for
S-SWCNTs, of the same �Ltube�. Figure 2�a� also shows that
in the limit of long SWCNTs, �Ltube��100 nm, the ID / IG

ratio does not go to zero. These finite residual values of
ID / IG likely arise from defect-induced scattering introduced
within the tube walls, as for example, by the sample prepa-
ration method used to produce short tubes.

For the four Elaser values below 2 eV, where the values
of Elaser are predominantly in resonance with S-SWCNTs, the
ID / IG ratio decreases with increasing values of Elaser. This
observation is qualitatively consistent with the general
D-band behavior observed for sp2 carbon materials.1,5,8,20

The very low value of ID / IG for 1.95�Elaser�2.05 eV in
Fig. 2�b� corresponds to the range where there are few reso-
nant SWCNTs for the incident photons from the Kataura
plot,19 and the smaller value of �D relative to �G also con-
tributes to a weak double resonance effect for scattered pho-
tons. On the other hand, ID / IG in Fig. 2�b� again increases
with Elaser when Elaser�2 eV, as a larger fraction of

TABLE I. Observed resonant �RBM at each Elaser and the corresponding
metallicity for the resonant SWCNTs.

Elaser �eV� �RBM �cm−1� Metallicity

1.826 299 S
1.917 290 S
1.937 290 S
1.999 260, 280 S
2.053 211, 251, 280 S, M
2.171 223, 245, 312 S, M
2.330 275 M

FIG. 1. �Color online� Raman spectra for the �a� RBM, �b� D and G bands,
and �c� G� regions for three samples of different average lengths �Ltube�
excited at Elaser=1.937 eV �640 nm�. �d� �inset� the D-band region on an
expanded scale. All spectra are normalized to their G-band intensities. The
RBM spectra show that only one dominant SWCNT species is resonant for
all samples.

FIG. 2. �Color online� �a� ID / IG as a function of �Ltube�−1, excited at different
values of Elaser. �b� ID / IG ratio vs Elaser for DNA-wrapped SWCNTs of
different �Ltube� values. The ranges where S-SWCNTs and M-SWCNTs are
resonant are indicated.
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M-SWCNTs comes into resonance with E11
M transitions. For

these M-SWCNTs �dt�1 nm�, the electron-phonon matrix
element of the TO phonon mode at the K point is larger than
that for S-SWCNTs.21 As a result the ID / IG ratio becomes
larger when Elaser is strongly resonant with M-SWCNTs.8,20

The ID / IG ratio has been a commonly used parameter for
sp2 carbon materials characterization to qualitatively deter-
mine La and the amount of structural disorder.1,5 The com-
bined studies of crystallography, microscopy, and spectros-
copy of nanographite have further established the following
universal relation:5

� ID

IG
	Elaser

4 =
560

La
. �1�

To further compare the 1D SWCNT system with Eq. �1� for
2D nanographite,5 we use �Ltube�−1 as an analog of 1/La in
Eq. �1�, and we plot in Fig. 3 the calculated �ID / IG� Elaser

4

values versus �Ltube�−1. The results show that the ID / IG ratios
of the special M-SWCNTs that are in resonance with the
2.33 eV excitation do follow a similar dependence as Eq. �1�
for nanographite.

If we consider all data points from the S-SWCNTs in
Fig. 3, then the fit to the data is consistent with the solid line
in Fig. 3 coming from the data in Fig. 1 for S-SWCNTs.
These results suggest that an �ID / IG� Elaser

4 vs �Ltube�−1 depen-
dence might also apply to SWCNTs, with a coefficient of
proportionality for S-SWCNTs that is much smaller �by per-
haps a factor of �4� than for M-SWCNTs, for which the
proportionality constant may be of a similar magnitude as
that for nanographite.5

In summary, a systematic resonance Raman study has
been carried out on DNA-wrapped SWCNTs of three differ-
ent lengths using seven different values of Elaser. The corre-
lation observed between the ID / ID ratio and �Ltube�−1 indi-
cates that nanotube length can be used as the dominant
structural parameter for the Raman characterization of
SWCNTs with �Ltube��� /4, and that ID / IG can be used for
estimating the average nanotube length when a single laser

excitation energy is used. More systematic studies of the
�ID / IG� Elaser

4 vs �Ltube�−1 for both S-SWCNTs and
M-SWCNTs are needed to establish conditions under which
these relations are valid and the value of the relevant propor-
tionality constants for S-SWCNTs and M-SWCNTs. Such
results will guide future theoretical work which will advance
the use of Raman spectroscopy to distinguish the character-
istics of specific defect types from one another in graphitic
systems.
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FIG. 3. �Color online� Comparison of the length dependence of ID / IG for
short SWCNT samples, excited at different Elaser, plotted in terms of the
variables in Eq. �1� for nanographite �where the dotted line is for nanograph-
ite and the solid line is qualitatively for S-SWCNTs� �Ref. 5�.
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