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We discuss here how the trigonal warping effect of the electronic structure is rel-
evant to optical processes in graphite and carbon nanotubes. The electron-photon,
electron-phonon, and elastic scattering matrix elements have a common factor of
the coefficients of Bloch wave funtions of the A and B atoms in the graphite unit
cell. Because of the three fold symmetry around the Fermi energy point (the K or
K0 point), the matrix elements show a trigonal anisotropy which can be observed
in both resonance Raman and photoluminescence spectroscopy. This anisotropy
is essential for understanding the chirality dependence of the Raman intensity
and the optical response of single wall carbon nanotubes.
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INTRODUCTION

Graphite has a unique electronic structure for the valence electrons in
which a p electron of a carbon atom forms the valence and conduction
energy bands [1]. Two dimensional graphite does not have an energy
gap at the Fermi energy and the two energy bands touch each other
at the zone boundary symmetry points called the K and K0 points in
the hexagonal Brillouin zone. Such an energy degeneracy at the zone
boundary would be unstable in low dimensional materials by opening
an energy gap with a 2kF perturbation such as a charge density wave.
However in the case of graphite, the symmetry between the two
inequivalent carbon atoms, A and B, in the unit cell of graphite
requires doubly degenerate energy eigenvalues which appear at the
Fermi energy, EF and thus the energy gap does not open and a linear
energy dispersion of the electronic energy bands appear at EF. Such a
special situation can be seen only in graphite and single wall carbon
nanotubes (SWNTs). Physical properties of graphite depend on this
special electronic structure combined with the phonon structure of
the sp2 hybridized r bonds between carbon atoms. Even though we
adopted a standard formalism for basic optical processes such as optical
absorption or electron-phonon interaction, the calculated results are
usually anisotropic and exotic. So far we have developed computer pro-
grams for many physical matrix elements based on the tight-binding
method for the p energy bands for explaining the optical absorption
[2], Raman spectra [3], and photoluminescence spectra [4]. However,
we did not previously consider the origin of the anisotropy of the physi-
cal properties of graphite and SWNTs in a unified view. In this paper,
starting from the simple tight binding calculation, we will show the
origin of the trigonal anisotropy of the physical properties of graphite
and the chirality dependence of the physical properties of carbon nano-
tubes. Then we discuss the optical response of carbon nanotubes.

TIGHT BINDING METHODS FOR GRAPHITE AND CARBON
NANOTUBES

The tight binding wave functions for the valence and conduction
energy bands for graphite and carbon nanotubes Wjðk; rÞ; ðj ¼ v; cÞ
are given by the linear combination of Bloch wave functions of the A
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and B atoms in the unit cell.

Wjðk; rÞ ¼
X

i¼A;B

Cj
iðkÞUiðk; rÞ; ð j ¼ v; cÞ; ð1Þ

in which Cj
i ðkÞ is the coefficient of the Bloch wave functions, and the

Bloch wave function Uiðk; rÞ is given by a linear combination of atomic
orbitals,

Uiðk; rÞ ¼
1ffiffiffiffiffiffiffi
Nu

p
X

R

eikRuiðr�RÞ: ð2Þ

Here Nu and R are the number and position of the unit cell and
uiðr� RÞ is the atomic wavefunction of the 2pz orbital of a carbon
atom. In the case of a SWNT, we adopted 2s, 2px, 2py orbitals, too,
in the extended tight binding calculation in which the curvature effect
is included by the Slater-Koster scheme [5].

The optical processes appearing in the photoluminescence (PL) and
Raman spectra consist of five basic processes, as shown in Figure 1;
(a) optical absorption, (b) optical emission, (c) phonon absorption, (d)
phonon emission, and (e) elastic scattering by a defect. In the phonon
absorption or emission processes, energy and momentum conservation
rule selects the momentum q and the energy �hx of a phonon. In the
case of a SWNT, there are two carbon atoms in the unit cell of graph-
ite, and thus we have six phonon dispersions which are zone-folded
into one dimensional phonon branches. For each phonon dispersion
of a SWNT, we have energy-momentum conserved q values for for-
ward and backward scattering. Here the forward (backward) scatter-
ing denotes that the group velocity of an electron, which is the slope
of the energy dispersion of the electron, is unchanged (changed) as
is shown in Figure 2. Moreover, since there are two Fermi surfaces
around the K and K0 points in the Brillouin zone, there are so called
intra-valley and inter-valley scattering processes which connect the
k and kþq states from K to K (K0 to K0) and K to K0 (K0 to K), respect-
ively. For an initial k state, there are 6� 2� 2 ¼ 24 possible kþq

FIGURE 1 Basic optical processes: (a) optical absorption, (b) optical emission,
(c) phonon absorption, (d) phonon emission, (e) elastic scattering by a defect.
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states for inelastic scattering for phonon absorption (emission) pro-
cesses. Here we did not consider the fact that the final state is an occu-
pied electronic state. In the case of elastic scattering, since there is no
intra-valley, forward scattring, 3 possible kþq states are expected.

The optical matrix element for an electron at k are given within the
dipole approximation by

MoptðkÞ ¼ P � WCðkÞjrjWVðkÞ
� �

; ð3Þ

in which the P is the polarization vector of light. The electron-phonon
matrix elements for an electron from k to kþq for a phonon
mode with wave vector q is calculated by the deformation potential
approximation,

Mel-phðkþ q;kÞ ¼ A � WCðkþ qÞjrVjWCðkÞ
� �

; ð4Þ

in which A is the amplitude vector of a phonon mode. These matrix
elements have a similar form of an inner product of two vectors in
which one of the two is the outer field P (or the phonon amplitude
A) and the other is the vector of the electronic properties as a linear
response. On the other hand, the elastic scattering matrix elements

FIGURE 2 Four possible phonon emission processes for a given phonon
mode. Intra-valley (left) and inter-valley (right) scattering processes corre-
spond to the scattering from K to K and from K to K0, respectively. Backward
(up) and forward (down) scattering correspond to the scattering with the
opposite and the same velocity, respectively. In the right figure, we show
the electronic energy band of two dimensional graphite around the K (or K0)
point in which thick and thin lines denote the linear energy dispersion with
positive and negative group velocity, respectively.
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for a defect potential V is proportional to a scalar variable
WCðkþ qÞjVjWCðkÞ
� �

. The calculation of the matrix elements is done
by expanding the wavefunction to the atomic orbitals using Eqs. (1)
and (2). The anisotropic behavior of graphite and carbon nanotubes
is described by the coefficient Cj

iðkÞ in Eq. (1) which is either a con-
stant or a complex function of f ðkÞ �

P3
i¼1 expðikRiÞ. Here

Ri ði ¼ 1; 2; 3Þ are three vectors of the nearest neighbor carbon sites.
The function f ðkÞ has a zero value at the K (or K0) points and near
the K (K0) point, f ðkÞ is a linear function of kx and ky. As a result,
all optical properties are purely anisotropic around the K and K0 points
and display the three-fold symmetry of the k space around the K and
K0 points. In the case of carbon nanotubes, this anisotropy is relevant
to the chirality dependence of the optical response since that the
properties are relevant to the position of the van Hove singular k
points. Hereafter, we show the calculated results of the optical absorp-
tion matrix elements and selection rules for electron-phonon scatter-
ing processes. The results are closely related to the chirality
dependence of the optical properties for SWNTs.

RESULTS AND DISCUSSION

In Figure 3, we plot (a) the direction and (b) the absolute value (oscil-
lator strength) of the dipole vector WCðkÞjrjWVðk0Þ

� �
of graphite in the

FIGURE 3 (a) The direction and (b) the absolute value of the dipole vector
WCðkÞjrjWVðk0Þ
� �

of graphite in the two dimensional Brillouin zone. The
values in (b) are shown in the units of the atomic dipole matrix elements for
the nearest neighbor carbon pair [6].
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two dimensional Brillouin zone [6]. The dipole vectors rotate clockwise
and counter-clockwise around the K and K0 points, respectively. Since
the equi-energy contour lines for the electronic energy dispersion are
approximated by circles around the K and K0 points, we can expect
a k dependence of the optical absorption for a given polarization
vector P. In particular, when P is perpendicular to the dipole vector
at a k point, we expect no optical absorption (the node position)
[2,7], and this effect can be observed in nano-graphite system [8].
When we see the absolute value of the dipole vector, the direction from
K to the three nearest M points gives larger matrix elements (dark
area) than that for the direction from K to C point. When the van Hove
singular point is close to the K-M line, the corresponding optical tran-
sition becomes strong. This is a reason why the armchair and type I
(mod(2nþm;3Þ ¼ 1 for (n;m) SWNT) semiconductor SWNTs has rela-
tively larger values for the dipole vectors for the second van Hove
singularity energy than zigzag, and type II semiconductor SWNTs.
It is pointed out again that the strongly anisotropic behavior of the
matrix elements is due to the coefficient of the Bloch functions.

We can not make a similar plot to Figure 3 for electron-phonon
matrix elements since there are initial k and final k0 states. For a given
initial k state, we can plot the possible final states for each phonon
mode with the wave vector q, which we found to have an anisotropy
around the K or K0 points. In this case, the relative directions of the
deformation vector and the phonon vibration are important, which
gives a selection rule for the phonon modes in the inelastic scattering
process. For example in (10,10) nanotubes, we calculated the averaged
electron-phonon coupling constant for initial states at the energy
0.25 eV above the Fermi energy [9] which is listed in Table 1.

For the intra-valley electron-phonon scattering, the radial breathing
mode (RBM) and the in-plane tangential optic phonon mode (iTO) have
non-zero matrix elements for forwarding scattering while the twisting
(TW) phonon mode, out-of-plane tangential optic phonon mode (oTO),
and the longitudinal optic phonon mode (LO) have non-zero matrix ele-
ments for backward scattering. The RBM, iTO and LO phonon modes

TABLE 1 Non-zero Electron-phonon Matrix Elements for Each Type of
Inelastic Scattering Calculated for an (10,10) Armchair Nanotube at the
Energy 0.25 eV above the Fermi Energy

Forward scattering Backward scattering

Intra-valley scattering RBM, iTO TW, oTO, LO
Inter-valley scattering E2(1), E1(1) E2(2), E1(2), A1
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correspond to the RBM, G� and Gþ Raman modes, respectively. The
TW and oTO phonon modes can be seen in Raman spectroscopy only in
second-order processes. The longitudinal acoustic (LA) phonon mode
does not contribute the electron-phonon matrix element either for for-
ward or backward scattering. Though the oTO phonon mode has no
electron-phonon matrix elements in graphite, the oTO electron-phonon
matrix element exists for a SWNT due to the curvature effect of the
SWNT which is proportional to the inverse square of the diameter.

For inter-valley electron-phonon scattering, the phonon modes
around the K (K0) point are relevant. At the K (K0) point, two E modes
appear; two longitudinal phonon modes E1 (LA and LO branches) and
two out-of-plane phonon modes E2 (oTA and oTO branches). The
remaining two tangential phonon branches give two, non-degenerate
A modes (A1 iTO, A2 TW branches). The electron-phonon matrix ele-
ments have a non-zero forward scattering matrix element for one of
two representations for the E1 and E2 mode (E1(1) and E2(1)), and also
a non-zero, backward scattering for the E1(2), E2(2), and A1 modes.
The symmetry selection rule for the electron-phonon matrix elements
are closely related to the appearance of a chirality dependence of the
relative intensity of the G�=Gþ Raman intensity and of the RBM
intensity. For example, the calculated results for the RBM and TO
(G� band) Raman feature show a larger chiral angle dependence than
the diameter dependence in which the same n�m value for (n;m)
SWNTs gives similar intensity values (family pattern). On the other
hand, the LO (Gþ) band shows no significant chirality dependence.
Thus the relative G�=Gþ Raman intensity has maximum (minimum)
values for armchair (zigzag) nanotubes which is consistent with the
experimental observations of single nanotube Raman spectroscopy
[10,11]. As for the RBM intensity, a zigzag nanotube gives a larger
intensity than an armchair nanotube, and the RBM intensity
decreases with increasing the diameter for a given chiral angle. Since
the electron-phonon calculation needs to be calculated for many k and
k0 states for (n;m) SWNTs, a detailed report of the Raman intensity
and PL intensity will be reported elsewhere [9].

In summary, we show that the PL and Raman intensity in graphite
has a strong k dependence which is reflected in the chirality depen-
dence of the intensity in single wall carbon nanotubes. The electron-
photon and electron-phonon interactions give a similar functional
form within the extended tight binding scheme and the anisotropy of
the coefficient of the Bloch wave functions in the valence and conduc-
tion energy bands play a crucial role in the chirality dependence of the
matrix elements, and in the physical processes depending on these
matrix elements.
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