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Abstract

The use of Raman spectroscopy to reveal the remarkable structure and the unusual electronic and phonon properties
of single wall carbon nanotubes (SWNTs) is reviewed comprehensively. The various types of Raman scattering
processes relevant to carbon nanotubes are reviewed, and the theoretical foundations for these topics are presented.
The most common experimental techniques used to probe carbon nanotubes are summarized, followed by a review of
the novel experimental findings for each of the features in the first order and second order Raman spectra for single
wall carbon nanotubes. These results are presented and discussed in connection with theoretical considerations.
Raman spectra for bundles of SWNTs, for SWNTs surrounded by various common wrapping agents, and for
isolated SWNTs at the single nanotube level are reviewed. Some of the current research challenges facing the field
are briefly summarized.
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1. Introduction

Carbon nanotubes have proven to be a unique system for the study of Raman spectra in one-dimensional
systems, and at the same time Raman spectroscopy has provided an exceedingly powerful tool for the char-
acterization of single-wall carbon nanotubes. The unique optical and spectroscopic properties observed
in single-wall carbon nanotubes (SWNTs) are largely due to the one-dimensional (1D) confinement of
electronic and phonon states, resulting in the so-called van Hove singularities (vHSs) in the nanotube
density of states (DOS)[1,2]. These singularities in the DOS, and correspondingly in the electronic joint
density of states (JDOS), are of great relevance for a variety of optical phenomena. Whenever the energy
of incident photons matches a vHS in the JDOS of the valence and conduction bands (subject to selection
rules for optical transitions), one expects to find resonant enhancement of the corresponding photophysi-
cal process. Owing to the diverging character of vHSs in these 1D systems, such an enhancement can be
extremely confined in energy (meV), appearing almost like transitions in a molecular system. In combina-
tion with the unique 1D electronic structure, the resonantly enhanced Raman scattering intensity allows
one to obtain detailed information about the vibrational properties of nanotubes, even at the isolated
individual SWNT level[3].

The contents of this review are as follows. Section 2 provides the background for discussing the Raman
effect in carbon nanotubes, summarizing the nanotube geometrical structure, as well as the electronic and
vibrational (phonon) structure. Section 3 presents the different aspects of the Raman scattering processes,
such as first- and second-order scattering, resonant and non-resonant scattering, Stokes or anti-Stokes
scattering, intravalley or intervalley scattering, other elementary excitations and the parameters for Raman
measurements. Section 4 discusses resonance Raman intensity calculations, including the formulation
of the Raman intensity, selection rules for the Raman scattering, electron–photon matrix elements and
electron–phonon matrix elements. Section 5 presents a brief description of sample preparation and the
experimental set up. Sections 6 and 7 summarize Raman scattering experimental results, respectively
for first- and for second-order Raman features. In Section 6 the radial breathing modes (RBMs), the
(n,m) assignment that defines the uniqueness of each SWNT, and theG-band (tangential modes) are
discussed. In Section 7, theD-band (disorder-induced feature) and theG′-band (D-band overtone) are
given, as well as other double resonance features and the effects on the Raman spectra of interactions
of SWNTs with their surroundings. Finally in Section 8 we mention MWNTs, and Section 9 presents
concluding remarks, summarizing past achievements in the field and pointing to promising directions for
future developments.
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2. Background

2.1. Structure and notation

This section provides a brief introduction to the unusual structural properties of single-wall carbon
nanotubes, that emphasizes their unique 1D attributes and sets them apart from other materials systems.
A SWNT can be described as a single layer of a graphite crystal that is rolled up into a seamless cylinder,
one atom thick, usually with a small number (perhaps 10–40) of carbon atoms along the circumference
and a long length (microns) along the cylinder axis[4]. Each SWNT is specified by the chiral vectorCh

Ch = na1 + ma2 ≡ (n,m) (1)

which is often described by the pair of indices(n,m) that denote the number of unit vectorsna1 and
ma2 in the hexagonal honeycomb lattice contained in the vectorCh. As shown inFig. 1, the chiral vector
Ch makes an angle�, called the chiral angle, with the so-called zigzag ora1 direction[5]. The chiral
angle for the axis of the so-calledzigzagnanotube corresponds to� = 0◦, while that for the so-called
armchairnanotube axis corresponds to� = 30◦, and the nanotube axis for the so-called chiral nanotubes
corresponds to 0< �<30◦, as far as handedness[6] is not considered. The nanotube diameterdt can be
written in terms of the integers(n,m) as

dt = Ch/� = √
3aCC(m

2 + mn + n2)1/2/� , (2)

whereaCC is the nearest-neighbor C–C distance (1.421Å in graphite), andCh is the length of the chiral
vectorCh. The chiral angle� is given by

� = tan−1
[√

3m/(m + 2n)
]
. (3)

a2

O

A

B

B

T

Ch

R

y

x

T

(a) (b)

a1

θ

Fig. 1. (a) The unrolled honeycomb lattice of a nanotube. When we connect sites O and A, and sites B and B′, a portion of a
graphene sheet can be rolled seamlessly to form a SWNT. The vectors OA and OB define the chiral vectorCh and the translational
vectorT of the nanotube, respectively. The rectangle OAB′B defines the unit cell for the nanotube. The figure is constructed for
an(n,m) = (4,2) nanotube[1]. (b) The(4,2) SWNTs, showing the translation vectorT.
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Fig. 2. (a) The unit cell (dotted rhombus), containing sites A and B where carbon atoms are located, and (b) the Brillouin
zone (shaded hexagon) of a graphene or 2D graphite layer.ai andbi (i = 1,2) are basis vectors and reciprocal lattice vectors,
respectively. The high symmetry points,�, K andM are indicated[7]. (c) Parallel equidistant lines represent the cutting lines
for the(4,2) nanotube, shown inFig. 1. The cutting lines are labeled by the cutting line index�, which assumes integer values
from 1− N/2 = −13 toN/2 = 14.

Thus, a nanotube can be specified by either its(n,m) indices or equivalently bydt and�. Next we define
the unit cell OBB′A of the 1D nanotube in terms of the unit cell of the 2D honeycomb lattice defined by
the vectorsa1 anda2 (Fig. 1).

In Fig. 2 we show (a) the unit cell in real space and (b) the Brillouin zone in reciprocal space of 2D
graphite as a dotted rhombus and shaded hexagon, respectively, wherea1 anda2 are basis vectors in real
space, andb1 andb2 are reciprocal lattice basis vectors. In thex, y coordinate system shown inFig. 2,
the real space basis vectorsa1 anda2 of the hexagonal lattice are expressed asa1 = (

√
3a/2, a/2) and

a2 = (
√

3a/2,−a/2), wherea = |a1| = |a2| = 1.42× √
3 = 2.46Å is the lattice constant of a graphene

or 2D graphite layer. Correspondingly, the basis vectorsb1 andb2 of the reciprocal lattice are given
by b1 = (2�/

√
3a,2�/a) andb2 = (2�/

√
3a,−2�/a) corresponding to the graphene lattice constant of

4�/
√

3a in reciprocal space. The direction of the basis vectorsb1 andb2 of the reciprocal hexagonal
lattice are rotated by 30◦ from the basis vectorsa1 anda2 of the hexagonal lattice in real space, as shown
in Fig. 2. The three high symmetry points,�, K andM of the Brillouin zone are shown as the center, the
corner, and the center of the edge, respectively, of the shaded hexagon that corresponds to the Brillouin
zone of 2D graphite.

To define the unit cell for the 1D nanotube, we define the vector OB inFig. 1 as the shortest repeat
distance along the nanotube axis, thereby defining the translation vectorT

T = t1a1 + t2a2 ≡ (t1, t2) , (4)

where the coefficientst1 andt2 are related to(n,m) by

t1 = (2m + n)/dR, t2 = −(2n + m)/dR , (5)

wheredR is the greatest common divisor of(2n + m,2m + n) and is given by

dR =
{
d if n − m is not a multiple of 3d ,

3d if n − m is a multiple of 3d
(6)

in which d is the greatest common divisor of(n,m). The magnitude ofT, the translation vector, is
|T| = T = √

3Ch/dR. The unit cell of the nanotube is defined as the area delineated by the vectorsT and
Ch. The number of hexagons,N, contained within the 1D unit cell of a nanotube is determined by the
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integers(n,m) and is given by

N = 2(m2 + n2 + nm)/dR . (7)

The addition of a single hexagon to the honeycomb structure inFig. 1 corresponds to the addition of
two carbon atoms. Assuming a valueaCC = 0.142 nm on a carbon nanotube, we obtaindt = 1.36 nm
andN = 20 for a (10,10) nanotube. Since the real-space unit cell is much larger than that for a 2D
graphene sheet, the 1D Brillouin zone (BZ) for the nanotube is much smaller than the BZ for a graphene
2D unit cell. Because the local crystal structure of the nanotube is so close to that of a graphene sheet,
and because the Brillouin zone is small, Brillouin zone-folding techniques have been commonly used
to obtain approximate electronE(k) and phonon�(q) dispersion relations for carbon nanotubes with
specific(n,m) geometrical structures.

Whereas the lattice vectorT, given by Eq. (4), and the chiral vectorCh, given by Eq. (1), both determine
the unit cell of the carbon nanotube in real space, the corresponding vectors in reciprocal space are the
reciprocal lattice vectorsK2 along the nanotube axis andK1 in the circumferential direction, which gives
the discretek values in the direction of the chiral vectorCh. The vectorsK1 andK2 are obtained from
the relationRi · K j = 2��ij , whereRi andK j are, respectively, the lattice vectors in real and reciprocal
space, andK1 andK2 therefore satisfy the relations

Ch · K1 = 2�, T · K1 = 0, Ch · K2 = 0, T · K2 = 2� . (8)

From Eqs. (8) it follows thatK1 andK2 can be written as

K1 = 1

N
(−t2b1 + t1b2), K2 = 1

N
(mb1 − nb2) , (9)

whereb1 andb2 are the reciprocal lattice vectors of a 2D graphene sheet [seeFig. 2(b)].TheNwave vectors
�K1 (� = 1 − N/2, . . . , N/2) give rise toN discretek vectors or cutting lines[8] in the circumferential
direction [seeFig. 2(c)]. For each of the� discrete values of the circumferential wave vectors, 1D electronic
energy bands appears (one�-band and one�∗-band), whereas each� gives rise to 6 branches in the phonon
dispersion relations. Because of the translational symmetry ofT, we have continuous wave vectors in the
direction ofK2 for a carbon nanotube of infinite length. However, for a nanotube of finite lengthLt , the
spacing between wave vectors is 2�/Lt , and effects on the electronic structure associated with the finite
nanotube length have been observed experimentally[9].

Chiral nanotubes are also described by their handedness, and can be either left or right handed. The
definition is not unique from a symmetry point of view[6,8] for an unperturbed SWNT, and handedness
effects can only be experimentally observed when externally applied fields, such as those associated with
an incident laser beam or with an applied magnetic field, are used to break time reversal symmetry. The
handedness can also be probed by scanning probe methods, but, in general, the handedness of a SWNT
does not strongly affect its physical properties[6].

2.2. Electronic structure

To first order, the electronic structure of a carbon nanotube can be obtained from its parent material,
2D graphite, but in the case of SWNTs, the quantum confinement of the 1D electronic states must be
taken into account. The electronic� bands are responsible for the strong in-plane covalent bonds within
the 2D graphene sheets, while the� bands are responsible for weak van der Waals interactions between
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Fig. 3. (a) The calculated constant energy contours for the conduction and valence bands of a 2D graphene layer in the first
Brillouin zone using the�-band nearest neighbor tight binding model[1]. The valence and conduction bands touch in theK
points. Solid curves show the cutting lines for the(4,2) nanotube[8], as shown inFig. 2(c), but translated to the first Brillouin
zone of 2D graphite, the dark points indicating the connection points. (b) Electronic energy band diagram for the(4,2) nanotube
obtained by zone-folding from (a). (c) Density of electronic states for the band diagram shown in (b).

such graphene sheets in 3D graphite. In contrast to the� bands, the� bands are close to the Fermi level, so
that electrons can be excited from the valence (�) to the conduction (�∗) band optically.Fig. 3(a) shows
the electronic dispersion for the� and�∗ bands of 2D graphite in the first Brillouin zone, obtained with
the tight binding (TB) method[1]. The optical transitions occur close to the corners of the 2D hexagonal
Brillouin zone, called theK points, where the valence and conduction bands touch each other [see
Fig. 3(a)]. The energy dispersion around theK point is linear ink which is responsible for the unique
solid-state properties of both 2D graphite and SWNTs.

The cutting lines of allowed wave vectors in the carbon nanotube reciprocal space can be represented
in the 2D graphene sheet Brillouin zone, as shown inFig. 3(a)[8], where all the cutting lines for the(4,2)
SWNT [seeFig. 2(c)] were translated to the first Brillouin zone of 2D graphite and joined at “connecting
points” [seeFig. 3(a)]. The electronic band structure of the nanotube can be easily obtained, as shown
in Fig. 3(b), by superimposing the 1D cutting lines on the 2D electronic constant energy surfaces. The
SWNT electronic structures inFig. 3(a) and (b) are given for a(4,2) SWNT, that is chosen here for
illustrative purposes. For such a small diameter SWNT, however, the large curvature of the graphene
sheet induces changes in the C–C bond distances and causes a mixing of the� and� bonds. Thus, more
accurate methods than a nearest neighbor tight binding model must be used to describe the electronic
structure for small diameter SWNTs[10].

Although the 1D electronic band structure of the small diameter tube, shown inFig. 3(b), appears to be
complex, it becomes simpler when considering the 1D density of electronic states, as shown inFig. 3(c).
It is of major significance that the optical absorption or emission rate in nanotubes is related primarily to
the electronic states at the van Hove singularities (vHSs), thereby greatly simplifying the analysis of the
optical experiments. The vHSs closer to the Fermi level originate from cutting lines closer to theK point
in the 2D Brillouin zone.

SWNTs can be classified into three different classes, according to whether MOD(2n + m,3) = 0,1
or 2, where the integers 0,1,2 denote the remainders when(2n+m) is divided by 3 (see right panels in
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where it is, for example, seen that the energy levels for MOD1 semiconducting SWNTsES
33 andES

44 lie close to one another

but MOD2ES
33 andES

44 lie far apart. The spread in theEii bands at constant diameter within this approximation is due to a
trigonal warping effect (see text).

Fig. 4) [11]. Here MOD1 and MOD2 SWNTs are two types of semiconducting nanotubes, since no
allowedk vector crosses theK point. For MOD0 SWNTs a cutting line crosses theK point and these
SWNTs are classified as “metallic”. However, due to the curvature effect, only armchair (n=m) SWNTs
are truly metallic, while the other MOD0 SWNTs (n �= m) are metallic at room temperature, but exhibit
a small (∼ meV) chirality-dependent energy gap (quasi-metallic) at lower temperatures.

The distanceK1 between two neighboring cutting lines inFigs. 2(c) and3(a) is related to the nanotube
diameterdt byK1 = 2/dt , leading to a 1/dt dependence for the distance between van Hove singularities
(vHSs). The direction of the cutting lines relative to the axes of the hexagonal 2D Brillouin zone depends
on the rolling up direction relative to the unit vector directionsa1 anda2 of the 2D-graphite sheet. Thus
the cutting line direction depends on the nanotube chiral angle�, leading to a chirality dependence for
the energies where the van Hove singularities occur, since the equi-energy contours around theK points
are not circles, but rather exhibit a trigonally warped shape[1]. It is, therefore, easy to imagine that each
(n,m) SWNT exhibits a different set of vHSs in its valence and conduction bands, and a different set
of electronic transition energies for optical transitions between its valence and conduction band vHSs.
For this reason, optical experiments can be used for the structural determination of a given(n,m) carbon
nanotube.

By callingEii the electronic transition energies between the electronic valence and conduction bands
with the same symmetry (see Section 4.2 for symmetry considerations), with the subscripti=1,2,3, . . .
labeling theEii values for a given SWNT as their energy magnitude increases[1], we see that the set of
measuredEii values will be specific to each individual(n,m) nanotube.Fig. 4shows theEii values for all
the(n,m)SWNTs with diameter between 0.5 and 2.0 nm, calculated using the tight binding method. This
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so-called Kataura plot[12] has been widely used to interpret the optical spectra from carbon nanotubes.
Superscripts S or M are used to denote the electronic transition energiesEM

ii for metallic SWNTs andES
ii

for semiconducting SWNTs.
It is important to introduce the concept of the joint density of states (JDOS), that is pertinent to the

optical processes. While the DOS is the density of electronic states vs. energy above and below the Fermi
level, the JDOS is the density of electronic states that can absorb/emit photons as a function of the photon
energy. Therefore, the JDOS starts from zero energy, and exhibits vHSs at energies equivalent to the
energy difference between vHSs in the DOS, subject to optical selection rules.Fig. 4plots the positions
of the vHSs in the JDOS for many SWNTs, considering the selection rules for light polarized along the
nanotube axis, as discussed in Section 4.2.

2.3. Phonon structure

Phonons denote the quantized normal mode vibrations that strongly affect many processes in condensed
matter systems, including thermal, transport and mechanical properties. The 2D graphene sheet has two
atoms per unit cell, thus having 6 phonon branches, as shown inFig. 5(a). Since the SWNTs can be
considered to be a 2D graphene sheet that has been rolled up seamlessly, a similar folding procedure, as
was used for describing the electronic structure in Section 2.2, is generally applied to obtain the phonon
dispersion relations and phonon density of states for SWNTs from those of the 2D graphene sheet[1].
The phonon dispersion for a (10,10) SWNT obtained by this folding procedure is illustrated inFig. 5(c),
and the respective phonon DOS is shown inFig. 5(d). The large amount of sharp structure in the phonon
density of states inFig. 5(d) for the (10,10) SWNT reflects the many phonon branches and the 1D nature of
SWNTs relative to 2D graphite arising from the quantum confinement of the phonon states into van Hove
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singularities. The phonon density of states for 2D graphite is shown inFig. 5(b) for comparison. This 2D
phonon DOS can be recovered by summing the 1D phonon density of states for many SWNTs[1,13].

Phonons play an important role as a carrier of thermal energy in thermal conduction processes and in
thermodynamic properties, such as the heat capacity, and as an important scattering process for bringing
electrons into equilibrium with the lattice in various electron transport phenomena, such as electrical
conductivity, magneto-transport phenomena, and thermo-electricity. The vibrational spectra also deter-
mine the speed of sound, elastic properties of solids, and their mechanical properties. Phonons, through
their interaction with electrons, can also mediate interactions and pairing between electrons, giving rise
to superconductivity. These topics are particularly interesting in 1D systems, because of the van Hove
singularities that 1D systems exhibit. These phenomena are even more interesting in SWNTs which allow
these unique 1D effects to be studied in detail, since a 1D system blends the singular energy levels of
molecules (delta functions in the DOS) with the quasi-continuous behavior of solid-state systems along
the nanotube axis.

Besides the van Hove singularities in the phonon DOS, carbon nanotubes also exhibit some other
unusual aspects regarding their phonon dispersion relations, such as four acoustic branches. In addition
to the longitudinal acoustic and transverse acoustic modes, there are two acoustic twist modes for rigid
rotation around the tube axis, which are important for heat transport and charge carrier scattering. Also
important for coupling electrons to the lattice are the low-lying optical modes at the center of the Brillouin
zoneq = 0. These modes include one withE2 symmetry expected at∼ 17 cm−1 (the squash mode), one
with E1 symmetry, expected at∼ 118 cm−1, and one withA symmetry (the radial breathing mode)
expected at∼ 165 cm−1 for a (10,10) SWNT[1]. Of these three low-energy phonon modes, it is only the
radial breathing mode (RBM) withA symmetry, where all the carbon atoms are vibrating in phase in the
radial direction, that has been studied experimentally. The most interesting details about the rich phonon
structure of carbon nanotubes will be discussed in the next sections.

3. Classification of Raman scattering processes

In the Raman spectra of graphite and SWNTs, there are many features that can be identified with
specific phonon modes and with specific Raman scattering processes that contribute to each feature. The
Raman spectra of graphite and SWNTs can provide us with much information about the exceptional
1D properties of carbon materials, such as their phonon structure and their electronic structure, as well
as information about sample imperfections (defects). Since mechanical properties, elastic properties
and thermal properties also are strongly influenced by phonons, Raman spectra provide much general
information about the structure and properties of SWNTs.

Raman scattering is the inelastic scattering of light. During a scattering event, (1) an electron is excited
from the valence energy band to the conduction energy band by absorbing a photon, (2) the excited
electron is scattered by emitting (or absorbing) phonons, and (3) the electron relaxes to the valence band
by emitting a photon. We generally observe Raman spectra for the scattered photon (light) whose energy is
smaller by the phonon energy than that of the incident photon. By measuring the intensity of the scattered
light as a function of frequency downshift (losing energy) of the scattered light, which is what is plotted in
Raman spectra, we obtain an accurate measure of the phonon frequencies of the material. By combining
this information with the original geometrical structure of a crystal (or molecule), we can deduce a model
for the phonon dispersion relations (or normal mode frequencies). Raman scattering can occur for phonon
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emission (as described above) or by phonon absorption, and these two processes are called the Stokes
process and anti-Stokes process, respectively. Since Raman scattering refers to the inelastic scattering of
light, not only phonons, but any elementary excitation (such as a magnon, plasmon etc.) can be involved
in a scattering process in which the elementary excitation satisfies energy–momentum conservation in
the scattering process.

3.1. First-order Raman scattering in the G-band and RBM of SWNTs

The number of emitted phonons before relaxation of the lattice can be one, two, and so on, which we
call, respectively, one-phonon, two-phonon and multi-phonon Raman processes. The order of a scattering
event is defined as its number in the sequence of the total scattering events, including elastic scattering
by an imperfection (such as a defect or edge) of the crystal. The lowest order process is the first-order
Raman scattering process which gives Raman spectra involving one-phonon emission [seeFig. 6(a)].
A scattering event with only elastic scattering, i.e., change of photon direction but no frequency shift,
corresponds to Rayleigh scattering of light. In order for an electron to recombine with a hole, the scattered
k + q states should not differ fromk by more than two times the photon wave vector. This momentum
conservation requirement and the small wave vector of the photon is the reason why we usually observe
zone-centerq = 0 or � point phonon modes in a solid.

In 2D graphite, the so-calledG band around 1582 cm−1 is the only first-order Raman peak [see
Fig. 5(a)]. Another� �= 0 phonon mode, the out-of-plane transverse optical phonon (oTO) mode, is
not Raman active but is infrared active. In SWNTs, theG band spectra, which is split into many features
around 1580 cm−1, and the lower frequency radial breathing mode (RBM) are usually the strongest fea-
tures in SWNT Raman spectra, and are both first-order Raman modes. The RBM is a unique phonon
mode, appearing only in carbon nanotubes and its observation in the Raman spectrum provides direct
evidence that a sample contains SWNTs. The RBM is a bond-stretching out-of-plane phonon mode for
which all the carbon atoms move coherently in the radial direction, and whose frequency�RBM is about
100–500 cm−1. The RBM frequency is inversely proportional to the tube diameter and is expressed as
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�RBM =C/dt (cm−1) (C = 248 cm−1 nm for isolated SWNTs on a SiO2 substrate[3]). This dependence
comes from the fact that the mass of all the carbon atoms along the circumferential direction is proportional
to the diameter. It should be mentioned that several similar formulae have been proposed and a small
correction to the formula comes from the effect of the substrate and from tube–tube interactions.

3.2. Resonance and non-resonance Raman scattering

When the optical absorption (or emission) is to (or from) a real electronic state, the energy denominators
in the oscillator strength (see Section 4.1) becomes singular. This is a general resonance phenomenon
that occurs in the presence of an oscillating external field. There are two resonance conditions for optical
transitions: (1) resonance with the incident laser photon (incidence resonance) and (2) resonance with
the scattered photon (scattered resonance). When the resonance occurs with the incident photon, the
incident laser light has the same energy (EL) as the energy separation between the two electronic states
in resonance (�E), while the scattered photon has an additional energy of the phonon2�,

EL = �E (incident resonance) ,

EL = �E + 2� (scattered resonance) . (10)

Thus in the Stokes Raman process, the shift in the resonant energy for the scattered resonance state is
larger than that for incident resonance state by the phonon energy. For the case of Raman scattering
in SWNTs, the phonon energies of theG-band (0.2 eV) are sufficiently larger than that for the RBM
(0.02 eV) when compared with the resonance energy width (10 meV), so that we can observe the RBM
andG-band modes at the same time only for the incident resonance condition but not for the scattered
resonance condition.

If the laser energyEL does not coincide with the resonance energies on the right-hand side of Eq.
(10), the optical transition in the Raman scattering process can be understood as a transition to a virtual
state. The corresponding signal gives rise to what is called non-resonant Raman spectra which are much
weaker in intensity than resonance Raman spectra. The resonance Raman process increases the signal by
a factor of approximately 103 in comparison to the intensity for a non-resonance Raman process.

In the case of SWNTs, not only resonant enhancement but also a singularity in the JDOS contributes
to the Raman intensity. When the laser energy of either the incident or the scattered light has the same
energy as a vHS energy in the JDOS, the Raman intensity becomes extremely strong for any SWNT that
satisfies the resonance condition. This is the reason why we can get a measurable signal from a single
isolated SWNT in the presence of many non-resonant(n,m) SWNTs.

In order to understand resonance Raman scattering, theoretical calculations of the electronic and phonon
structure, as discussed in Section 2, are needed. By specifying the resonance energy and phonon energy for
a given SWNT, we can assign the Raman signal to specific(n,m) values and phonon modes. Group theory
tells us that not all electronic states and not all phonon modes are relevant to the Raman process, depending
on the symmetry of the(n,m) SWNT. For an optical transition (photon absorption and emission), dipole
selection rules are needed to understand which transitions are allowed, and a second rank symmetrical
tensor form is needed to describe the Raman-active modes. More strictly, we need to consider the symmetry
of the electron–photon and electron–phonon matrix elements for a given solid. In Section 4, we discuss
these subjects regarding the resonance Raman spectra for SWNTs.
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3.3. Second-order Raman scattering, D- andG′-band

In second-order Raman scattering [seeFig. 6(b) and6(c)], q and −q scattering wave vectors are
involved, so that an electron can return to its originalk position after scattering. Here bold font symbols
are used to denote vectors, while the corresponding italic font is used to denote lengths of the vectors.
Second-order Raman scattering consists of (1) two-phonon scattering events, or (2) one-phonon and one-
elastic scattering event. In the case of two-phonon scattering events, we can have involvement of: (1a)
the same phonon modes (overtone mode) or (1b) different phonon modes (combination modes).

In carbon materials, there are several weak Raman signals whose phonon frequencies change with
changing laser excitation energy[15–19]which is called “dispersive” behavior. A typical example of this
feature is theD-band at 1350 cm−1 whose frequency changes by 53 cm−1 as a result of changing the
laser energyEL by 1 eV. Double resonance (DR) Raman theory[20], as discussed in this section, works
well for explaining the dispersive phonon modes in which a non-zone-center (q �= 0) phonon mode and
a second-order Raman process are relevant to these weak spectral features[18,19,21,22]. In principle,
for solids, such a process is allowed for any two phonons were vectorsq and−q, leading to background
noise, unless special resonance requirements are fulfilled, as discussed below.

In second-order DR Raman processes for carbon materials [seeFig. 6(b)], the electron (1) absorbs a
photon at ak state, (2) scatters tok + q states, (3) scatters back to ak state, and (4) emits a photon
by recombining with a hole at ak state. The two scattering processes consist of either elastic scattering
by defects of the crystal or inelastic scattering by emitting a phonon, as shown inFig. 6. Thus (1) one-
elastic and one-inelastic scattering event [Fig.6(b)] and (2) two-inelastic scattering events [Fig.6(c)] are
relevant to second-order Raman spectroscopy. Hereafter we call them, respectively, one- and two-phonon
double-resonance Raman spectra[21].

As discussed in Section 2, the electronic structure of 2D graphite near the Fermi energy is linear in
wave vectork, which is expressed by the crossed solid lines inFig. 6. The crossing point corresponds to
the Fermi energy located at theK point in the Brillouin zone. When the laser energyEL increases, the
resonancek vector for the electron moves away from theK point. In the DR process, the corresponding
q vector for the phonon increases with increasingk, measured from theK point. Thus by changing the
laser energy, we can observe the phonon energy2�(q) along the phonon dispersion relations (Fig.5).
This effect is observed experimentally as a dispersion of the phonon energy as a function of excitation
laser energyEL [21]. A tunable laser system can directly show this dispersive behavior of a dispersive
feature in the Raman spectrum.

The initial (or final)k and the intermediatek+q state exist on the equi-energy contour of the electronic
structure.1 An equi-energy contour of graphite is a circle around theK point in the 2D Brillouin zone.
As a result, the possibleq states are on circles which we rotate around� (or theK point). In this case, the
density of states for possibleqstates becomes singular forq=0 and 2k [22,23]. Thus there are two double
resonance peaks corresponding to theq = 0 and 2k conditions. For the peak atq = 0, the corresponding
phonon frequency does not depend on laser energy.

In a DR Raman process, two resonance conditions for three intermediate states should be satisfied, in
which the intermediatek + q state is always a real electronic state and either the initial or the finalk
states is a real electronic state. As for one-phonon DR Raman spectroscopy [seeFigs. 6(b1) and (b2)],
the inelastic scattering process gives a shorter phononq vector from the initialk state than the elastic

1 Here we neglect the small phonon energy compared with a much larger electronic energy.



60 M.S. Dresselhaus et al. / Physics Reports 409 (2005) 47–99

Table 1
Properties of the various Raman features in graphite and SWNTsa

Nameb � (cm−1) Res.c d�/dEL
d Notese

iTA 288 DR1 129 iTA mode, intravalley scattering (q = 2k)
LA 453 DR1 216 LA mode, intravalley scattering (q = 2k)
RBM 248/dt SR 0 Nanotube only, vibration of radius
IFM− 750 DR2 −220 Combination mode oTO–LA(q = 2k)h

oTO 860 DR1 0 IR-active mode in graphite
IFM+ 960 DR2 180 Combination mode oTO+ LA (q = 2k)h

D 1350 DR1 53 LO or iTO mode, intervalley scattering (q = 2k)
LO 1450 DR1 0 LO mode, intervalley scattering (q = 0)
BWFf 1550 SR 0 Plasmon mode, only metallic carbons
G 1582 SR 0 Raman active mode of graphiteg

M− 1732 DR2 −26 overtone of oTO mode (q = 2k)
M+ 1755 DR2 0 overtone of oTO mode (q = 0)
iTOLA 1950 DR2 230 combination mode of iTO and LA
G′ 2700 DR2 106 overtone of D mode
2LO 2900 DR2 0 overtone of LO mode
2G 3180 DR2 0 overtone ofG mode

aMode frequencies for dispersive modes are given atEL = 2.41 eV.
bSeeFig. 5and Section 5 for an explanation of names.
cThe following notation is used to classify the Raman scattering process: SR: first order; DR1: one-phonon double resonance;

DR2; two-phonons double resonance.
dd�/dEL denotes the change of the phonon frequency in cm−1 produced by changing the laser energy by 1 eV.
eDouble resonance (DR) features are classified as intervalley and intravalley scattering processes (see Section 3.4).
f The Breit–Wigner–Fano lineshape is discussed in Section 3.6.
gG-band for graphite is at 1582 cm−1. For SWNTs, there is aG+ feature at 1590 cm−1 due to in-plane vibrations along the

tube axis, and a diameter-dependentG− feature at 1570 cm−1 for in-plane vibrations along the circumferential direction (see
Section 6.2.1).

hThe physics of the intermediate frequency modes (IFM) between 600–1100 cm−1 is interesting and complex, as discussed
in Section 7.7.

scattering process in order to satisfy energy-momentum conservation. Both in graphite and in SWNTs,
the D-band at 1350 cm−1 and theG′-band at 2700 cm−1 (for EL = 2.41 eV) are, respectively, due to
one- and two-phonon, second-order Raman scattering processes. Thus for graphite, theD-band spectra
appearing at 1350 cm−1 (one-phonon DR) can be fitted to two Lorentzians, while theG′-band feature at
2700 cm−1 (two-phonon DR) can be fitted to one Lorentzian[23].

Typically theD-band andG′-band phonon frequencies would be measured for a laser energy of 2.41 eV
and its dispersion would be 53 and 106 cm−1 eV−1, respectively for theD-band and theG′-band for
SWNTs. Many weak features in the Raman spectra for SWNTs can be assigned to one-phonon or two-
phonon, second-order double resonance processes, and these are listed inTable 1.

3.4. Intravalley or intervalley DR Raman scattering

Since the phonon energy is much smaller than the relevant energy of the photo-excited electron, we
can assume as a first approximation that an electron scatters from onek point to anotherk point on an
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equi-energy line. In the case of graphite, there are two equi-energy circles around theK andK ′ points
(two inequivalent hexagonal corners of the BZ). Thus we expect either a phonon scattering event in the
vicinity of the K (or K ′) points or a scattering event that takes an electron from theK to K ′ points (or
fromK ′ to K), which we call intravalley or intervalley scattering, respectively.

In the first-order Raman process, sinceq ∼ 0 is required, only intravalley scattering is possible. In
the second-order Raman process, however, both intravalley and intervalley scattering are possible. In the
case of intervalley scattering, the corresponding phonon vector is around theK point if theq vector is
measured from the� point. When we consider the assignment to a two-phonon, second-order Raman
scattering process, combination modes of one intra-valley and one inter-valley phonon are not possible,
since in this case theq values would be different.

3.5. Stokes or anti-stokes Raman scattering

The scattering of an electron by a phonon consists of the emission of a phonon (Stokes shift) and
the absorption of a phonon (anti-Stokes shift), which appear in the Raman spectra, respectively, on the
smaller and larger energy sides of the incident laser energy. In a two-phonon process, we can generally
expect a two-phonon absorption or a two-phonon emission process. Another possibility for a two-phonon
scattering process could be a combination mode of a phonon absorption process and a phonon emission
process.

The phonon involved in the absorption process should already be thermally excited. The number of
�th phonon modes with wave vectorq at a temperatureT is given by the Bose–Einstein statistics.

n(q, �) = 1

exp(2�(q, �)/kBT ) − 1
, (11)

wherekB is the Boltzmann constant. Thus the anti-Stokes signal intensity decreases with decreasing
temperature compared with the phonon energy scaled bykB sincen(q, �) ∼ exp(−2�(q, �)/kBT ) for
low temperatures (kBT>2�). In non-resonant and in most resonant Raman scattering events, the relative
spectral intensities for the Stokes and anti-Stokes processes reflect the temperature dependence of the
relative phonon populations. In nanotube systems, where the JDOS has sharp van Hove singularities, the
Stokes/anti-Stokes ratio is very sensitive to the resonance condition. This topic is further discussed in
Section 6.1.2.

3.6. Breit–Wigner–Fano lineshape

TheG-band of graphite intercalation compounds (GICs), and theG−-band feature in the Raman spectra
of metallic SWNTs do not have a symmetric lineshape and can be fitted to a so-called Breit–Wigner–Fano
(BWF) lineshape as follows:

I (�) = I0
[1 + (� − �BWF)/q�]2
1 + [(� − �BWF)/�]2 , (12)

in which 1/q represents the asymmetry of the shape (interaction), while,�BWF, I0 and� are fitting
parameters of the central frequency, the intensity and the broadening factor, respectively. The BWF signal
appears only when the electronic density of states at the Fermi energyD(EF) has a finite value. Thus we
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observe a BWF lineshape only in metallic SWNTs, donor or accepter GICs, but not in semiconducting
SWNTs or in graphite.

The BWF spectral shape occurs when a discrete energy excitation level interacts with a continuum of
energy excitations, causing a resonance and anti-resonance effect (1/q), and thus giving rise to a non-
symmetric spectral lineshape for the discrete state. Depending on the strength of the interaction, both the
peak position and the width of the spectral line are changed, with the asymmetry depending on whether
the continuum of states is centered above or below the discrete state in energy. In the case of graphite and
SWNTs, since the interaction with continuous states depends on the density of states at the Fermi energy,
we consider the origin of the continuum spectra to be a low-energy plasmon.

3.7. Summary of phonon mode classifications

In summary, phonon spectra are classified by: (1) phonon modes that are involved, (2) first order or
second order, (3) Stokes or anti-Stokes, (4) resonant or non-resonant, Raman scattering. For resonance
Raman scattering (RRS), there are (5) incident laser resonance and scattered laser resonance conditions.
For a second-order Raman process, we can further specify phonons by a (6) one-phonon or two-phonon,
(7) intravalley or intervalley, or (8)q = 0 or 2k, singular scattering process. In addition, for two-phonon
scattering, there are (9) overtone or combination phonon modes. The resonance condition for the wave
vector for first order and second order is, respectively,q ∼ 0 and (q and−q). The resonance condition
for the energy is (a)EL = �E for the incident resonance with the incident photon for all cases, while (b)
EL = �E ±Eph applies for the one-phonon scattered resonance condition (+ Stokes,− anti-Stokes) and
(c)EL = �E ± 2Eph for the two-phonon scattered resonance condition (see Section 3.2).

Using both experimental information and theoretical calculations, we summarize inTable 1the mode
frequencies, the classification of the pertinent scattering process and the frequency dispersion with vari-
ation of the laser energyEL for all features appearing in the Raman spectra for graphite and SWNTs up
to 3200 cm−1.

4. Resonance Raman intensity calculations

In this section, we discuss how to calculate the resonance Raman intensity.As discussed in Section 3, all
Raman scattering events are a combination of two electron–photon interactions (absorption and emission)
and either one or more electron–phonon interactions (phonon scattering), depending on whether the feature
is associated with a one-phonon or a multi-phonon Raman process, respectively. In the case of a second-
order one-phonon process, we must explicitly consider the electron-defect interaction (elastic scattering)
for energy-momentum conservation. However, this scattering event depends sensitively on the detailed
structure of the defect. Thus, we here consider only first-order one-phonon and second-order two-phonon
interactions for simplicity. Moreover, hereafter in this section, we will consider only the calculation for
the Stokes Raman intensity. When we consider the anti-Stokes Raman intensity, we change the sign of
the phonon energy from2� to −2�, and we take into account the number of thermally excited phonons
for each phonon mode by using the Bose–Einstein distribution.

In describing how to calculate the Raman intensity for a resonance Raman process, a general formulation
is presented in Section 4.1, and the selection rules that apply for Raman scattering in SWNTs are then
developed (Section 4.2). Finally, in Sections 4.3 and 4.4 the unusual dependences of the scattering
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intensity on nanotube diameter, chiral angle and laser excitation energy arising from the electron–photon
and electron–phonon matrix elements are presented.

Although excitonic binding between the photoexcited electron and hole as well as many body electron–
electron repulsion effects are known to be important for the precise calculation of the energies and
intensities of specific resonance Raman and photoluminescence processes, these many body effects are
not discussed in this paper for two reasons. Firstly it is easier to understand the selection rules for the
unbound electron and hole, and secondly, it is expected that the general behaviors predicted by the band
model and described below will not be strongly modified by an exciton-based many body model, once
such calculations become available. Furthermore, theES

11 levels will experience a strong exciton effect,
although resonance Raman experiments are usually performed for exciton energies larger thanE22, where
the exciton effect will give only small corrections to the transition energy.

4.1. Formulation of the Raman intensity

The first-order Raman intensity [seeFig. 6(a)] as a function of phonon energy,2�, and of the incident
laser energy,EL is calculated by[20,24]

I (�, EL) = C

(
Ea

Ej

)
[n(q, �) + 1]

∑
j

∣∣∣∣∣
∑
a

Md(k − q, jb)Mep(q, ba)Md(k, aj)
�Eaj (�Eaj − 2�)

∣∣∣∣∣
2

, (13)

in whichC is a constant independent of(n,m), the number of phononsn(q, �) is given by Eq. (11) while
�Eaj ≡ EL − (Ea −Ej)− i�, andj, a andb denote, respectively, the initial state, the excited states, and
the scattered state of an electron, while� denotes the broadening factor of the resonance event.An electron
at wave vectork is (1) excited by an electric dipole interactionMd(k, aj) with the incident photon to
make a transition fromj to a, and is then (2) scattered by emitting a phonon with phonon wave vectorq
by an electron–phonon interaction,Mep(q, ba), and (3) finally the electron emits a photon by an electric
dipole transition, through the interactionMd(k − q, jb). For an energy separationEaj between thej and
a states, the resonance conditions are either with the incident photon,EL = Eaj , or with the scattered
photon,EL =Eaj + 2�. The sum in Eq. (13) is taken over all possible intermediate states specified bya
and the initial statesj. In order to take the sum for the intermediate states, we need to know the electric
dipole matrix elements of the electron–photon interaction,Md, and electron–phonon interaction,Mep,
which are given below in Sections 4.3 and 4.4, respectively. In the scattering process, energy-momentum
conservation for an electron and phonon holds, but this is not explicitly written in Eq. (13).

The second-order, two-phonon Raman intensity (seeFig. 6) as a function ofEL and the sum of the
two-phonon energies� = �1 + �2 is given by a similar formula

I (�, EL) =
∑
j

∣∣∣∣∣∣
∑

a,b,�1,�2

Ja,b(�1,�2)

∣∣∣∣∣∣
2

, (14)

where

Ja,b(�1,�2) = Md(k, jc)Mep(−q, cb)Mep(q, ba)Md(k, aj)
�Eaj (�Ebj − 2�1)(�Eaj − 2�1 − 2�2)

. (15)
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Now we have two-phonon scattering processes with phonon wave vectorsq and−q. In order to get
two resonance conditions at the same time, an intermediate electronic stateEbj is always in resonance
(EL = Ebj + 2�1), and either the incident resonance condition (EL = Eaj ) or the scattered resonance
condition (EL = Eaj + 2�1 + 2�2) is satisfied. For a second-order process, the one-phonon Raman
intensity is calculated by replacing one of the two phonon scattering processes by an elastic impurity
scattering process. Another point to mention is the energy uncertainty of� in �Ej .

4.2. Selection rules for Raman scattering

The selection rules for the Raman spectra for SWNTs are quite special but follow from general group
theoretical considerations.2 We have several selection rules for different geometries for observation
of resonance Raman scattering. To discuss the selection rules for the first-order (one phonon) Raman
scattering process, we consider here the most general symmetry for a chiral SWNT (CN symmetry)[17].

4.2.1. Symmetry of electron and phonon wavefunctions
Electron and phonon eigenfunctions of a SWNT are characterized by their 1D wave vectors (k for

electrons andq for phonons) and by the cutting line index� which specifies their symmetries. The
symmetry is related to the number of nodes for their wavefunctions around the circumferential direction.
The totally symmetricA electrons and phonons have no nodes (� = 0), while the wavefunctions with
higher harmonics (E�) with � �= 0, are doubly degenerate3 and behave like sin(��) and cos(��). Thus
theE� eigenfunctions have 2,4,6, . . . nodes for� = 1,2,3, . . ., respectively.

4.2.2. Geometry of Raman observations
In considering selection rules, we first put a SWNT in the direction of thez-axis. We can take two

symmetric propagation directions (y and z) of light with respect to the SWNT. For ay-propagating
photon, the two polarization directions,zandx areinequivalentrelative to the nanotube axis, while for a
z-propagating photon, the two polarization directions,x andy areequivalent.

The geometry of the Raman observation is usually expressed by four vectors

Pg[Pi,Ps]Po, (P= X, Y,Z) , (16)

wherePg andPo are, respectively, the propagating directions of the incident and scattered light, andPi
andPs are the polarization directions of the electric field of the incident and scattered light, respectively.
We usually observe the Raman signal for the propagating directiony and the backscattered geometry
(Y [Pi,Ps]Ȳ ). For an isolated SWNT (or an aligned SWNT bundle), we can change the polarization of
light relative to the SWNT axis, to select specific symmetry-allowed phonon modes.

4.2.3. Selection rules for optical transitions
Next we consider the selection rules for optical transitions. Depending on the polarization direction

of light, the final electronic state is specified by the effect of the selection rule on a given initial state.
To analyze the electron–photon processes, we search for vector-like basis functions. When inversion

2 In order to understand this subsection, general knowledge from group theory is needed. If the reader is not familiar with
group theory, the pertinent results can be obtained directly fromTable 2.

3 A andE� are labels of irreducible representations of theCN group[1].
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symmetry is present, thez basis function belongs to theAu (� = N/2) irreducible representation where
N is given by Eq. (7), while thex, y basis functions belong toE1u. However, if there is no inversion
symmetry (which would be the case for a general chiral nanotube), thezbasis functions transform as theA
irreducible representation while the(x, y) basis functions transform asE1. Thus modes transforming asz
and(x, y) can be observed in both the Raman and infrared spectra. Thus, using the dipole approximation
for optical transitions, the corresponding dipole selection rule for an optical transition between SWNT
sub-bands in the valence and conduction bands is given byEv

� → Ec
�′ with (�′ = �) for light polarized

alongZ, and with(�′ = � ± 1) for light polarized alongX [1,17,25].

4.2.4. Selection rules of first-order Raman processes
The Raman-active phonon modes belong to the irreducible representations with quadratic basis func-

tions, i.e.,A(zz, xx+yy),E1(zx, xz), andE2(xx−yy, xy) which correspond to phonon wavefunctions
with � = 0,1,2, respectively (see Section 4.2.1). Although SWNTs have a large number of phonon
branches [seeFig. 5(c)], only A, E1 andE2 symmetry modes are Raman active in a first-order process.

For theY [Pi,Ps]Ȳ geometry, the total function obtained by multiplying thex, y, z ofPi andPs with the
quadratic phonon basis functions must be an even function ofx, y, z. Otherwise an integration over space
would give zero. The totally symmetricA modes are observed for incident and scattered light, polarized
in the same direction (Y [ZZ]Ȳ or Y [XX]Ȳ ); E1 modes for the cross-polarized direction (Y [XZ]Ȳ ,
Y [ZX]Ȳ ), andE2 modes for the incident (x) and scattered (x) light, polarized perpendicular to the
nanotube axis (Y [XX]Ȳ ), as summarized inTable 2 [25].

Table 2
Selection rules for the Raman backscattering processes in SWNTs (see text)

Processa Geometryb Phonon symmetry Optical transitionc

First order Y (ZZ)Ȳ A E� → E�

Y (XX)Ȳ A E� → E�±2
Y (XX)Ȳ E2 E� → E�

Y (XZ)Ȳd E1 E� → E�±1
Z(XX)Z̄e A E� → E�

Z(XY)Z̄d E2 E� → E�±2

Second order Y (ZZ)Ȳ E� + E� E�′ → E�′
Y (XX)Ȳ E� + E� E�′ → E�′
Y (ZX)Ȳd E� + E�±1 E�′ → E�′±1
Y (XX)Ȳ E� + E�±2 E�′ → E�′±2
Z(XX)Z̄e E� + E� E�′ → E�′
Z(XY)Z̄d E� + E� ± 2 E�′ → E�′±2

aFor the second-order processes, only two-phonon processes are considered. Selection rules for defect scattering need deter-
mination of the relevant defect structure.

bWe considerz as the nanotube axis direction, and use the following notation for the scattering geometry: letters outside
(inside) the parentheses indicate incident and scattered light propagation (polarization) directions. The symbolsȲ andZ̄ are
used in the table to denote back scattering.

cHere the electronic transition induced by the phonon scattering is indicated by the symmetry of the electronic states.
dFor cross-polarized scattering, the same selection rule applies for symmetric processes, e.g.,(ZX) and(XZ).
eFor light propagating along the nanotube axis(Z), the same selection rules apply for(XX) and(YY ) polarization geometries.
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By combining the selection rules for the scattering geometry (Section 4.2.2) and for dipole-allowed
optical transitions (Section 4.2.3) we can specify the selection rules for a symmetry-allowed first-order
Raman process for a SWNT. For the electron–phonon interaction, phonons can scatter electrons from
one cutting line� to another�′, depending on the phonon symmetries, but subject to�� = � − �′
(angular momentum conservation). ForA phonon mode symmetry, we have�� = 0, and forEj phonon
mode symmetries,�� = ±j . Combining the electron–incident photon, the electron–phonon, and the
electron–scattered photon processes in proper sequence from a symmetry standpoint, yields the following
possible Raman processes in SWNTs[8,26]:

Ev
�

‖−→Ec
�
A(ZZ)−→ Ec

�
‖−→Ev

�

Ev
�

⊥−→Ec
�±1

A(XX)−→ Ec
�±1

⊥−→Ev
�

Ev
�

‖−→Ec
�
E1(ZX)−→ Ec

�±1
⊥−→Ev

�

Ev
�

⊥−→Ec
�±1

E1(XZ)−→ Ec
�

‖−→Ev
�

Ev
�

⊥−→Ec
�±1

E2(XX)−→ Ec
�∓1

⊥−→Ev
� (17)

consistent with the symmetries for the Raman-active modesA (zz, xx+yy),E1 (zx, xz), andE2 (xx−
yy, xy), and with the basis functions for each irreducible representation, given between parenthesis.

Therefore, considering that the first-order Raman signal from isolated SWNTs can only be seen when
in resonance with vHSs, these selection rules imply that for isolated SWNTs: (1)Amodes can be observed
for the (ZZ) scattering geometry for resonance withE�� vHSs, and for the(XX) scattering geometry
for resonance withE�,�±1 vHSs (the letters between parenthesis denote, respectively, the polarization
direction for the incident and scattered light); (2)E1 modes can be observed for the(ZX) scattering
geometry for resonance of the incident photon withE�� vHSs, or for resonance of the scattered photon
withE�,�±1 vHSs, and for the(XZ) scattering geometry for resonance of the incident photon withE�,�±1
vHSs, or for resonance of the scattered photon withE�� vHSs; (3)E2 modes can only be observed for
the(XX) scattering geometry for resonance withE�,�±1 vHSs[8,26].

The absorption/emission of light parallel to the nanotube axis gives rise to van Hove singularities
(vHSs) in the joint density of states (JDOS) here labeledEii , and theseEii are shown inFig. 4. This
type of transition accounts for most of the observed optical spectra for SWNTs, indicating that the strong
anisotropy of the optical absorption and emission of SWNTs is analogous to that found in a common
dipole antenna.

4.2.5. Circularly polarized light and light polarized normal to tube axis
Interesting information can be obtained using circularly polarized light (Z[X+ iY ,X+ iY ]Z̄,Z[X−

iY ,X− iY ]Z̄,Z[X+ iY ,X− iY ]Z̄),4 or using light polarized normal to the tube axis, e.g., (Y [XX]Ȳ ).
For light that is polarized perpendicular to the tube axis, only transitions betweenE� symmetry valence

andE�±1 symmetry conduction sub-bands (involving neighboring cutting lines in reciprocal space, as

4 Circularly polarized light is obtained by light withXpolarization andYpolarization components and a�/2 phase difference
between them.
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shown inFig. 3) are dipole allowed[27]. Since there should be a band asymmetry with respect to the
Fermi level,5 theE� ↔ E�+1 transition energy would be different from theE�−1 ↔ E� energy, and the
resulting energy differences would give a band asymmetry relative to the Fermi level. Circularly polarized
light propagating along the SWNT axis direction could also be used to probe the chirality handedness
(left and right) of the carbon nanotubes, since eitherE� ↔ E�+1 orE� ↔ E�−1 optical transitions occur,
depending on the polarization of the light and the handedness of the SWNT[6].Although experiments with
circularly polarized light propagating along the nanotube axis directions and with light polarized normal
to the nanotube axis and propagating normal to both of these directions are technically challenging, the
experimental observation ofE2 symmetry modes in the Raman experiments provided the first evidence
for the observation ofE� ↔ E�±1 transitions[26].

4.2.6. Selection rules for combination modes
The combination mode (or overtone for the special case�=�′) will be Raman active if the direct product

��
⊗

��′ for the symmetries of nodes� and�′ contains an irreducible representation��′′ that is Raman
active. Since any overtoneE�

⊗
E� contains the totally symmetricA irreducible representation, a signal

from any overtone ofE� phonons can be observed in the(ZZ) or (XX)Raman scattering geometries. The
symmetriesE�

⊗
E�±1 can be observed in the(ZX) and(XZ) scattering geometries, whileE�

⊗
E�±2

is active for the(XX) scattering geometry. For a defect-induced double resonance process, analysis of
specific defects is necessary. For example, a point defect (e.g., vacancy) is localized in real space but
delocalized in reciprocal space, so that a process with any symmetry type would be possible for this case.
For combination modes with different�� and��′ symmetries, the Raman-active symmetries contained
in the direct product��

⊗
��′ must be explicitly considered.

The selection rules for several Raman processes in SWNTs are summarized inTable 2 [26–28].

4.3. Electron–photon matrix elements

In the photo-luminescence and photo-absorption processes, the optical intensities are given by the
product of the electron–photon matrix element and density of states for the initial and the final states. In
the case of carbon nanotubes, a vHS is essential for describing the optical processes and for assigning the
observed absorption (emission) energy (see Section 3.2). However, some of the vHSs do not contribute to
the photo-absorption signal because of the vanishing of their matrix elements[29,30]. For high symmetry
points in the Brillouin zone, the vanishing matrix element can be understood by the selection rule as
discussed in Section 4.2. However, when we discuss thek dependence of the intensity (in Section 4.1), we
need to calculate the matrix element for the optical transitionMd(k) which isk dependent. In this section
we show calculated results for the electron–photon matrix element within the tight binding formulation.

The absorption and spontaneous emission of light can be treated as an optical dipole transition matrix
element at wave vector (k) which has the form of an inner product of the polarization vector,P, and the
dipole vector,〈	c(k)|∇|	v(k)〉 [29]

Md(k) = i
e2
m�

√
I


c
ei(�f −�i−�)t P · 〈	c(k)|∇|	v(k)〉 , (18)

5 The energy band width of the conduction band is expected to be larger than that of the valence band.
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whereI, �, andPare the intensity, frequency, and polarization vector of the light, respectively, and	i(k),
i = c, v are eigenfunctions for the conduction (valence) energy bands which can be expanded by Bloch
orbitals�j (k, r ) at the A and B lattice sites of the 2D graphite unit cell

	i(k) =
∑

j=A,B

Ci
j (k)�j (k, r ), i = c, v . (19)

Furthermore, the Bloch orbital can be expanded by a tight binding wavefunction and thus the dipole
vector can be a sum of atomic dipole vectors[29]. The unique feature of an optical transition in graphite
and in SWNTs comes not from the atomic wavefunction but from the Bloch coefficientCi

j (k), and we

do not go into the details of the calculation forCi
j (k) here.

4.3.1. Node for optical transitions in 2D graphite and SWNTs
Optical absorption or emission in 2D graphite occurs at an equi-energy line near theK point in the

2D Brillouin zone (seeFig. 7), since the valence and conduction energy bands touch each other at theK
point. An important fact for the two coefficients of the Bloch wavefunctions for the A or B sites,Ci

j (k)

(j = A,B), is that theCi
j (k) coefficients are either constant or linearly proportional to the magnitude of

k, as measured from theK point. As a result, the dipole vector is a linear function ofkx (or ky) in the
case of 2D graphite(−ky, kx,0). For linear polarizationP= (px, py, pz), the matrix element of Eq. (18)
has ak dependence ofkxpy − kypx . This fact tells us that the optical absorption (or emission) matrix
elementMd(k) has a node at the crossing point of an equi-energy circle around theK point with the line
kxpy − kypx = 0. Thus the node position is rotated by the polarization directionP [29].

It is not easy to observe the existence of such a node by optical measurements in 2D graphite, since
we normally observe the optical absorption for allk states on the equi-energy contour. However, if we
have a special graphite sample with a lower dimension than two, thek vector becomes discrete and thus
we can find the node by rotatingP. Recently Cançado et al. observed this node by using a thin graphite

(a) (b)

Fig. 7. (a) Equi-energy contour plot for� electrons in the 2D graphite BZ. (b) Magnitude of the electron–photon matrix element
as a function of the vHSk points of SWNTs. Numbers on the various contours label the values of the electron–photon matrix
elements in arbitrary units.
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(nano-graphite) ribbon[31]. Since the graphite ribbon has a very small width in one direction, the wave
vector becomes discrete in this direction. Thus by rotating the polarization relative to the ribbon direction,
oscillations in the absorption intensity could be observed experimentally[31].

In the case of isolated SWNTs, we expect a similar observation to that in nano-graphite. However,
because of the curvature of the cylindrical SWNT surface, the atomic dipole vectors do not have the same
direction as they do in planar 2D graphite. Thus we do not generally expect to observe the node that is
found in the 2D graphite BZ.

Nevertheless, the analytic expression for the matrix element has a node if we plot the matrix element as
a function ofk in the 2D Brillouin zone[30], but the node in this case comes from a completely different
origin, which is not discussed in this review in detail. An important result is that the matrix element
for perpendicular polarization has a node at the vHSk points at which we expect a strong absorption
for parallel polarization. Until now, we have understood that the optical absorption is suppressed for
perpendicular polarization because of a complete screening by charge induced by the electric field on the
cylindrical SWNT surface (depolarization effect)[32,33]. If the matrix element is zero at the vHS points,
the main contribution of the suppression of the optical absorption may be understood by the vanishing
Md(k) matrix element[30].

4.3.2. Diameter and chirality dependence of optical processes
Recent photoluminescence (PL) measurement of semiconducting carbon nanotubes show a diameter

dependence (the smaller the diameter, the stronger the intensity) and a chirality dependence (the closer
to the armchair direction, the stronger the intensity) of the PL intensity[34]. This dependence of the PL
intensity is dependent on the electron–photon matrix element calculation where the value of the matrix
element at the vHS is relevant for the peak PL intensity.

In Fig. 7(b), we plot the value of the matrix element as a function of the vHS points for many SWNTs
around theK point in the BZ, for optical polarization parallel to the nanotube axis, while inFig. 7(a), we
show equi-energy contours of� electrons in 2D graphite. A vHS point corresponds to the touching point
of the cutting line for each(n,m) with an equi-energy contour line (see Section 2.2). When we consider
the chiral angle between� = 0◦ (zigzag) and 30◦ (armchair) on the three equi-energy contours shown in
Fig. 7(b), the bold solid curves correspond to vHS positions. The inner circle corresponds to the smallest
laser energy and thus to a resonance with the largest diameter SWNTs. The bold curves in the left (inside
the hexagonal BZ) and those on the right (outside of the BZ) correspond to vHSs for different types of
semiconductor nanotubes depending on(n,m). These types are denoted by MOD1 [mod(2n+m,3)= 1]
or MOD2 [mod(2n + m,3)= 2] semiconducting SWNTs, respectively[35].

As can be seen inFig. 7(b), the electron–photon matrix element has a larger value in the three directions
from K to theM points than fromK to the� points. The matrix element values increase with increasing
distance from theK point inkspace, corresponding to the experimental fact that smaller diameter SWNTs
give stronger optical absorption and photoluminescence (PL). PL spectra are usually observed at the
energy of the lowest vHS for isolated semiconducting SWNTs,ES

11. It is known that theES
11 energy

position in k space is either along theK − M side or theK − � side, respectively, depending on
whether the SWNT belongs to class MOD1 [mod(2n+m,3)= 1] or to class MOD2 [mod(2n+m,3)= 2]
semiconducting SWNTs (seeFig. 4) [35]. Thus for a similar diameter SWNT, the PL intensity is stronger
for MOD1 than MOD2 SWNTs, which is consistent with the experimental results[36]. However, the
chirality dependence of the intensity predicted from the matrix element calculation is not as large as the
experimental observations. Thus a strong chirality dependence may come from the supposition that the
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abundance of SWNTs is large for semiconducting SWNTs near� = 30◦. In fact, the abundance of a
SWNT seems to be determined by the stability of its cap, which might be important as an initial condition
of the SWNT synthesis process.

4.4. Electron–phonon matrix elements

Next we consider the electron–phonon matrix element for an electron in the conduction band. Initially,
the electron is in ak state on the energy-contour around theK (orK ′) point for photo-excited states. The
scatteredk − q states are energy-momentum conserving electronic states obtained by emitting a phonon
with wave vectorq and energy2�(q). The electron–phonon matrix element is given by

M
ep
j (k, k − q) = Aju

j
q · 〈	c(k + q)|∇V (r)|	c(k)〉 , (20)

in which〈	c(k+q)|∇V (r)|	c(k)〉 is the deformation potential (gradient of the crystal potential) vector,
andAj andujq are the amplitude and eigenvector of the phonon. For a given initial state in 2D graphite,
there are six different phonon modes and two possible scattering paths, known as intra-valley and inter-
valley scattering[22]. The final states are on circles around theK point whose size is slightly decreased
relative to the initial energy contour by decreasing the energy of the contour by the phonon energy. In the
case of a SWNT, 6N phonon states are involved, since the wave vector in the circumferential direction
becomes discrete[1]. Each phonon mode is labeled by an irreducible representation of theCN point
group. OnlyA symmetry phonon modes contribute to the scattering within the 1D electronic energy
band. The otherE symmetry phonon modes contribute to interband transitions (see Section 4.3).

4.4.1. Electron–phonon scattering for first-order processes
In Fig. 8(a) we plot the calculated electron–phonon matrix element for graphite and for the case of a

zone center phonon with wave vectorq=0 in which the initial and final states can be approximated to be
the same. Strictly speaking, it is not possible to plot this case while conserving energy and wave vector.
However, since the excited electron energy relative to the Fermi energy (2 eV in this case) is much larger
than the phonon energy (0.2 eV at most), we can use theq = 0 case for understanding the physics behind
the electron–phonon matrix element for the first-order Raman intensity.
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Because of the mirror symmetry of the graphite plane, the deformation potential vector lies within the
graphite plane and thus the electron–phonon interaction for out-of-plane modes becomes zero. Forq= 0
phonons, the two in-plane acoustic phonon modes do not contribute to the electron–phonon coupling
constant. Thus only the longitudinal optic (LO) and the in-plane tangential optical (iTO) phonon mode
contribute to those electron–phonon modes for (q = 0), that determine theG-band Raman intensity.

When the initial state rotates around theK points, the LO and iTO electron–phonon matrix elements
oscillate alternatively, as shown inFig. 8(a). Thus, the relevant phonon for theG-band signal depends
on thek position. In the case of 2D graphite, however, we cannot distinguish between the contributions
from the LO and iTO phonons to the Raman spectra. In the case of SWNTs, however, the LO and
iTO phonon modes give rise to theG+ andG− spectra whose relative intensityIG−/IG+ depends
on the(n,m) chirality of the SWNT, since the vHS points shift with changing(n,m) as is seen in
Fig. 4 [37]. The calculation of the electron–phonon matrix element shown inFig. 8 is consistent with
previous calculations of the chirality dependence of theG-band intensity[37].

4.4.2. Inter-valley electron–phonon scattering
When we consider inter-valley electron–phonon scattering processes, theG′ band feature is very

useful for explaining these processes. Since theG′ band spectra arise from a two-phonon, inter-valley,
second-order Raman scattering process, theG′ spectra are free from defect effects, and the corresponding
experimental signal is of comparable intensity to that of theG band.

We have calculated the Raman spectra for theG′-band of graphite by considering both electron–photon
and electron–phonon coupling for two phonon-emitting processes[38]. In Fig. 9, we compare the
experimentalG′ Raman spectra of a HOPG sample for 1.92, 2.18, 2.41, 2.54, and 2.71 eV

Fig. 9. The calculated (dotted) and experimental (solid)G′ spectra in HOPG (highly oriented pyrolytic graphite) for several laser
excitation energiesEL . The main peak appears at approximately 2700 cm−1 which is dispersive, while a weaker non-dispersive
phonon mode appears around 2450 cm−1 [38].
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excitation laser energy with the calculated results for the same laser energies[38]. The maximum in-
tensity in the calculation is normalized to the experimental peak height. Both the calculated and exper-
imental results show a peak shifting on the dispersive double resonance peak around 2700 cm−1 and
little change for the non-dispersive peak around 2450 cm−1. At 2.54 eV, the calculated peak feature and
position agree well with the experimental results. The calculation indicates that this lower phonon fre-
quency mode occurs around 2350 cm−1 and is due to the non-dispersiveq = 0 Raman peak. It should
be mentioned that the phonon dispersion relations that we used in this calculation are not perfectly
satisfactorily in reproducing all features of the double resonance spectra. Moreover, the origin of the
lower frequency feature can be a non-dispersive LO mode, a dispersive LA mode, or a combination of
both (the LO and LA, that are degenerate at theK point). The only phonon branch which has such a
dispersion in the observed frequency range is the LA branch. In fact, the electron–phonon matrix el-
ement for LA phonon modes has a maximum forq = 2k and is zero forq = 0 in the case of planar
graphite. However, in the case of SWNTs and DWNTs, the matrix elements are not exactly zero for small
q values.

4.4.3. Non-radiative relaxation of electrons
Non-radiative relaxation of an electron is a scattering process of an electron by emitting a phonon. Since

this process is much faster (in ps) than photon-emission process (in ns), no photo-luminescence occurs
if there is a relaxation path for non-radiative relaxation. For example, there is no photoluminescence in
metallic SWNTs. It is important for us to consider this relaxation when we compare the Raman spectra
with photo-luminescence spectra.

We can use the same electron–phonon matrix element in the Raman intensity calculation for non-
radiative relaxation. In graphite and SWNTs, the relaxation rate of an electron for phonon emission is
on the order of 0.1 ps, which is much faster than an optical transition (0.1 ns), but much slower than
electron–electron scattering (plasmon emission) (1 fs) for taking an electron in a higher energy elec-
tron state back to a state near the Fermi level. Hertel and coworkers reported fast optics measurements
for photo-excited electrons, showing that the excited electron population at first decays very fast by
electron–electron interaction and then decays more slowly through electron–phonon interaction by phonon
emission[39].

Using the Fermi Golden Rule, we can calculate the lifetime for intra- and inter-valley electron–phonon
scattering from a givenk state using four in-plane phonon modes[30]. In Figs. 8(b) and (c), we plot
the inverse of the lifetime for four in-plane phonon modes as a function of electron energy. The fastest
recombination is for LA phonon modes both for intra-valley scattering [Fig.8(b)] and for inter-valley
scattering [Fig.8(c)]. The electron–phonon coupling constant for the LA phonon mode increases quickly
with increasingq values. The relaxation rate is singular aroundE = 3 eV, because of the singularity in
the electronic density of states. The relaxation rate of an electron decreases with decreasing energy to
the Fermi energy. It is a unique fact that in graphite the density of states near the Fermi energy (EF) is
proportional toE relative toEF. When the electron energy decreases to the Fermi energy, the number of
possible scattered states decreases to zero. Thus the lifetime increases with decreasing energy and finally
at some electron energy the lifetime for electron–phonon processes becomes longer than the lifetime for
photoluminescence, and below this energy, which corresponds to far infrared radiation, PL occurs[30].
This is the reason why carbon materials emit far IR light when they burn. In the case of metallic SWNTs,
however, the electronic density of states is constant around the Fermi energy, and these arguments about
the emission of IR radiation do not apply.
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5. Raman spectroscopy experiments for carbon nanotubes

In this section we present an overview of Raman spectroscopy experiments for carbon nanotubes. In
general, contributions to the Raman signal from resonance Raman processes are very much larger than
contributions from non-resonance processes. This is especially the case for SWNTs, where the resonance
condition for a vHS energy position of a given(n,m) nanotube is satisfied only within a small region
of laser energy excitation, such as�EL ∼ 10 meV. Thus, when we observe an isolated nanotube(n,m)

SWNT on a substrate, the probability for a givenEL energy to satisfy the resonant condition is very small
(less than 1%). For a bundle sample whose diameter distribution is known, an appropriateEL energy can
be selected so that both the RBM andG-band will be observed at the same time as long as theEL is
within the energy window ofEii in the Kataura plot (Fig.4).

For a straight isolated SWNT or for aligned SWNT bundles, we can change the direction of the optical
electric field relative to the nanotube axis so that polarized Raman spectra can be taken. Both linear
polarization and circular polarization are of particular interest. In both geometries, changes in the optical
dipole selection rules can be observed and studied (see Section 4.2).

For resonance Raman spectroscopy, a tunable laser system, which can varyEL quasi-continuously[40]
is very powerful for probing a resonant(n,m) within a mixed SWNT sample. In second-order Raman
processes, we have the possibility to change the phononq corresponding to a particular(n,m) SWNT by
changingEL. By changing the diameter and chirality of SWNTs in general, we can observe many different
resonance Raman spectra, which can be systematically analyzed. On the other hand, by measuring the
dependence of many of the Raman features on the nanotube diameter and chirality, we can evaluate and
characterize a given nanotube sample in some detail by resonance Raman spectroscopy.

In the following sections, we briefly review the many Raman features observed in the Raman spectra
of carbon nanotubes, addressing the carbon nanotube physics that can be learned from their Raman
spectra. In Section 5.1 a very brief coverage of the synthesis of carbon nanotubes is given and how
Raman spectroscopy can be used for characterization purposes, including a connection to the synthesis
and purification processes (Section 5.1). A brief review is included on how the experiments are done
(Section 5.2) and how the Raman spectra are analyzed (Section 5.3). Section 6 focuses on the two strong
features, the radial breathing mode and theG-band which are both first-order Raman features and not
dispersive for a given(n,m) SWNT (see Section 3.1). In contrast, Section 7 reviews what we learn
about carbon nanotubes from the rich spectrum of weaker double resonance features that tend to be
dispersive, i.e., the Raman feature shifts position with a change in the frequency of the exciting laser
(see Section 3.3).

5.1. Sample preparation

Carbon nanotube bundled samples can be synthesized by different methods, including chemical vapor
deposition (CVD), laser vaporization and electric arc methods[2]. Isolated single-wall carbon nanotubes
(SWNTs) are grown on a Si/SiO2 substrate containing catalytic iron nano-particles[41], using a CVD
method (diameters ranging from about 1 to 3 nm, according to atomic force microscopy (AFM) charac-
terization)[3]. The density of SWNTs per�m2 can be controlled during the growth process, basically by
controlling the time of growth. Sonication of SWNT bundle samples in solution can also form isolated
SWNTs. Wrapping nanotubes with, for example, sodium dodecyl sulfate (SDS) surfactant guarantees
that tubes previously separated by sonication will not rejoin[34].
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Raman spectroscopy is commonly used for characterizing SWNT bundles because it is one of the most
sensitive characterization tools for these nanostructures[13,17]. The Raman experiment is simple, can be
done at room temperature and under ambient pressure, is quick, non-destructive and non-invasive, and the
instrumentation is generally available to a wide user community[13]. The technique has the sensitivity
to probe differences in the properties of nanotubes prepared by different methods and under different
conditions. For example, for “dirty” samples (full of amorphous carbon, catalyst or any other impurities),
it is common that high laser powers (10 mW�m−2) can be used to burn impurities first, leaving cleaner
SWNT samples behind[42]. This process can be checked by an improvement in the characteristic Raman
signal of the sample when the incident laser power is slowly increased. Raman spectroscopy becomes
even more powerful for isolated SWNTs, by providing detailed and accurate structural and electronic
characterization[15].

5.2. Micro-Raman spectroscopy

Resonance Raman spectra from SWNTs can be acquired using standard commercial micro-Raman
spectrometers and lasers. Typical measurements use a back-scattering configuration and 50×, 80×, and
100× objective lenses (∼ 1�m spot size for the 100× objective). Relatively high laser powers (up to
40× 109 W m−2) can be used to probe isolated SWNTs on substrates or in aqueous solution, because of
their unusually high thermal conductivity values (3000 W mK−1) [43], their excellent high temperature
stability, and their good thermal contact to the environment. A triple monochromator is ideal for the
Raman measurements while tuning the excitation laser line continuously, but the acquired intensity drops
substantially when compared to the intensity obtainable from a single-monochromator spectrometer.
We have measured the Raman spectra from SWNTs taken with many different laser lines using both
discrete lines from Ar–Kr and He–Ne lasers and a continuous range of excitation energies from both a
Ti:Sapphire and a Dye laser. Stable nanotube Raman signals can be observed for laser powers impinging
on the substrate using up to 40 mW into a 100× objective. Laser powers of about 10 mW are typically
used, although measurements have been carried out successfully with laser power levels down to 1 mW
(∼ 1 × 109 W m−2) and longer time scans.

Fig. 10(a) gives a general view of the Raman spectra from a sample of single-wall carbon nanotube
bundles. The two dominant Raman features are the radial breathing mode (RBM) at low frequencies and
the tangential (G band) multi-feature at higher frequencies. Other weak features, such as the disorder-
inducedD band, theM band (an overtone mode) and the iTOLA band (a combination of optical and
acoustic modes) are also shown, and when the background intensity is increased, a rich Raman spectrum
is observed for the intermediate frequency phonon modes (IFM) which lie between the RBM andG-band
features[40]. The laser power used to measure the Raman spectra for SWNT bundles without burning
the sample should be much lower than for isolated SWNTs, and is usually not higher than 1 mW using a
100× objective lens, because of the poor inter-tube thermal conductivity in SWNT bundles. The spectra
of isolated SWNTs dispersed in aqueous solution exhibit sharper Raman peaks, and such data can be
acquired with higher input power.

In the process of measuring the Raman spectra from isolated SWNTs on a Si/SiO2 substrate using a
fixed laser energyEL [seeFig. 10(b)], we focus the laser spot on the substrate surface and we scan the
sample until we observe the Raman signal from an isolated SWNT. The Raman intensity from SWNTs
is usually buried under the noise, except for a few(n,m) SWNTs for which the resonance with the
givenEL occurs strongly for the electronic states confined within van Hove singularities (vHSs). The
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Fig. 10. (a) Raman spectra from HiPco SWNT bundles (see text)[44]. (b) Raman spectra from a metallic (top) and a semicon-
ducting (bottom) SWNT at the single nanotube level. The spectra show the radial breathing modes (RBM),D-band,G-band
andG′ band features, in addition to weak double resonance features associated with theM-band and the iTOLA second-order
modes[45]. The isolated carbon nanotubes are sitting on an oxidized silicon substrate which provides contributions to the Raman
spectra denoted by “*”, and these Si features are used for calibration purposes[3].

observation of the weak Si feature at 303 cm−1 is a useful guide for knowing whether the radial breathing
Raman mode from an isolated SWNT can be measured.Fig. 10(b) shows an example of Raman signals
from two resonant SWNTs at two different spots on the Si/SiO2 surface. For various experiments of
interest, we have used samples with a variety of nanotube densities, ranging from low-density samples
(∼ 0.4SWNT�m−2) to higher density samples (∼ 10 SWNT�m−2). Samples with a high nanotube
density (more than 1 SWNT�m−2) guarantee that the search for resonant nanotubes will not be so
tedious, but a low-density sample (less than 1 SWNT�m−2) guarantees that one will not get a Raman
signal from two or more SWNTs within the same light spot.

5.3. Raman spectra data analysis

In comparing the behavior of various features that are observed in the Raman scattering process for
SWNTs the effect of the tube diameter on the mode frequencies must be considered. In this context, 2D
graphite can be considered to be a tube with a diameterdt → ∞. The diameter dependence of the various
mode frequencies is expressed by

� = �0 + �/dnt , (21)

in which�0, �, andn are the frequency of 2D graphite,6 and the coefficient and exponent of the diameter
dependence, respectively. Such information can be obtained by measurements at the single nanotube
level as inFig. 10(b). Table 3displays results for the diameter dependence of the most common features
observed in the Raman spectra of isolated SWNTs [seeFig. 10(b)]. For the double resonanceD, G′, M
and iTOLA features inFig. 10(b), the frequencies depend also on the excitation laser energy. Thus, when
comparing results for different tube diameters, both the dependence of the phonon frequency ondt and
onEL (if pertinent) must be considered. Only the parameters�0, n, and� are listed inTable 3.

6 �0 is the value fordt → ∞. However, it does not always coincide with the value of 3D graphite because of the interlayer
interaction of graphite. The value of�0 is obtained by the fitting of SWNT Raman data.
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Table 3
Diameter dependence of Eq. (21) for the most common features observed in the Raman spectra of isolated SWNTs

Mode Frequency�0 (cm−1) Exponentn Diameter coefficient� (cm−1 nm)

RBM 0 1 248a

D 1356 1 −16.5b

G+ 1591 0 0
G− 1591 2c (−45.7; −79.5)d

M+ 1754 1 −18.0e

M− 1775 1 −16.7e

G′ 2704 1 −35.4b

Here�0 denotes the mode frequency associated with 2D graphite, whose value depends on the laser excitation energy, if the
mode is associated with a double resonance process. Frequencies are in units of cm−1, anddt is in units of nm. The coefficients
for theD, M, andG′ bands and for the RBM feature were obtained by using data measured at the single nanotube level with
EL = 2.41 eV.

aRef.[3].
bThis value was obtained usingEL = 2.41 eV. By using the spectra obtained with 1.58 eV, a� = −18.9 cm−1 nm value was

obtained Ref.[46].
cThe coefficientn = 2 was found by analyzing theG band with only two Lorentzian peaks[47]. A different value is found

when using the six symmetry-allowed peaks to fit theG-band spectra[26] (see Section 6.2.2).
dThe coefficient� for theG− component is, respectively,−45.7 and−79.5 cm−1 nm2 for semiconducting and metallic

SWNTs, and 1.58, 2.41, and 2.54 eV laser lines were used to obtain theG-band experimental results used in the fitting procedure
[47].

eRef. [45].

The Raman features are analyzed by a Lorentzian fit of the spectra, with the exception of the lower-
frequencyG-band feature for metallic SWNTs, denoted byG−, which is observed to have a Breit–Wigner–
Fano (BWF) lineshape (broad and asymmetric peak) (see Section 3.6), though theG− feature for
semiconducting SWNTs remains Lorentzian. Although it is known that the disorder-induced bands
appear in the Raman spectra of graphite-like materials through a double resonance process[18,22]
where inhomogeneous broadening occurs, we use the Lorentzian fit as an approximation to interpret
their behavior.

6. Learning about carbon nanotubes from their first-order Raman features

6.1. The radial breathing mode

The radial breathing mode (RBM) can be used to study the nanotube diameter (dt ) through its frequency
(�RBM), to probe the electronic structure through its intensity (IRBM) and to perform an(n,m) assignment
of a single isolated SWNT from analysis of bothdt andIRBM, as discussed below.

6.1.1. The RBM frequency and nanotube diameter
The radial breathing mode (RBM) Raman features correspond to the coherent vibration of the C atoms

in the radial direction, as if the tube were “breathing”. These features are unique to carbon nanotubes
and occur with frequencies�RBM between 120 and 350 cm−1 for SWNTs for diameters in the range
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0.7 nm<dt <2 nm. These RBM frequencies are therefore very useful for identifying whether a given
carbon material contains SWNTs, through the presence of RBM modes, and for characterizing the nano-
tube diameter distribution in the sample through use of the relation�RBM = A/dt + B, where theA
and B parameters are determined experimentally[3,48]. For typical SWNT bundles in the diameter
rangedt = 1.5 ± 0.2 nm,A = 234 cm−1 nm andB = 10 cm−1 has been found[48] (whereB is an
upshift in �RBM assigned to tube-tube interactions). For isolated SWNTs on an oxidized Si substrate,
A = 248 cm−1 nm andB = 0 has been found[3,49]. It is important to point out that, for the usual
diameter range 1<dt <2 nm, these two sets of parameters give similardt for a given�RBM, differing
considerably only fordt <1 nm anddt >2 nm. However, fordt <1 nm, the simple�RBM = A/dt + B

relation is not expected to hold exactly, due to nanotube lattice distortions leading to a chirality dependence
of �RBM [50]. For large diameter tubes (dt >2 nm), the intensity of the RBM feature is weak and is
hardly observable.

Therefore, from the�RBM measurement of an individual isolated SWNT, it is possible to obtain its
dt value. As discussed in Section 6.1.3, it is actually possible to obtain the full assignment(n,m) for an
individual isolated SWNT. The natural linewidth (FWHM) for isolated SWNTs on a SiO2 substrate is
� = 3 cm−1 [51], but much sharper linewidths (down to∼ 0.25 cm−1) have been observed for the inner
tubes of double wall carbon nanotubes (DWNTs)[52].

The RBM spectra for SWNT bundles [Fig.10(a)] contain an RBM contribution from different SWNTs
in resonance with the excitation laser line. For a diameter characterization of the sample, analysis of the
resonance condition should be performed, and as discussed in Section 2.2, it is useful to have a Kataura
(Eii vs.dt ) plot (Fig.4) on hand when acquiring the RBM spectra from a SWNT sample[13]. It is clear
that a single Raman measurement gives an idea of the tubes that are in resonance with that laser line, but
does not give a complete characterization of the diameter distribution of the sample. However, by taking
Raman spectra using many laser lines, a good characterization of the diameter distribution in the sample
can be obtained[48]. Since semiconducting (S) and metallic (M) tubes of similar diameters do not occur
at similarEii values,�RBM measurements using several laser energiesEL can be used to characterize
the ratio of metallic to semiconducting SWNTs in a given sample[53].

6.1.2. TheIRBM and the electronic structure
The resonance Raman intensity depends on the density of electronic states (DOS) available for the

optical transitions, and this property is very important for 1D systems, as discussed in Sections 2.2
and 3.2. By using a tunable laser, it is possible to study the joint density of states (JDOS) ofone iso-
lated SWNT, giving theEii value with a precision better than 5 meV as shown inFig. 11(a). Here
fiducial markers were used [Fig.11(b)] to achieve good precision by always returning the light spot of
the excitation laser to the same position on thesample, as the laser energyEL is changed. To obtain
the data points inFig. 11, Raman spectra of the sample were measured in the excitation wavelength
(energy) range from 720 nm (1.722 eV) to 785 nm (1.585 eV) in steps of 4 nm (∼ 9 meV) [54]. The
resonance profile could then be fit to obtain the relevant parameters describing the profile, including
Eii (see the Kataura plot,Fig. 4; Eii = Eaj in Section 4.1) and the width of the resonance window
energy�, which is defined as the full-width half-maximum (FWHM) intensity range in energy over which
a given(n,m) nanotube is in resonance. Stokes (phonon emission) and anti-Stokes (phonon absorp-
tion) spectra were taken to increase the accuracy in the determination ofEii at each laser energy[55].
Fig. 11shows that the resonance windows for the Stokes and anti-Stokes processes have a small width (�=
8 meV) and are asymmetric. This asymmetric behavior is caused by the asymmetry in the joint density of
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Fig. 11. (a) Raman intensity vs. laser excitation energy for the�RBM = 173.6 cm−1 peak in the Stokes and anti-Stokes Raman
processes for one SWNT on a SiO2 substrate. To account for theT dependence of the phonon absorption process, so that
the experimental Stokes and anti-Stokes intensities can be directly compared, the anti-Stokes intensities were multiplied by
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the theoretically predicted Stokes and anti-Stokes resonance windows. The lower inset plots the JDOS for one isolated(18,0)
SWNT with a width�J = 0.5 meV taken for the van Hove singularity[54]. (b) The left AFM image shows the markers used
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states (JDOS)

g(E) = C√
(E + Eii + i�J)(E − Eii − i�J)

, (22)

where each van Hove singularity has an energy width�J [54].The upper inset inFig. 11shows a comparison
between the theoretically obtained Stokes and anti-Stokes resonant windows, revealing a shift in these
resonant windows due to the resonance condition for the scattered photon,Es = Eii ± Eph for the anti-
Stokes (+) and the Stokes (–) processes (see Sections 3.2 and 3.5). The lower inset toFig. 11plots the
highly singular JDOS vs. laser excitation energyEL for the isolated(18,0) SWNT, as measured in this
experiment.

Resonance Raman experiments with a tunable system can giveEii with high accuracy (∼ ±3 meV).
A much simpler experiment, however, that just involves measuring Stokes vs. anti-Stokes Raman signals
with a single laser line at the isolated SWNT level, allows the determination ofEii within ±10 meV
precision for SWNTs sitting on a Si/SiO2 substrate[13,55,56]. The precision for this assignment using
Stokes vs. anti-Stokes Raman measurements depends on a detailed determination of the shape of the
resonance window. The resonance window profile is however sensitive to the sample substrate, sample
preparation methods, whether the SWNT is wrapped by a surfactant or other species, or whether or not
the SWNT is freely suspended, as discussed in Section 6.1.4.

TheES
11 energy value for semiconducting SWNTs is usually too small to be observed with standard Ra-

man spectroscopy setups. The observation ofES
11 is however in a convenient range for photoluminescence

experiments[34]. The spectral interdependence of the absorption and emission energies generate intense
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Fig. 12. (a) RBM Resonance Raman measurements of HiPco carbon nanotubes wrapped in sodium dodecyl sulfate (SDS) and
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peaks on a 2D plot[57]. The results indicate strong optical absorption at a givenEii and strong emission
atE11, each peak related to one specific(n,m) SWNT. Photo-luminescence (PL) as a characterization
tool is limited to systems where non-radiative electron–hole recombination does not readily occur, so that
light emission from metallic SWNTs or from SWNTs in bundles cannot be observed.

6.1.3. The RBM and the(n,m) assignment
By considering thedt values obtained from measurements of�RBM, andEii ∼ EL from the resonance

condition, the RBM feature can be used for making(n,m) assignments for individual isolated SWNTs
[3], by utilizing a Kataura plot, such as inFig. 4. In Fig. 10(b), the spectra are taken with a laser excitation
of EL = 1.58 eV (785 nm), and the observed RBM for the upper spectrum is assigned to a metallic
(13,10) SWNT withdt =1.59 nm, whereEL is in resonance withEM

11. In contrast, the lower spectrum in
Fig. 10(b) comes from a semiconducting(23,1) SWNT, whereEL is in resonance withES

33. For a better
understanding of the(n,m) assignment procedure, we discuss the formation of aEii vs.�RBM 2D plot
(Fig. 12), that can easily be related to the Kataura plot (Fig.4).

Fig. 12 presents Stokes resonance Raman measurements of carbon nanotubes grown by the HiPco
process[58], wrapped with a surfactant sodium dodecyl sulfate (SDS) and dispersed in an aqueous
solution[34], in the frequency region of the RBM features. For this experiment, a triple-monochromator
spectrometer and a tunable laser system were used to obtain an almost continuous change of the excitation
laser energies (EL) in the range between 1.52 up to 2.71 eV. Using 76 values ofEL in this range, detailed
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constant(2n+m). (b) Plot similar to (a) based on the tight binding model using the tight binding parameters�0 = 2.9 eV,s = 0
andaC–C = 0.142 nm[1].

information about the evolution of the RBM Raman spectra as a function ofEL is obtained. Several RBM
peaks appear inFig. 12, each peak corresponding to a SWNT in resonance withEL, thereby delineating
for each nanotube the resonance window, as shown inFig. 11(a).

Fig. 13(a) plots the experimental results obtained forEii vs.�RBM for each(n,m) resonant nanotube in
Fig. 12. Black circles and squares represent, respectively, semiconducting and metallic HiPco nanotubes
wrapped in SDS. The differentEii electronic transitions for semiconducting (ES

22 andES
33) and metallic

(EM
11) tubes [seeFig. 13(a)] are clearly seen. For nanotubes with diameters smaller than 1.2 nm, geometri-

cal patterns can be seen inFig. 13(a) for carbon nanotube families with(2n+m)= constant (solid lines) for
theES

22andEM
11transitions. It is possible to distinguish inFig. 13(a) the three classes of nanotubes: metallic

MOD0 [(2n+m); mod 3=0], semiconducting MOD1 [(2n+m); mod 3=1] and semiconducting MOD2
[(2n+m); mod 3=2] SWNT (see solid lines)[11]. These three classes of nanotubes exhibit differentEii

behaviors, as discussed in Section 2.2 (seeFig. 4). The (Eii,�RBM) results [Fig.13(a)] can be compared
with one-electron, first-neighbor tight binding (TB) predictions [Fig.13(b)] [1]. Although the energies
do not match due to the simplicity of the tight binding calculations, the experimentally observed geomet-
rical patterns for the families inFig. 13(a) can be compared with the predicted geometrical patterns in
Fig. 13(b), and the comparison leads to a clear(n,m) assignment.
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The electronic transition energiesEM
11 for metallic SWNTs are also determined by resonance Raman

spectroscopy (RRS) [black squares inFig. 13(a)]. The formation of families of constant(2n+m) is also
observed for metallic SWNTs withdt �1.2 nm. Surprisingly, the expected splitting in theEM

11 van Hove
singularities caused by the trigonal warping effect[2,35] [seeFig. 13(b)] is not observed optically for
the RBM feature, but only the lower energy component ofEM

11 for each(n,m) SWNT [Fig. 13(a)] is
observed experimentally in the Raman spectra.

From the(n,m) assignment for both metallic and semiconducting SWNTs, the relation�RBM =
228/dt + 16 cm−1 is obtained between the RBM frequency and the nanotube diameter for these small
diameter SWNTs wrapped with SDS[44]. The deviation of the experimental points from this relation is
on the order of 1% of�RBM, and this deviation is related to a weak dependence of�RBM on chirality
[60], that is observed in small diameter SWNTs due to curvature effects, as predicted by Kürti et al.[50].

6.1.4. RRS vs. PL and environmental effects on RBM spectra
Raman spectroscopy, optical absorption and photoluminescence have all been used to determine theEii

energy values, leading to the development of theoretical models to describe the nanotube electronic struc-
ture for excited states. However, theEii values of an(n,m) SWNT are found to shift by an unexpectedly
large amount (up to∼100 meV) by the effects of the substrate, of bundling, and of other environmental
factors surrounding the SWNTs such as solvents and wrappings. Furthermore, early determinations of
Eii values from photoluminescence measurements on SDS wrapped SWNTs in solution were not in good
agreement with Raman measurements on isolated tubes on a Si/SiO2 substrate. To minimize environ-
mental effects associated with different substrates and wrapping agents,Eii values were experimentally
determined from both Raman spectra and photoluminescence (PL) spectra taken for SWNTs originating
from the same type of HiPco SWNT starting material, and wrapped in SDS, in the same way. Thus the
Eii values obtained by resonance Raman spectroscopy and photoluminescence on the same SWNTs in
the same environments could be compared in detail. The black dots and squared inFig. 13(a) are results
measured by the Raman effect. The open circle points inFig. 13(a) are forES

22 transitions in SDS wrapped
nanotubes in aqueous solution obtained by photoluminescence (PL) experiments[57,59]making use of
the�RBM anddt values obtained from�RBM = 228/dt + 16 cm−1 [44]. Good agreement overall was
obtained between theEii values obtained from resonance Raman spectroscopy (RRS) and photolumines-
cence (PL) data (taken on similar samples and under similar environmental conditions)[44]. The largest
deviation betweenEii obtained by Raman and PL is 35 meV, and this is for the (6,4) SWNT, which
has a small diameter. This experiment confirmed that the same excited states participated in the PL and
resonance Raman processes.

In a second set of experiments, the resonance Raman spectra for an as-grown HiPco SWNT bundle
sample without SDS wrapping were also measured. For these samples both Stokes and anti-Stokes Raman
spectra were also taken and analyzed to yieldEii values[44]. No significant change in�RBM was observed,
as shown by the star symbols inFig. 13(a), between the bundled HiPco sample and the SDS wrapped
HiPco SWNTs. However, when the correspondingEii comparison was made between the RRS spectra for
HiPco SWNTs in bundles and the corresponding spectra for SDS wrapped HiPco SWNTs in solution, a
considerable red-shift was observed (20–120 meV) for the SWNTs in bundles. Furthermore, theEii values
for the SWNTs in bundles, were actually found to be strongly dependent on laser power, i.e., on the local
temperature[44], showing a strong temperature dependence of the resonance window for SWNT bundles.
By increasing the laser power, theES

22 energies were increasingly red-shifted for MOD1 nanotubes and
blue-shifted for MOD2 nanotubes, relative to the average 70 meV red-shift that was observed overall.
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These results showed that the trigonal distortion of the electronic structure, or equivalently the spread of
the families for theE22 transition at constant diameter, increases with temperature[44].

With respect to the spectral linewidths, it is observed that the Raman resonance windows for SDS
wrapped7 (∼ 60 meV) and bundled (∼ 98 meV) SWNTs[44] are much broader than those for bare-
isolated nanotubes (∼ 8 meV)[54], showing the influence of the inhomogeneous nanotube environment
on the electronic structure of SWNTs. Optical absorption and emission measurements on carbon nan-
otube samples show peaks corresponding toEii values for individual(n,m) SWNTs, with linewidths of
∼ 25 meV, comparable to the room temperature thermal energy[34,57,59,61], while measurements
on suspended SWNTs show much sharper linewidths[62]. The accuracy of theEii determination is,
therefore, dependent on sample environment and experimental technique.

From these results, we conclude that environmental effects cannot be neglected in comparing resonance
Raman spectroscopy (RRS) and photoluminescence (PL) experiments with each other and independently.
In order to compare all experimental results consistently, environmental effects should be formulated by a
simple function by collecting various experimental data. Because of the different diameter distributions,
different environmental conditions, and different experimental conditions under which the Raman spectra
in the literature were taken, further effort is needed to interrelate the information provided by the various
spectra now present in the literature. A table showing experimental values for�RBM, EM

11, E
S
22 and

the (n,m) assignments, obtained for both semiconducting and metallic nanotubes wrapped in SDS is
presented elsewhere[44,63].

6.2. The G-band

The G-band in graphite involves an optical phonon mode between the two dissimilar carbon atoms
A and B in the unit cell. The corresponding mode in SWNTs bears the same name. In contrast to the
graphite RamanG band, which exhibits one single Lorentzian peak at 1582 cm−1 related to the tangential
mode vibrations of the C atoms, the SWNTG-band is composed of several peaks due to the phonon wave
vector confinement along the SWNT circumferential direction and due to symmetry-breaking effects
associated with SWNT curvature [seeFigs. 14(a) and15]. The G-band frequency can be used for (1)
diameter characterization, (2) to distinguish between metallic and semiconducting SWNTs, through
strong differences in their Raman lineshapes[13,56]; (3) to probe the charge transfer arising from doping
a SWNT; and (4) to study the selection rules in the various Raman scattering processes and scattering
geometries. These topics are reviewed in this subsection.

6.2.1. The G-band lineshape and diameter dependence
Fig. 14(b) indicates that theG-band feature for SWNTs consists of two main components, one peaked

at 1590 cm−1 (G+) and the other peaked at about 1570 cm−1 (G−). TheG+ feature is associated with
carbon atom vibrations along the nanotube axis (LO phonon mode) and its frequency�G+ is sensitive
to charge transfer from dopant additions to SWNTs (up-shifts in�G+ for acceptors, and downshifts for
donors as in graphite intercalation compounds (GICs)[65,66]). TheG− feature, in contrast, is associated

7 SDS-wrapped SWNT samples consist of not only isolated SWNTs, but also contain some small bundles with several
SWNTs. Thus a weaker bundle effect than for a thick bundle should be observed. Centrifugal separation (24 h, 20,000 G) of
SDS-SWNT(1.0 g cm−3) dissolved in D2O (1.3 g cm−3) increases the probability of producing isolated SDS–SWNT at the
central region. The purity of the sample can be evaluated by Raman spectroscopy.
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S are the initial angles between the light polarization and

SWNT axis directions, not known a priori. (c)�G (open symbols) vs.�RBM (bottom axis) and 1/dt (top axis) for semiconducting
SWNTs. Experimental data are obtained withEL = 1.58, 2.41 and 2.54 eV. The�G are clearly dependent ondt , but there is no
clear evidence for any�G dependence onEL . The spectra with�RBM >200 cm−1 were obtained withEL = 1.58 eV. Solid
symbols connected by solid lines come from ab initio calculations[64] downshifted by 18, 12, 12, 7, 7, 11 cm−1 from the bottom
to the top of the ab initio data, respectively[26].

with vibrations of carbon atoms along the circumferential direction of the SWNT (TO phonon), and
its lineshape is highly sensitive to whether the SWNT is metallic (Breit–Wigner–Fano lineshape) or
semiconducting (Lorentzian lineshape), as shown inFig. 14(a) [67,68]. Charge transfer to SWNTs can
lead to an intensity increase or decrease of the BWF feature[69,70].
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Measurements on theG band at the single nanotube level show that theG-band is a first-order process
[26,71], with the frequency�G+ essentially independent ofdt or chiral angle�, while �G− is dependent
on dt and whether the SWNT is metallic or semiconducting, but not on chiral angle� [seeFig. 14(c)].
Such diameter-dependent measurements can only be done at the single nanotube level, and the results
can be used along with measurements on other Raman features to corroborate(n,m) assignments carried
out on the basis of the RBM feature (see Section 6.1.3)[3,26].

From the diameter dependence for theG band modes shown inFig. 14(c), it is clear that theG band for
large diameter carbon nanotubes is similar to the one peakG-band observed in graphite. This is actually
the case for theG band for large diameter multi-wall carbon nanotubes (MWNTs), where a single peak
at 1582 cm−1 is observed, just like in graphite (see Section 8).

6.2.2. Polarization analysis
A more careful analysis of the twoG-band features shows that theG+ andG− features are both

composed of three peaks of different symmetries. While the two most intense peaks (G+ andG−) at
∼ 1593 and∼ 1567 cm−1, respectively, arise from phonons withA andE1 symmetries, the smaller
intensity features at∼ 1526 and∼ 1606 cm−1 are associated withE2 symmetry phonons. Phonons with
A,E1 andE2 symmetries can be distinguished from one another by their behavior in polarization-sensitive
Raman experiments[25,26], as discussed in Section 4.2.4.

Fig. 15(a) shows three differentG-band Raman spectra from a semiconducting SWNT, but with dif-
ferent directions for the incident light polarization, i.e.,�′

S, �′
S + 40◦ and�′

S + 80◦. Well-defined peaks
associated with theG-band features are clearly observed, with different relative intensities for the different
polarization geometries. From their relative intensities, we conclude that the spectrum for�′

S corresponds
to theY [ZZ]Ȳ scattering geometry (see Section 4.2.2), and we assign the peaks as follows: 1565 and
1591 cm−1 → A; 1572 and 1593 cm−1 → E1; 1554 and 1601 cm−1 → E2. This SWNT exhibits
�RBM = 180 cm−1 (dt = 1.38 nm)[3].

Fig. 15(b) shows twoG-band Raman spectra obtained from another semiconducting SWNT, and taken
with incident light polarization directions�′′

S and�′′
S + 90◦. In this case, the spectrum at�′′

S is assigned as
theY [XX]Ȳ scattering geometry, and the sharp peaks at 1554 and 1600 cm−1 are assigned asE2 modes,
while the 1571 and 1591 cm−1 peaks are assigned as unresolved(A+E1)modes, their relative intensities
depending on the incident light polarization direction[26].

Analysis of thedt dependence of the 6G-band modes (2A, 2E1 and 2E2) for semiconducting SWNTs
has been done at the single nanotube level[26] and the results agree quite well with ab initio calculations
in the 1.0<dt <2.0 nm diameter range[64], thus supporting the symmetry assignments.Fig. 15(c) plots
the G-band mode frequencies for several semiconducting SWNTs in resonance with the incident laser
light vs. the observed�RBM (bottom axis) and inverse nanotube diameter 1/dt =�RBM/248 (top axis)[3].
The solid symbols connected by solid lines come from ab initio calculations by Dubay et al.[64]. TheG−
experimental data from semiconducting SWNTs can be better fit with�G = 1592−C/d

�
t , with � = 1.4,

CA = 41.4 cm−1 nm, CE1 = 32.6 cm−1 nm, CE2 = 64.6 cm−1 nm. In Section 6.2.1, theG− diameter
dependence shown inFig. 14(c) was fit with (� = 2 [47]) obtained using only one Lorentzian peak to fit
theG− feature in the unpolarizedG-band spectra. Although the analysis inFig. 14(c) is not fully correct,
it is much simpler and can be easily used to characterize SWNT diameters from theG-band feature.

From these studies, we conclude that polarization analysis of the Raman spectra and a comparison with
ab initio calculations are consistent with the observation ofA,E1 andE2 symmetry modes in theG-band
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for SWNTs. According to the resonance Raman selection rules discussed in Section 4.3,E2 symmetry
modes can only be observed for cross-polarized light in resonance with electronic transitions from the
Ev

� to Ec
�±1 van Hove singularities (vHSs). Up to now, it has been well accepted that optical spectra

(absorption, resonance Raman scattering, etc.) are dominated by absorption/emission of light polarized
parallel to the tube axis because of the antenna effect[15,17]. In other words, onlyE�� vHSs in the
joint density of states (JDOS) have been taken into account thus far when analyzing Raman and optical
absorption spectra from SWNTs. It is shown inFig. 15(b) that resonance Raman scattering for cross-
polarized light involving theE�,�±1 vHSs in the JDOS also needs to be taken into account when analyzing
Raman spectra from isolated SWNTs. This important result implies that asymmetries between electronic
levels above and below the Fermi level in SWNTs (related in a simplistic way to the overlap integral
parameters in the tight binding approximation)[15,17]can be obtained experimentally by studying the
JDOS optically.8

7. Learning about carbon nanotubes from their double-resonance Raman features

7.1. Overview of double resonance spectral features

Although generally of weaker intensity than the first-order Raman features presented in Section 6, the
second-order Raman spectra (either two-phonon or defect-induced) provide a large amount of important
information about carbon nanotube electronic and vibrational properties that cannot be obtained by
probing the first-order features. This is the central focus of the present section. Such an abundance of
new information becomes accessible because the selection rules for the second-order features are relaxed
with respect to the first-order features (see Section 6), thus making it possible to probe the interior of
the Brillouin zone. The achievement of the double resonance condition (see Section 3.3), on one hand,
makes the Raman signal strong enough to be easily detected, and, on the other hand, makes it possible to
address specific points in the 2D Brillouin zone, since the double resonance process is strongly selective
in phonon wave vector.

In Sections 3.3 and 3.4, the double resonance processes are discussed. Although the double resonance
process gives rise to many peaks in the SWNT Raman spectra, theD andG′ bands (seeFig. 10) are
usually the two strongest second-order features and these are the features that have been studied in most
detail. The physics related to these features is discussed in Sections 7.1–7.5, while in Sections 7.6 and 7.7
we review the smaller intensity double resonance features, namely theM-bands, the iTOLA feature, and
the intermediate frequency modes, which have so far received little attention, but clearly are important
effects that shed new light on novel aspects of nanotube physics.

Two double resonance features commonly found in the Raman spectra of SWNT bundles are theD-
band feature (with�D at ∼ 1350 cm−1 for EL = 2.41 eV), stemming from the disorder-induced mode
in graphite with the same name[16]), and its second harmonic, theG′ band occurring at∼ 2�D [17]. In
2D graphite, theD-band originates from the iTO phonon branch [seeFig. 5(a)] close to theK point in the

8 This asymmetry between valence and conduction band sublevel spacings cannot be studied by analyzingE�� transitions,
because the expansion and contraction of energy differences between subbands in the valence and conduction bands cancel each
other forE�� transitions. However, ifs �= 0 and if SWNT curvature effects are taken into account, then the optical transition
energiesE�,�±1 andE�±1,� are no longer equal and measurement of these energy differences give the valence and conduction
band asymmetries[6,8,72].
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BZ. In nanotubes, both theD-band and theG′-band are sensitive to the SWNT diameter and chirality,
since these features depend sensitively on how the 2D electronic and phonon structure is folded into a
1D structure (see Section 2). As a result, theD-band andG′-band in SWNTs can have much narrower
spectral widths (less than 10 cm−1) [51] than in graphite (30–50 cm−1).

Single nanotube measurements have confirmed that theD-band andG′-band for SWNTs are well
described by a double resonance process as in graphite[18], but with special properties that arise from
the van Hove singularities occurring in the electronic joint density of states for SWNTs[19,72–76].
Measurements of theD-band and theG′-band frequencies at the single nanotube level therefore provide
unique information on the chirality and diameter dependence of�D and�G′ that can be used to determine
the magnitude of the trigonal warping effect in the electron and phonon dispersion relations of SWNTs,
thereby providing information not readily available using other experimental techniques[15]. Because
the dispersion is larger for theG′-band and because theG′-band is less sensitive to nanotube defects,
many of the fundamental studies on the electronic and phonon structure of SWNTs have been done on the
G′-band feature. In the next sections we discuss the physics about SWNTs and HOPG that is elucidated
by theG′-band spectra.

7.2. Analysis of theG′ band spectra

The dominant feature in the second-order Raman spectra in graphite and SWNTs is theG′ band feature
arising from a two-phonon, intervalley, second-order Raman scattering process. For a high-quality sample,
theG′ spectra are completely free from defect contributions, and the experimentalG′-band signal can be
comparable in intensity to theG band. The Raman spectra for theG′- band phonon energy region have
been calculated in the context of a double resonance process, and considering both electron–photon and
electron–phonon coupling for two phonon-emitting processes (see Section 4.4.2).

Let us discussFig. 9 again from an experimental point of view. Here we compare the calculatedG′
band spectra for several laser energies with experimental results for HOPG andG′-band spectra. The
maximumG′-band intensity in the calculation is normalized to the experimental peak height.Fig. 9
shows that the calculated results reproduce the dispersive nature and spectral shape of the experimental
peak around 2700 cm−1 very well. A small peak which is non-dispersive is also observed experimentally
around 2450 cm−1. The calculation also shows the presence of a non-dispersive second-order phonon
peak but the calculations predict its occurrence at a somewhat lower frequency region (∼ 2350 cm−1). The
calculation, however, indicates that this feature can be assigned to a non-dispersive second-orderq = 0
intravalley Raman feature, and its intensity relative to the 2700 cm−1 peak intensity can be evaluated
theoretically. Since the peak at 2450 cm−1 is much weaker than the 2700 cm−1 peak, a good quality
sample and a long experimental observation time is required to observe the non-dispersive 2450 cm−1

peak experimentally[38].

7.3. SWNT electronic structure obtained byG′-band studies

In this section it is seen how studies on the�G′ phonon frequencies in the Raman spectra provide
unique information about the electronic structure of both semiconducting and metallic SWNTs. While
theG′-band normally appears as a single peak in most graphitic materials, it sometimes appears (at the
individual nanotube level) in the form of unusual two-peak structures for both semiconducting[73] and
metallic [74] nanotubes. It should be noted that theG′-band doublet structure that is observed in 3D
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Fig. 16. TheG′-band Raman features for (a) semiconducting(15,7) and (b) metallic(27,3) nanotubes show unusual two-peak
structures, taken from Refs.[73,74], respectively. Thevicinity of theK point in the unfolded Brillouin zone corresponding to
each SWNT is shown below each spectrum, where the equi-energy contours for the incidentEL = 2.41 eV and the scattered
EL −EG′ = 2.08 eV light, together with the wave vectors for the resonant vHSs (ES

33 = 2.19 eV,ES
44 = 2.51 eV, for the (15,7)

SWNT, andEM(L)
22 = 2.04 eV,EM(U)

22 = 2.31 eV for the (27,3) SWNT), are also shown. (c) TheG′-band Raman spectra for
the isolated metallic (15,15), (19,10) and (27,3) SWNTs from the bottom to the top whose(n,m) indices are assigned by using
their radial breathing mode properties[3].

graphitic materials is attributed to the interlayer coupling[77] and this mechanism does not apply to
SWNTs. The two-peakG′-band Raman features observed from semiconducting and metallic isolated
nanotubes are shown inFigs. 16(a) and (b), respectively, where the(n,m) indices for these nanotubes
are assigned as (15,7) and (27,3) following the standard procedure[3]. The presence of two peaks in the
G′-band Raman feature from semiconducting SWNTs indicates resonance with two different vHSs of
the same nanotube, occurring independently for both the incidentEL and scatteredEL − EG′ photons
(see Section 3.2) when the vHSs are sufficiently separated in energy (outside their respective resonance
windows). The wave vectors corresponding to the resonance vHSs are shown in the unfolded 2D Brillouin
zone of the graphene layer inFig. 16below theG′-band profiles. The use of cutting lines allows us to
account simultaneously for both 1D wave vector conservation along the nanotube axis and wave function
matching in the circumferential direction[78].

The two peaks inFigs. 16(a) and (b) can be associated with phonon modes corresponding to the
wave vectorsqi = −2ki , wherei = 3,4 labels the resonant electronic states for the semiconducting
SWNTs, andi = 2L,2U labels these states for the metallicEM

22 vHSs. For the semiconducting SWNT
Raman spectrum, the resonant wave vectorsk3 andk4 have different magnitudes, with a difference of
k4−k3 � K1/3, resulting in twice the difference for the phonon wave vectors,q4−q3 � 2K1/3=4dt/3.
Thus, for semiconducting SWNTs, the observed splitting of theG′-band Raman feature arises from the
phonon dispersion�ph(q) around theK point because the vHSs forES

33 andES
44 for the same SWNT

occur at different energies and different resonant wave vectorsk3 andk4, as inFig. 16(a). In contrast,
for the metallic nanotube shown inFig. 16(b), the resonant wave vectorsk2L andk2U have roughly
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equal magnitudes but have opposite directions away from theK point, so that the splitting of theG′-band
Raman feature for metallic nanotubes arises from theanisotropyof the phonon dispersion�ph(q) around
theK point, known as the phonon trigonal warping effect (see Section 7.4)[78]. The Raman effect thus
provides a sensitive probe of the electronic trigonal warping effect for metallic SWNTs. Overall, the
presence of two peaks in the double resonance Raman features of isolated carbon nanotubes is associated
with quantum confinement effects expressed in terms of the cutting lines shown inFig. 16. Therefore,
the two-peak structure of the double resonance Raman features is a special property of SWNTs, that is
not observed in 2D graphitic materials [seeFig. 3(a)].

TheseG′-band observations, are particularly useful for corroborating specific(n,m) assignments made
by the RBM mode (see Section 6.1.3), as well as for corroborating the(n,m) assignment procedure itself
[15]. The corresponding measurements for metallic SWNTs provide definitive information about the
magnitude of the trigonal warping effect in the electronic structure of metallic SWNTs[74]. TheG′-band
spectra for metallic SWNTs inFig. 16(c) are seen to have a different lineshape profile, depending on the
chiral angle of the SWNT. From the bottom to the top ofFig. 16(c), the chiral angle� decreases, going
from 30◦ to 19.8◦ to 5.2◦ for the (15,15), (19,10), and (27,3) SWNTs, respectively, thereby increasing
the trigonal warping-induced splitting�EM

22 of the peaks for theEM
22 interband transition in the electronic

joint density of states[1,35]. Firstly, the bottom spectrum, identified with the (15,15) nanotube, has only
one peak at 2680 cm−1. Secondly, a doublet with different�G′ splittings appears for the chiral (19,10)
and (27,3) nanotubes, the largest splitting being 30 cm−1 [seeFig. 16(c)]. A comparison between the
G′-band properties inFig. 16(c) and the calculated electronic structure shows that the splitting of the
van Hove singularities due to the trigonal warping effect for the electronic dispersion relationsE(k) is
properly reflected in theG′-band phonon spectra.

7.4. Phonon trigonal warping effect

The 1D structure of carbon nanotubes also leads to quantum confinement of the wave vectors for
the phonon states. Sinceqi = 2ki through the wave vector selectivity of the double resonance Raman
process, not only is the Raman process selective of the magnitude ofq, but also of the direction ofq. This
additional selectivity, arising from low dimensionality, allows us to measure�(q) and thus to reconstruct
the phonon dispersion relations of 2D graphite, by probing individual single-wall carbon nanotubes of
different chiralities by resonance Raman spectroscopy, and using different laser excitation energies. This
direction is chosen in SWNTs by selecting the chiral angle. In particular, the dependence of�D on
chiral angle has been measured at the single nanotube level, yielding the anisotropy of�D(q), thereby
providing a measure of the trigonal warping effect in thephonon dispersionrelations for SWNTs about
the hexagonal corner (K point) of the Brillouin zone of graphite.

Fig. 17(a) and (b) show the trigonal warping of the phonon dispersion relations for�D(q) around the
K point of the 2D BZ, fitted to the experimental points shown by the dots.Fig. 17(c) shows the angular
dependence of�D around theK point, for a givenq value (|q| = 0.24K�), whereK� here denotes the
length of the phonon wave vector from theK to � points in the BZ. The phonon dispersion inFig. 17(c)
shows a measured frequency difference of��D = 24 cm−1 as the chiral angle� is varied in the range
0◦ < �<30◦. The trigonal warping effect for phonons increases by increasing the distance of the wave
vectorq from theK point [78]. Fig. 17(c) represents the first experimental measurement of the trigonal
warping effect of phonons in either 2D graphite or in SWNTs.
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differ by 60◦ [see (b)] is��D = 24 cm−1 [78].

7.5. Characterization of structural modifications of the nanotube sidewalls

Furthermore, changes in theD-band andG′-band Raman spectra can be used for materials charac-
terization to probe and monitor structural modifications of the nanotube sidewalls that come from the
introduction of defects and the attachment of different chemical species. The former effect can be probed
through analysis of the disorder-induced Raman modes (e.g., theD-band shown inFig. 10) and the latter
through the upshifts/downshifts observed in the various Raman modes, such as in theG+ band and the
G′ band due to charge transfer effects for acceptors/donors[69,79](see Section 6.2.1).

Sample purity can also be investigated using theD/G band intensity ratio in the Raman spectra from
SWNTs, in analogy to the characterization normally done in carbon-based materials generally[80]. How-
ever, further effort is needed to make this materials characterization method reliable and perhaps also
sensitive to specific SWNT defects for the case of SWNTs. In the future, improved materials characteri-
zation will come from exploiting the unique properties of the electron and phonon density of states and of
the electron–photon and electron–phonon matrix elements for SWNTs to identify intensity and lineshape
effects associated with specific defects[80,81].

7.6. Overtones and combination modes above the G-band frequency

In general the observation of overtones and combination modes in condensed matter systems is rare
because of dispersion effects which make these features too weak and broad to pick out from the noisy
background. The double resonance process and the presence of van Hove singularities in SWNTs, how-
ever, allow such overtones and combination modes to be quite clearly observed, thereby providing new
information about SWNT properties.

One set of overtone features that has received some attention is theM feature near 1750 cm−1 which
is shown inFig. 18(a), for SWNT bundles[45] and for several laser lines(EL). This feature can be
analyzed in terms of two components with frequencies�−

M and�+
M, where the lower frequency mode�−

M
exhibits a weakly dispersive behavior (frequency�−

M shifting down by∼ 30 cm−1 asEL is varied from
1.58 to 2.71 eV), while the upper feature frequency�+

M is basically independent ofEL. The two features
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near 1750 cm−1 (M band) are attributed to overtones of the out-of-plane (oTO), infrared-active mode at
867 cm−1 in graphite. Here theM+ feature is identified with an intravalleyq = 0 scattering process, and
theM− with an intervalleyq = 2k process [seeFig. 18(b)]. A downshift of about 20 cm−1 occurs for
both theM+ andM−-band features in SWNTs relative to 2D graphite because of diameter-dependent
curvature effects (see Section 5.3)[45,46,82]. The second-orderM-band features are also interesting as
an example of an overtone mode nearq = 0 whose fundamental (oTO) is not Raman-active[81] (but is
IR active) in the first-order spectrum of graphite, but can be observed in the second-order spectrum of
graphite through the double resonance process. TheM-band modes are further enhanced in SWNTs by
van Hove singularity effects, and by symmetry-breaking effects associated with SWNT curvature.

The higher-frequency iTOLA combination mode is highly dispersive and upshifts from 1864 to
2000 cm−1 asEL varies from 1.58 to 2.71 eV[45]. This feature can be assigned as a combination
mode not seen in graphite, but enhanced by theq = 2k double resonance process[22]. To account for
the large observed dispersion withEL, this so-called iTOLA band is attributed to a combination of two
intravalley phonons, one from the in-plane transverse optical branch (iTO) and the second phonon from
the longitudinal acoustic (LA) branch, iTO+LA, where the acoustic LA phonon is responsible for the large
dispersion that is observed experimentally[45]. The experimental dispersion of this feature is shown in
Fig. 18(a), whileFig. 18(b) shows the relation of this mode dispersion to phonon branches in 2D graphite.

7.7. Combination modes with frequencies between the RBM and G-band

Resonance Raman spectroscopy with an energy tunable laser excitation system has been used to analyze
the Raman features for SWNTs appearing in the spectral region between 600 and 1100 cm−1 which we
call intermediate frequency modes (IFMs) since their frequencies lie between�RBM and�G [83]. The
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“dispersive” IFMs observed at several laser energies are attributed to combination modes which relate
to the double resonance process. Further additional quantum confinement of phonon modes is observed
(seeFig. 19) by using a tunable laser system and these quantum-confined IFMs are not dispersive[40].

Fig. 19(a) plots theEL dependence of the IFM features. This figure was constructed by taking IFM
spectra obtained with 22 differentEL values between 1.92 and 2.71 eV, and represents results that would
be seen by a continuously tunable laser. The illuminated areas inFig. 19(a) indicate Raman peaks. The
IFM Raman spectra obtained withEL = 2.05,2.20,2.34, and 2.54 eV are shown inFig. 19(b), and these
exhibit broad features at about 700, 860 and 1070 cm−1, which are observed for everyEL and are basically
not dispersive. Other features with a dispersive behavior (i.e., frequencies changing with changingEL)
are also found in these spectra.

In the 2D graphite parent material (seeFig. 5), the IFM spectral region is composed of an out-of-plane
optical branch (here labeled O, with�O(q=0) ∼ 860 cm−1 for the oTO mode) and by acoustic branches
(here labeled A)[1]. In a second-order scattering process, these modes can become Raman active, and
the sum and difference of phonon frequencies can be observed. Such an effect is common in molecular
spectroscopy, but is very unusual for solid-state spectroscopy, where too many combinations are possible,
and the averaging over many wave vector-allowed processes gives rise to just a broad background rather
than observable peaks with well-defined frequencies. The IFMs can be related to the combination of two
phonons that originate from a zone-folding procedure of two 2D phonon branches, one optical (O) and one
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acoustic (A). The O frequency�O phonon exhibits a weak negative dispersion, whereas the A frequency
�A mode exhibits a stronger positive dispersion related to the high speed of sound in 2D graphite[1].
The sum�+

IFM = �O + �A (creation of two phonons) and the difference�−
IFM = �O − �A (creation of

an O phonon and the annihilation of an A phonon) give rise to positively and negatively dispersive IFMs
in Fig. 19(a), respectively.

Interestingly, the use of a tunable system and 22 different laser lines, with a small energy spacing
between them, brings into focus a new and very unusual effect for Raman spectroscopy.WhenEL is varied,
individual Raman peaks first increase and then decrease in intensity, while remaining approximately
constant in frequency. This behavior can be seen clearly by observing some of the well-resolved sharp
peaks [see arrows inFig. 19(a)]. The dispersive behavior is not monotonic, as observed for many features
in graphite-like materials due to energy-selective double-resonance Raman scattering processes[18,22],
but it rather occurs in “steps”. We thus refer to this new effect illustrated inFig. 19(a) as a “step-like
dispersive behavior”.

It is important to note that the appearance and disappearance of peaks in the IFM region cannot be
explained by the well-known single-resonance Raman effect, as is observed for first-order single resonance
modes in SWNTs, such as the radial breathing modes (RBMs) discussed in Section 6.1. Considering the
dt distribution (dt = 1.5 ± 0.3 nm) of the SWNT sample and theEL values that were used, resonance
with mostly theES

33 andES
44 electronic vHSs for semiconducting SWNTs can be achieved (seeFig. 4).

More than 50 different semiconducting SWNTs have theirES
33 andES

44 energies within this experimental
EL range, which means that the first-order single resonance RBM spectra should be composed of about
50 different RBM peaks. When looking atFig. 19(a), it is clear that a very small number of IFM modes
are observed experimentally [e.g., only 5 peaks, each jumping to lower frequencies in steps, asEL is
increased—see arrows inFig. 19(a)]. Therefore, the IFM features cannot be explained on the basis of a
first-order single resonance process.

The step-like dispersive intermediate frequency features are observed as sharp peaks associated with
the combination of optic and acoustic-like modes, exhibiting a step-like dispersive frequency behavior
with changing excitation laser energy, as shown inFig. 19(a). The reason why only a small number
of SWNTs exhibit IFMs is the highly selective process, a turn on/off effect in the scattering process
controlled by the SWNT 1D structure were linear and angular momentum conservation for scattering
of electrons by phonons, which are both confined into vHSs states, is highly selective. Further analysis
shows that Raman signals are only possible for mod(2n + m,3)= 1 carbon nanotubes with low chiral
angles (� ∼ 0◦). This additional symmetry constraint gives rise to special scattering selection rules that
can only occur in low-dimensional materials[40].

8. Multi-wall carbon nanotubes—MWNTs

Because of the large diameter of the outer tubes for typical multi-wall carbon nanotubes (MWNTs)
and because MWNTs contain an ensemble of carbon nanotubes with diameters ranging from small to
very large, most of the characteristic differences that distinguish the Raman spectra in SWNTs from the
spectra for graphite are not so evident in MWNTs. For example, the RBM Raman feature associated
with a small diameter inner tube (less than 2 nm) can sometimes be observed when a good resonance
condition is established[84,85], but this is not the usual result, since the RBM signal from large diameter
tubes is usually too weak to be observable and the ensemble average of inner tube diameter broadens the
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signal. However, when we use hydrogen gas in the arc discharge method, we can get a very thin innermost
nanotube within a MWNT, even less than 1 nm in diameter[86], and in this case we can clearly observe
strong RBM peaks in the Raman spectra at the isolated MWNT level.

Whereas theG+ − G− splitting is large for small diameter SWNT tubes (see Section 6.2), the cor-
responding splitting of theG band in MWNTs is both small in intensity and smeared out due to the
effect of the diameter distribution within the individual MWNTs, and because of the variation between
different tubes in an ensemble of MWNTs in typical experimental samples. Therefore theG-band feature
predominantly exhibits a weakly asymmetric characteristic lineshape, with a peak appearing close to the
graphite frequency of 1582 cm−1 [87]. However for isolated MWNTs that contain very small diameter
innermost tubes (prepared in the presence of hydrogen gas using the arc discharge method), it is pos-
sible to observe multipleG-band splitting effects even more clearly than for SWNTs[88], and this is
because environmental effects (Section 6.1.4) become relatively small for the innermost nanotube in a
MWNT relative to the interactions occurring between SWNTs and different environments. The Raman
spectroscopy of MWNTs has not been well investigated up to now. Thus some new features observed
only in MWNT might be expected.

A DWNT (double wall carbon nanotube) can be considered to be a kind of MWNT for which the
interlayer interaction is generally considered to be turbostratic between the inner and outer nanotubes.
More detailed Raman studies of DWNTs have, however, been carried out[89]. But for armchair–armchair
DWNTs, some commensurate structure can be expected. In this case, the splitting of theG′-band which
is observed in 3D graphite could be seen. Another novel direction for future exploration is the small RBM
linewidths (down to 0.25 cm−1) occurring for the inner wall tube within an isolated DWMT[52]. Thus
we can conclude that many exciting research opportunities remain to be explored in MWNTs.

9. Summary and future directions

In this article we review the resonance Raman spectroscopy (RRS) of SWNTs and show how to use RRS
to characterize SWNT samples using the many features observed in the rich RRS spectra. In particular,
we show how the electronic and phonon properties of SWNTs can be investigated by using the strict
resonance9 conditions for many individual(n,m) SWNTs. Here we use the 1D property that the density
of states (or joint density of states for optical transitions) for both electrons and phonons becomes singular
[(E−E0)

−1/2], and this singularity is known as the van Hove singularity (vHS). Thus we can see optical
transitions experimentally as a sharp energy “level” coming from a vHS with a width of∼ 10 meV,
even though the transition occurs over a continuous energy band. Since the vHS energy positions of each
SWNT are different from one another, we can interpret Raman or absorption/emission spectra from a
SWNT bundle sample by specifying the energy of the vHSs of each(n,m) SWNT. The Kataura plot (Eii

vs.dt ) is useful for assigning the(n,m) indices of individual SWNTs. From the RBM frequency which
is inversely proportional todt (for example�RBM = 248/dt cm−1), we can estimate the diameterdt for
individual SWNTs in resonance with the laser excitation energyEL.

Both the resonance condition and the 1D vHS singularity contribute to enhancing the Raman intensity by
up to 5 orders of magnitude. Such conditions enables us to observe single-molecule (SWNT) spectroscopy.

9 Strict resonance is defined by the fact that the energy separation between the initial and final states of the transition exactly
matches the excitation laser energy.
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Generally, the resonance condition works at non-singular, continuous energy band states, too, but the
signal from an individual SWNT is too small to observe unlessEL is in resonance with a 1D vHS. An
important point to address here is that the vHS energy occurs at ak point in the 1D energy dispersion
where the energy dispersion relation of electrons or phonons is flat. Thus we can investigate the solid-
state properties of an isolated SWNT by RRS studies. Electron–photon and electron–phonon interaction
matrix elements are unique in graphite because of the linear energy dispersion relationE(k) near the
Fermi energy, and for this reason these matrix elements also have unique properties for SWNTs. For
example, a node is predicted for the photoluminescence intensity as a function ofk. By investigating
many SWNTs with different diameters and chiralities, we can probe the solid-state properties over the
entire BZ of 2D graphite.

A second-order Raman process consists of (1) either a one-phonon + one-elastic scattering process, or
a (2) two-phonon scattering process. Many weak Raman features can be assigned to specific second-order
scattered processes according to their frequencies and their frequency dispersions withEL. These weak
second-order Raman features are rich in information about the electronic and vibrational structure of the
SWNTs that cannot be probed from the first-order Raman features.

There are a number of parameters that can be probed by resonance Raman measurements: (1)(n,m)

values, diameter and chirality, (2) laser energy, (3) polarization of light, (4) sample orientation relative
to the polarization, (5) incident or scattered resonance, (6) Stokes and anti-Stokes Raman spectra, (7)
laser power and temperature, (8) number of defects, (9) bundled or isolated, (10) environmental factors,
including freely suspended SWNTs, substrates, wrapping agents, adsorbed species, whether in solution
or in bundles, etc. Raman spectroscopy is very flexible for use, and is easy to handle at ambient pressure
and room temperature. Micro-Raman spectroscopy has thus become a standard tool for characterizing
nanotubes and nano-materials.

In single nanotube spectroscopy, all Raman peaks come from the same SWNT, so that the total Raman
spectra contains a wealth of information which needs to be interpreted for self-consistency. Since the one-
phonon + one-elastic Raman scattering process is closely related to defect scattering, we can estimate the
sample quality by analyzing appropriate second-order spectral features such as theD-band. The relative
intensity (or absolute intensity) of Raman spectra can be calculated, by including electron–photon and
electron–phonon interactions as a function of(n,m), EL, to yield detailed information about the effect
on the spectra of specific defects and environmental conditions, and such information will be important
in the future for sorting out the many discrepancies now in the literature arising from Raman spectra
taken on SWNT samples under different experimental conditions, with different diameter distributions,
and exposed to different environmental conditions.

It can be expected that future Raman studies will further explore the 2n + m family effects found
experimentally for small diameter SWNTs[10,60,90]in an effort to develop a theoretical basis for the
experimentally observed family behavior. This will be necessary for gaining a more detailed appreciation
of the wealth of information provided by the rich spectra observed in resonance Raman spectroscopy,
especially for small diameter SWNTs at the single nanotube level. Here RRS studies on individual freely
suspended SWNTs of small diameter using polarized light are likely to be especially informative in view
of theoretical developments. So far we have considered the optical processes and scattering for an electron.
However for smaller diameter nanotubes (less than 1 nm), excitonic effects are expected to become more
important and must be considered in detail, though for relatively large SWNTs, excitonic effects can be
handled by using fitting parameters within the tight binding approximation.A detailed theoretical analysis
to include excitonic effects will be needed to cover a large range of nanotube diameters.
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Experimental studies using light polarized normal to the nanotube axis will be highly informative in
verifying theoretical predictions regarding selection rules and relative intensities of the various Raman
features as they appear under different scattering geometries. Such polarization studies will also allow
quantitative measurements to be made of the anisotropy of the subband energies in the valence and
conduction bands as a function of tube diameter, chiral angle, and whether the tube is metallic (MOD0),
or semiconducting MOD1, or semiconducting MOD2 relative to the[MOD(2n+m),3] family structure.
Experimental studies of the handedness of SWNTs by RRS under circular polarized light will be another
fruitful direction for future studies. Near-field RRS studies on individual SWNTs[91] to elucidate spatial
variations along the SWNT length will provide a powerful tool to study Raman signatures associated
with specific defects.
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