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ABSTRACT A review of the electronic dipole transitions in
graphite and single-wall carbon nanotubes is presented. Be-
cause of its singular electronic structure, the optical absorption
matrix element as a function of wave vector has a node in the
two-dimensional Brillouin zone of graphite, which depends lin-
early on the optical polarization direction. In the case of the
single-wall carbon nanotubes, the dipole selection rule and the
van Hove singularity in the joint density of states will give
a characteristic behavior, which is observed by luminescence
and Raman spectroscopy.

PACS 78.30.Na; 78.20.Bh; 78.66.Tr; 63.22.+m; 36.20.Kd;
36.20.Ng

1 Introduction

A single-wall carbon nanotube (SWNT) has a nano-
meter-sized length along the nanotube diameter and a length
of several microns in the nanotube-axis direction [1, 2]. Since
the wavelength of light lies in between these two characteristic
lengths, the optical behavior of SWNTs is unique in the sense
that the behavior exhibits both a molecular nature and a solid-
state nature. For the molecular nature of SWNTs, the optical
absorption spectra are rich and sharp because of the quantiza-
tion of wave vectors k along the circumferential direction of
the one-dimensional (1D) system to form 1D electronic en-
ergy bands, which give sharp van Hove singularities (vHSs)
in the joint density of states (JDOS), just like a molecular
level [2, 3]. For the solid-state nature of SWNTs, the wave
vector k is continuous in the direction of the nanotube axis,
and scattering or relaxation behavior occurs by phonons or
conduction electrons. The co-existence of the two concepts in
a SWNT gives rise to a unique behavior in the optical proper-
ties of SWNTs.

Furthermore, the electronic structure of the unfolded
SWNTs, that is two-dimensional (2D) graphite (or graphene),
is unique in its own right. The conduction and the valence
bands, which consist of π-electron states, touch each other
at the corners of the hexagonal Brillouin zone (BZ), known
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as the K and K ′ points (see Fig. 1) [2]. The reason why the
energy bands are degenerate at the BZ boundary is that there
are two equivalent carbon atoms denoted by A and B in the
unit cell. Because of the high symmetry between the A and B
atoms, no energy gap is opened at the K and K ′ points. How-
ever, when the A and B atoms are not the same (for example,
in the case of boron nitride, BN), an energy gap is indeed
opened at the zone boundary. In fact, BN becomes a wide-
band-gap semiconductor. In the case of diamond which has
sp3 bonding, on the other hand, there are two equivalent car-
bon atoms in the unit cell, and thus we can see an energy-band
degeneracy at the zone boundary of the three-dimensional
(3D) BZ. However, this energy at the BZ boundary does not
correspond to the Fermi energy, and thus diamond becomes
a wide-gap semiconductor. Graphite is a unique material in
nature, exhibiting energy bands at the Fermi level that are
doubly degenerate, without considering electron spin. An-
other unique aspect of 2D graphite is the fact that the Fermi
wave vector exists at the zone boundary of the 2D BZ. Fur-
thermore, the energy-dispersion relations for both the valence
and conduction bands are linear around the Fermi energy.
This situation is analogous to that for a massless neutrino par-
ticle. In fact, the effective-mass equation for 2D graphite has
the same structure as Weyl’s equation of relativistic quantum
physics [4, 5]. This special electronic structure of 2D graph-
ite gives rise to the unique and exotic physical properties of
single-wall carbon nanotubes [1, 2], such as: (1) being ei-

FIGURE 1 a The energy-dispersion relations for the π and π∗ bands in 2D
graphite (or graphene) are shown in the 2D Brillouin zone. The inset shows
the energy dispersion along the high-symmetry directions of the 2D BZ.
b The contour plot of the 2D energy bands of graphite. The equi-energy con-
tours are circles near K and near the center of the Brillouin zone, but near
the zone boundary the contours are straight lines which connect nearest M
points CEa

CE
a Figure 1a is not referred to in the text.
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ther metallic or semiconducting depending on diameter and
chirality [6, 7], (2) absence of back scattering in their trans-
port properties [8], (3) inter-valley double-resonance Raman
scattering [9–11], and (4) nodes in the optical absorption as
a function of k [12].

Optical measurements provide a useful and quick tool for
characterizing a single SWNT on a Si/SiO2 substrate [13] or
in an aqueous SDS CE

b suspension [15, 16], since there is no
need to make contacts to the sample. By focusing a small spot
of laser light, we can get a spatial resolution of up to 1 µm or
less [13, 17]. By changing the laser energy, we can get a high
energy resolution of 3 meV in the measurement of the energy
of a vHS by resonance Raman spectroscopy [18].

In this article, we review the standard theory of optical
dipole transitions in 2D graphite and in SWNTs [12] and the
dipole selection rules for each of these cases [5, 19, 20]. Then
we compare some experimental results of luminescence [15,
16, 21, 22] and resonance Raman spectroscopy [13, 23, 24]
for which the electron–photon interaction is essential.

2 Optical dipole transitions in graphite

First we consider the optical dipole transition of 2D
graphite [12, 20]. For a laser energy less than 3 eV, the opti-
cal transition occurs between bonding π and π∗ energy bands.
The dipole selection rule tells us that an optical transition for
the 2p orbitals of an atom is not allowed. However, the tran-
sition from a 2p orbital of one atom to that of a neighboring
atom is allowed, which gives the π–π∗ transition in graphite
and in carbon nanotubes.

Time-dependent perturbation theory for an electro-mag-
netic wave field provides us with the matrix element for the
dipole absorption or emission between an initial state (Ψi) and
a final state

(
Ψ f

)
, which is given by [12, 20]

M j=a,e
i→ f = i

eh

mω

√
I

εc
ei(ω f −ωi∓ωj)t P〈Ψ f |∇|Ψi〉 , (1)

where I, ω, and P are intensity, frequency, and polarization
vectors of the optical electric field, respectively, and the sign
‘∓’ in (1) corresponds to the light absorption ( j = a) or emis-
sion ( j = e).

The matrix element is given by an inner product of the po-
larization vector P and the dipole vector D defined by

D ≡ 〈Ψ f |∇|Ψi〉 . (2)

In order for the dipole transitions to occur, we need to have
a finite length of the dipole vector perpendicular to the wave-
propagation direction or parallel to the polarization vector.

In the case of a graphene layer, the wavefunction Ψl

(l = i, f ) can be written as a sum of two Bloch functions Φs

(s = A, B) for the A and B atoms,

Ψl (kl, r) =
∑

s=A,B

Cl
s (kl)Φs (kl, r) , (3)

where the coefficient Cl
s (kl) is obtained by solving this 2 ×2

Hamiltonian matrix [2]. Each Bloch function Φs (s = A, B)
is further expressed by a linear combination of atomic 2pz

orbitals ϕ
(
r− Rj

)
( j = 1, . . . , N). In the tight-binding ap-

proximation, the summation is taken over the solid, and N is
the number of unit cells:

Φs (kl, r) = 1√
N

N∑
j=1

eikl Rj ϕ
(
r− Rj

)
. (4)

Substituting (4) into (2), the dipole matrix vector is expressed
by a linear combination of atomic dipole matrix vectors:

Da (R1, R2) ≡ 〈ϕ (r− R1) |∇|ϕ (r− R2)〉 , (5)

where Da (R1, R2) is the atomic dipole vector between two or-
bitals at R1 and R2. The atomic dipole vector within the same
atom, (R1 = R2), becomes zero, that is, Da (R1, R1) = 0.

When we put a graphene layer on the xy plane, then the z
component of any atomic dipole vector between two atoms at
R1 and R2 for the derivative on z becomes zero,

Dz
a (R1, R2) =

〈
ϕ

(
r− Rj1

) ∣∣∣∣ ∂

∂z

∣∣∣∣ϕ (
r− Rj2

)〉 = 0 , (6)

because the integrand is an odd function of z. Thus the atomic
dipole vector for each carbon atom has a direction paral-
lel to the graphitic plane, D = (

dx, dy, 0
)
. Thus 2D graphite

strongly absorbs light that is incident perpendicular to the
graphite plane, P = (

px, py, 0
)
. Hereafter, we concentrate

only on the in-plane polarization optical resonance. It should
be mentioned that we need to consider out-of-plane polariza-
tion in the case of small-diameter SWNTs since the curvature
effect can not be neglected.

The matrix element for the derivative on x (or y) has a non-
vanishing value if the relative position Rj1 − Rj2 has an x (or
y) component. When we consider the matrix elements only for
the three nearest-neighbor atoms, we get the following formu-
lation,

〈Ψc(k)|∇|Ψv(k)〉

= 2
√

3M

a
Re

[
Cc∗

A (k)Cv
B(k)

3∑
i=1

eik·bi bi

]
, (7)

where a = 2.46 Å is the lattice constant of graphite, Re[. . . ]
is the real part of [. . . ], and bi (i = 1, 3) denotes the nearest-
neighbor carbon-atom vectors from A to B sites. Here b1 =
(−aC–C, 0, 0) has a bond length aC–C = a/

√
3 = 1.42 Å, while

b2 and b3 are given by rotating b1 by 2π/3 and 4π/3, respec-
tively. It is noted that we used for (7) the following relation:
Cv∗

A Cc
B = − (

Cv∗
B Cc

A

)∗
, which can be directly shown by using

the analytic form of Ci
j . Also, M in (7) is the optical matrix

element for the two nearest-neighbor atoms separated by b1:

M =
〈
ϕ (R+b1)

∣∣∣∣ ∂

∂x

∣∣∣∣ ϕ(R)

〉
. (8)

For light with energy smaller than 3 eV, the optical absorp-
tion occurs around the K and K ′ points (hexagonal corners)
of the 2D BZ (see Fig. 1). The coordinates of the two in-
equivalent K points in the 2D BZ are K = (0,−4π/3a) and
K ′ = (0, 4π/3a), respectively. In this case, (7) is expanded as
a Taylor series in k around the K (or K ′) point. Hereafter, all

CE
b Please define SDS.
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coordinates of k in the Taylor expansions are measured from
the K point. The coefficients of the wavefunction can be ex-
pressed as a linear function of k [8, 25] and they are expanded
around the K (or K ′) point as

Cc
A(k) = 1√

2
, Cc

B(k) = ±ky − ikx√
2k

,

Cv
A(k) = − 1√

2
, Cv

B(k) = ±ky − ikx√
2k

, (9)

where k =
√

k2
x + k2

y is the distance from the K or K ′ point.
Here the plus or minus sign for the ky value is valid for the
expansion around the K or K ′ point.

By expanding eik·bi bi appearing in (7) around the K and
K ′ points, we get the following result for the dipole vector
up to linear terms in kx and ky for a given polarization vector
P = (

px, py, pz
)
,

D = (
dx, dy, dz

) = ±3M

2k

(−ky, kx, 0
)

. (10)

Here the plus (minus) sign is for the K
(
K ′) point. Then the

matrix element in (1) is proportional to

PD = ±3M

2k

(
pykx − pxky

)
. (11)

This result shows that the line pykx − pxky = 0 in the 2D
BZ becomes a node in the optical absorption for a given
P = (

px, py, pz
)
. For a given laser energy, the equi-energy

line for optical absorption gives a circle (see Fig. 1b) around
the K point with a wave vector k = Elaser/

√
3γ0a, with γ0 =

2.89 eV [26, 27] for an optical experiment on carbon nano-
tubes. Thus we expect no optical absorption around the two
crossing points of the line pykx − pxky = 0 with the circle.

In Fig. 2, we plot the absorption probability per unit time,
which is the square of the matrix element in (2) in the 2D
BZ of a graphene sheet for Elaser = 3 eV and (a) P = (0, 1),
(b) P = (−1/2,

√
3/2), and (c) P = (1, 0). The dark region

gives a large absorption coefficient. It is clear from the fig-
ure that nodes in the optical absorption appear on the ver-
tical lines connecting the K and K ′ points in the 2D BZ(

kx = 0,±2π/
√

3a
)

in Fig. 2a. For different polarization di-
rections in Fig. 2b and c, the nodes appear on the pykx −
pxky = 0 lines around the K and K ′ points. Since we numer-
ically solve the wavefunctions, the higher-order corrections
for the node of (11) are included in Fig. 2. The existence of

K

K’K’

M ΓM 

KK

K’

K

K’K’

M ΓM 

KK

K’

K

K’K’

M ΓM 

KK

K’(a) (b) (c)

FIGURE 2 Plot of the optical absorption intensity (strong for dark area) as
a function of k over the two-dimensional BZ of graphite. The polarization
vectors are selected as a P = (0, 1), b P = (−1/2,

√
3/2), and c P = (1, 0).

The laser energy is selected as Elaser = 3 eV. It can be seen that the absorption
is zero for certain wave-vector directions, and the condition for the vanishing
absorption rotates with rotating P [12]

a node in the absorption coefficient as a function of k is a spe-
cial effect that has never been observed in other materials.

As far as the validity of the linear-k approximation for
the energy and the wavefunction is concerned, the expression
in (11) works well for specifying the node position. However,
when the laser energy increases, the equi-energy contour is
no longer a circle, but rather is changed into a triangle by the
trigonal warping effect [28]. In this case, the higher-order cor-
rections for (11) become important for describing the node
positions [12].

It is difficult to see the node of W (k) by photo-absorption
experiments performed on graphene. However, when we con-
sider nano-graphite ribbons [29], the wave vector in the direc-
tion perpendicular to the ribbon length becomes discrete, and
thus we may be able to see the node by rotating the polariza-
tion of the light. Another possibility is to use angle-resolved
photo-electron spectroscopy, if we consider the continuum
states as the unoccupied states.

3 Optical absorption of single-wall carbon
nanotubes

In the case of SWNTs, the dipole vector of the
(n, m) SWNT is calculated by using the wavefunctions for
the initial and final states that are specified by the subband in-
dex µ, µ = 1, . . . , N, and by the 1D wave vector k, −π/T <

k < π/T [2]. The energy subband index µ comes from the
quantization of the wave vectors around the circumferential
direction. N and T are the numbers of hexagons in the 1D unit
cell and the 1D unit lattice vector, respectively. Hereafter we
take the z axis to be the nanotube axis and the y axis to be on
a B atom.

As is done in the case of 2D graphite, we decompose the
wavefunction within the tight-binding scheme, and the dipole
matrix element is thus decomposed into the sum of the atomic
dipole vectors,

D =
√

3M

Na


Cc∗

A (k)Cv
B

(
k′) N∑

j

ei(k−k′)RB
j Uz

(
βj

)
vg

−Cc∗
B (k)Cv

A

(
k′) N∑

j

ei(k−k′)RA
j Uz

(
αj

)
v∗

g


 . (12)

Here RB
j and RA

j are the coordinates of the B and A carbon
atoms in the SWNT unit cell. The vectors k′ and k are the 2D
initial and final wave vectors of the electron, respectively, and
are given by

k = µK1 + kK2 , (13)

where K1 and K2 are the reciprocal lattice vectors in the 2D
BZ for a SWNT perpendicular and parallel to the nanotube-
axis direction, respectively [2]. vg is the atomic dipole vector
of a SWNT for the B atom on the y axis, and vg for each atom
is obtained by rotating the atomic dipole vector of a carbon
atom at the B atom for 2D graphite (1) around the y axis by
(−π/6 + θ), where θ is the chiral angle, and then (2) rotat-
ing the dipole vectors around the nanotube axis Uz by angles
αj and βj for the A and B atoms in the unit cell, respectively.
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More explicitly, the angles are given by [2, 20]

αj = 2π j

N
, βj = 2π j

N
+ 2a

dt
cos

(π

6
− θ

)
, (14)

where dt is the diameter of a SWNT.
When we neglect the curvature effect of the cylindrical

surface of the SWNT, the atomic dipole vector of the B atom is
considered to be the same as that of 2D graphite. Thus we ex-
pect D = (dx, 0, dz), in which the y component of D becomes
zero, since the direction perpendicular to the surface is y. For
a carbon atom on a SWNT along the x axis, D becomes
D = (

0, dy, dz
)
. The dipole selection rule for SWNTs is given

by taking the sum of the atomic dipole vectors in (12) with the
phase factor of ei(k−k′)RA

j or ei(k−k′)RB
j .

In the case of the z polarization, P = (0, 0, pz), the z com-
ponent of the atomic dipole vectors, dz, contributes to the
absorption. Since dz does not change direction by rotations
around the z axis in the sum over j , the summation gives
a non-zero value when k = k′. This gives the selection rule
µ = µ′ for the energy subband index and k = k′ for the 1D
wave number.

In the case of the x (or y) polarization, dx (or dy) con-
tributes to the optical absorption. When we take the sum over
j , dx (or dy) will rotate by 2π, which gives an additional phase(
e2πi/N

) j
to (12), which modifies the selection rule not for the

1D k vector, but only for the µ values. This is because the rota-
tion of dx (or dy) does not correspond to movement along the
z axis and thus there is no effect in 1D onCE

c the k vectors. The
effect on µ thus gives the selection rule µ−µ′ = ±1 for x or
y polarization [4, 12].

A further investigation [20] tells us that the dipole matrix
element of a SWNT has the following general form for an
axial chiral molecule,

D =
(

D+ + D−
2

,± D+ − D−
2i

, D0

)
, (15)

where D+, D−, and D0 are functions of k given by (12), with
the phase factors providing the dipole selection rules being
µ−µ′ = +1,−1, and 0, respectively. In (15), pm corres-
ponds to left- and right-handed chiral nanotubes. Thus, for
either the left- or the right-handed polarization of light prop-
agating in the direction along the z axis, P = (px,±i px, 0),
the dipole selection rule is either µ−µ′ = +1 or µ−µ′ =
−1 depending on the left- or right-handed chirality of the
SWNTs [20]. These phenomena are generally observed in an
axial chirality molecule and they are known as optical activ-
ity. However, because of the inversion symmetry in real space
and because of time-reversal symmetry in k space, the optical
spectra obtained for left- and right-handed polarizations may
be the same [20]. Thus, in order to distinguish between right-
and left-handed SWNTs, we need to break the symmetries by
applying a magnetic field or lattice distortion. The detailed
description of this phenomenon will be reported elsewhere.

4 Experiment
4.1 Resonance Raman spectroscopy

In resonance Raman spectroscopy, either the opti-
cal absorption or the optical emission enhances the Raman

intensity in the incident or scattered resonance processes, re-
spectively [13, 23, 24, 30–32].

As is discussed in the Introduction, the vHSs in the DOS
for the 1D energy bands and in the corresponding JDOS
are singularCE

d and thus sharp vertical optical transitions in
the 1D BZ are observed. Since the electronic structure of
a SWNT consists of N energy subbands and each subband has
a 1/

√
E − Ei-type singularity at special ki points for which

the energy-dispersion relation becomes flat, the optical tran-
sition from a vHS for an occupied energy band to that for an
unoccupied band gives significantly sharp spectral peaks, like
those for a molecular level.

In the case of parallel polarization of light, the dipole se-
lection rule gives us the transition from −Ei in the bonding
π energy band to Ei in the anti-bonding π∗ energy band. The
number of vHSs, however, is much smaller than the num-
ber of cutting lines, N, since most of the energy subbands
are considered to be zone folded from a 2D graphite en-
ergy band [34]. The corresponding transition energies Eii can
be plotted for all (n, m) chiralities as a function of dt [33]
and the resulting plot is known as a Kataura plot, as shown
in Fig. 3 [28]. Since the Eii positions appear at different ener-
gies for a given diameter of SWNTs, we can easily distinguish
a Raman signal for semiconducting SWNTs from that for
metallic SWNTs [35, 36].

Because of the 1D lattice structure of SWNTs, the optical
absorption for light polarized parallel to the nanotube axis is
strong and the absorption for perpendicularly polarized light
is strongly suppressed in an aligned SWNT bundle [33, 37–
40] or an isolated SWNT [41–44]. The latter effect is un-
derstood by the so-called depolarization effect, in which the
induced charge cancels the effect of the electric field of the

FIGURE 3 Calculation of the energy separations Eii (dt ) for all (n, m)
values as a function of nanotube diameter of 0.7 nm < dt < 3.0 nm (based on
the work of Kataura et al. [33]). The results are based on the tight-binding
model with transfer and overlap parameters γ0 = 2.9 eV and s = 0 [2, 28].
The crosses and open circles denote the peaks of semiconducting and metal-
lic nanotubes, respectively. Filled squares denote the Eii (dt) values for
zigzag nanotubes, which determine the width of each Eii (dt) curve. Note the
points for zero-gap metallic nanotubes along the abscissa

CE
c Please check amended wording.

CE
d Surely all vHSs are singular!
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nanotube [45–47]. This screening effect might not occur per-
fectly in the case of SWNT bundles, since the depolarization
field from neighboring SWNTs smears out the screening to
some extent. In fact, we do observe the perpendicular po-
larization spectra experimentally in non-aligned SWNT bun-
dles [42–44, 48].

In some special experimental cases, the radial breathing
modes (RBMs) (denoted by X in Fig. 4a) are observed in
the middle of the energy-gap region between the ES

11 and
ES

22 bands of the normal Kataura plot that is appropriate for
parallel-polarized light. These special Raman signals do not
appear in isolated single-wall nanotubes nor in well-aligned
SWNT bundles. Further, we can not explain this signal by
the Kataura plot for parallel polarization of light, even when
we change the parameters for the electronic energy bands
considerably. Thus we speculate that these spectral features

FIGURE 4 Calculation of the energy separations a Eii (dt) and b Eii±1 (dt)
for all (n, m) values as a function of nanotube diameter of 0.7 nm < dt <

3.0 nm. The results are based on the tight-binding model with transfer and
overlap parameters γ0 = 2.9 eV and s = 0 [2, 28]. X denotes the experimental
RBM signal whose size represents the relative intensity [49]

come from the resonance Raman signal from perpendicularly
polarized light [49]. In Fig. 4b we show a Kataura plot for per-
pendicularly polarized light and many of the observed RBM
features can be fitted on this plot. The appearance of these
RBM peaks is attributed to smearing out the depolarization ef-
fect in a sample of random orientation. A further investigation
is needed to study this effect for such a sample.

In our first paper on the (n, m) assignment for individual
SWNTs using resonance Raman scattering [13], we adjusted
the fitting parameters to explain all Raman signals of isolated
SWNTs on a Si/SiO2 surface. This fitting is valid for SWNTs
with dt around 1.4-nm diameter for SWNTs on Si/SiO2 sur-
faces. This fitting works very well within an accuracy of
1 cm−1 for the RBM when combined with the optical ab-
sorption data [3]. For smaller-diameter nanotubes, the zone-
folding scheme for the electronic structure does not work so
well, and thus we expect some deviation of the experimental
data from predictions of the tight-binding approximation for
tube diameters below ∼ 1 µm. Further, the effect of the sub-
strate surface is also important. For some other Raman data
from isolated SWNTs on a different surface or from SWNT
bundles, the RBM frequencies are reported to be shifted by
up to ∼ 10 cm−1 [14]. Thus one needs to make some correc-
tions when using the Kataura plot for different experimental
conditions.

4.2 Photo-luminescence

Photo-luminescence (PL) from a SWNT has been
reported for 0.4-nm SWNTs within a zeolite host [50] in
an aqueous SDS suspension [15, 16, 22] and for suspended
SWNTs in air [51]. A common situation for observing the
photo-luminescence is that each SWNT is semiconducting
and is well isolated. In the PL process, a photo-excited elec-
tron loses energy by recombining with a hole or by emitting
phonons in a non-radiation process or by other optical pro-
cesses, such as an Auger process, or plasmon generation. The
existence of a nearby SWNT offers another possible electron-
relaxation path for non-luminescence (NL) processes and
these relaxation effects have been examined in fast optics
studies in bundles [52, 53]. Especially, since a metallic SWNT
has an energy dispersion which touches other dispersions at
the Fermi level, NL recombination readily occurs for metal-
lic SWNTs. In the case of semiconducting nanotubes, on the
other hand, a photo-excited electron (or hole) loses energy and
goes to the bottom of the conduction subband (or the top of
the valence band) and then recombination between the elec-
tron and the hole occurs. Thus the radiation recombination
resulting in a photo-luminescence signal for an isolated semi-
conducting SWNT can be observed.

The Raman process is a light-scattering process in which
the scattered photon is observed. Thus, in the spectroscopic
measurement of photons, we should be able to see both Ra-
man and PL signals, in general. In fact, the coexistence of
Raman and PL spectra has already been observed [21, 51], in
which the Raman spectra give much sharper spectral features
(1–10 cm−1) than the PL spectral features (∼ 100 cm−1) in the
case of SDS-suspended nanotubes in solution [21]. The cor-
responding lifetime of the PL process is about 100 fs, which is
a reasonable value, based on fast optics experiments.

CE
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FIGURE 5 Kataura plot of a semiconducting nanotube. Filled dots, open
circle, and open square denote, respectively, PL data and empirically fit-
ted data for ES

11 and ES
22 [22]. Filled square denotes resonance Raman

data [13, 23] only for the semiconducting nanotube. The symbol × shows
a tight-binding result with γ0 = 2.9 eV and s = 0 [2, 28]

In Fig. 5, we show the Kataura plot of semiconduct-
ing nanotubes taken from PL and resonance Raman spectra.
Filled dots, open circles, and open squares denote, respec-
tively, PL data and empirically fitted data for ES

11 and ES
22

transition energies [22]. Filled squares denote resonance Ra-
man data [13, 23]. The symbol × shows the tight-binding
results with γ0 = 2.9 eV and s = 0 [2, 28]. In Fig. 5, we do
not show the E M

11 plot for metallic SWNTs, since there is no
PL data available for metallic nanotubes. As is discussed in
Sect. 4.1CE

e , the parameter of γ0 = 2.9 eV is selected so as
to reproduce the optical absorption data for 1.4-nm SWNTs.
In fact the calculated ES

22, ES
33, and ES

44 points reproduce the
PL data and Raman data rather well even for 1-nm SWNTs.
Since there are no Raman measurements using E11aS, as far as
we know, and since there are not many PL measurements for
SWNTs with diameters larger than 1.4 nm, there is little com-
mon ground at present between the fitting procedures for the
PL and Raman experiments.

However, ES
11 is clearly up-shifted relative to that of the PL

shift. This PL shift is predicted to be due to a Coulomb inter-
action and is known as an exciton binding energy [54], which
is observed in the PL spectra of SWNT bundles [55, 56]. Ac-
cording to Ando’s results, the exciton levels appear at a higher
energy position than would be expected from a simple tight
binding energy gap model, without considering any Coulomb
interaction due to the electron–electron interaction in 1D
systems, and this effect is very large for the lowest-energy
subbands in SWNTs [54, 57]. The corresponding energy for
a single-electron excitation exists at a higher position than the
exciton levels because the Coulomb interaction is repulsive,
but there is no oscillator strength for the transition to this ex-
citation because of the oscillator strength sum rule which is
widely discussed in semiconductor physics [58]. This is our
current understanding of the PL spectra. Further theoretical
and experimental investigations are needed for understanding
optical processes appearing in SWNTs.

5 Conclusion

In conclusion, we showed the optical absorption
matrix elements of graphite and SWNTs as a function of k.
In 2D graphite, the absorption matrix elements show nodes
on the equi-energy lines in the 2D BZ of graphite. In the case
of SWNTs, we have a dipole selection rule for parallel- and
perpendicularly polarized light. Raman spectroscopy shows
a clear view of van Hove singular optical absorption not only
for parallel-polarized light but also for perpendicularly po-
larized light for some SWNT bundles. Comparison of the
Raman Kataura plot with the PL data gives a reasonable over-
lap with each other and with the calculated transition energies.
However, we need a more sophisticated model for explaining
the wide range of diameters and transition energies in these
spectra.
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