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Abstract

The disorder-induced D-band and some other non-zone center Raman modes of graphite and single wall carbon

nanotubes are assigned to phonon modes in their respective Brillouin zones. In disordered graphite, the weak, dispersive

phonon modes, which have been known but never assigned so far, are well described by the double resonance Raman

process. All weak Raman peaks observed for sp2 carbons are useful for determining the phonon dispersion relations of

graphite. In carbon nanotubes, all semiconducting nanotubes and some metallic nanotubes have van Hove singular k

points for their electronic and phonon energy dispersion curves at the G point of the Brillouin zone. A corresponding

Raman process is relevant to explain the observed D-band and intermediate frequency spectra.r 2002 Elsevier Science

B.V. All rights reserved.

PACS: 78.30.Na; 78.66.Tr; 63.22
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1. Introduction

In disordered graphite, carbon nanotubes and
sp2 carbon materials, the disorder-induced Raman
peak, known as the D-band, has been observed
around 1350 cm�1 for laser excitation energy
Elaser ¼ 2:41 eV [1–3]. Characteristic features of
the D-band are that (1) the peak frequency
increases with increasing Elaser by 53 cm�1 eV�1;
and (2) the relative intensity of the D-band Raman

peak to the zone center G-band peak around
1590 cm�1; ID=IG; increases with increasing dis-
order and with decreasing crystallite size [4–6]. The
origin of the D-band peaks is understood by a (1)
double resonance, (2) one-phonon-emission, and
(3) second-order Raman process in which one of
the two scattering processes is an elastic scattering
process due to a defect, and the other is a phonon
emitting (or absorbing) inelastic scattering process
[7–9]. Here the words second-order Raman are
used in general to denote two scattering events
occurring in a Raman process, and we explicitly
show one-phonon or two-phonon processes for the
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second-order Raman process. If the two scattering
processes of an electron are phonon processes (two
phonons, second-order Raman), sample disorder
is not needed. Thus, the corresponding second
harmonic G0 Raman phonon peaks around
2700 cm�1 are known to be intense, disorder-
independent peaks. In double resonance Raman
scattering, there exist the following four electronic
processes: (1) photon absorption by creating an
electron and a hole at k; (2) the electron scattering
from k to kþ q; (3) the electron back scattering
from kþ q to k; and (4) photon emission by
recombining the electron and the hole at k: If there
exist real electronic states both for the scattered
electronic states Ekþq and for the excited electronic
states Ek at either the incident or the back
scattered k states, the Raman intensity is doubly
enhanced by the resonant factors [8,9]. This is the
origin of the relatively strong enhancement of D-
band Raman modes in sp2 carbons. In this paper
we discuss the origin of the D-band and other
intermediate Raman modes of graphitic materials
and single wall carbon nanotubes (SWNTs) on the
basis of the double resonance process.
An important fact of the double resonance

process is that the phonon q-vector is no longer
around the center of the Brillouin zone (BZ), but
corresponds to a general phonon mode in the BZ.
Furthermore, by changing the laser excitation
energy Elaser; the double resonance Raman peaks
can shift along many phonon energy dispersion
relations with different q-vectors. The resulting
features in the Raman spectra have been known
for many years as small, reproducible, and
dispersive intermediate frequency Raman peaks
[5,10–16]. Here we explain the relationship be-
tween the electron k-vector and the phonon q-
vector to reproduce these peaks. As a result,
almost all intermediate phonon modes are now
assigned to specific branches on the phonon energy
dispersion relations.

2. Double resonance condition for graphite

First we consider the resonant scattering of an
electron with wave vector k by elastic or inelastic
scattering vector q: The energy momentum con-

servation requires the following equations,

Eðk þ qÞ ¼ EðkÞ; or Eðk þ qÞ ¼ EðkÞ7_oðqÞ; ð1Þ

for elastic or inelastic scattering, respectively. The
symbol 7 corresponds to phonon absorption and
emission, respectively. In the back scattering
process from k þ q to k; the equations becomes,
EðkÞ ¼ Eðk þ qÞ or EðkÞ ¼ Eðk þ qÞ7_oð�qÞ:
In graphite, the electronic energy dispersion is

approximated by a linear dispersion relation
around the K points at the corners of hexagonal
BZ,

E ¼ 7

ffiffiffi
3

p
g0a
2

jkj; ð2Þ

where g0 ¼ 2:89 eV and a ¼ 0:246 nm are the
nearest neighbor tight-binding parameter and
lattice constant, respectively [17]. The length of
the wave vector, jkj; is measured from the K point.
For the periodic boundary conditions, there are
two inequivalent K and K0 points in the two
dimensional (2D) BZ [17]. For a given energy E;
the energy contours, E ¼ EðkÞ; are two thick
circles around the K and K0 points as shown in
Fig. 1. When the energy increases, the circles are
deformed to a triangle which connects three
nearest neighbor M points to a K point (see
Fig. 1), and this is known as the trigonal warping
effect [18]. For laser energies smaller than 3 eV; the
energy dispersion of the bonding and anti-bonding
p bands is almost symmetric, and furthermore we
can use the approximation that the contour is a
circle.
Since the phonon energy is much smaller than

the laser excitation energy, we can neglect the
phonon energy to discuss inelastic electron scatter-
ing as a first approximation. In electron scattering
from k to k þ q states on the same contour line
E ¼ EðkÞ; there are two possible scattering pro-
cesses. One is the scattering within a circle and the
other is from one circle to the other circle.
Hereafter, we refer to the two cases, respectively,
as intra-valley (K-K; K0-K0) and inter-valley
(K-K0; K0-K) scattering. Intra-valley scattering
requires relatively small q vectors compared with
the size of the BZ, while inter-valley scattering
requires relatively large q vectors. The correspond-
ing phonon modes of intra-valley and inter-valley
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scattering are related to the modes near the G and
K points, respectively, when we measure the q

vectors from the G point.
When we consider a k point on a circle E ¼

EðkÞ; the end of all possible q vectors for intra-
valley and inter-valley scattering lies, respectively,
on the dotted circles, shown in Fig. 1, which touch
the G and K points. The distance of the end points
of the q vectors from the G or K points are
expressed by

jqj ¼ 2jkjsin y; ð3Þ

where the angle y is taken for jyjop=2; and y ¼ 0
corresponds to the largest q vector for each
scattering case. The density of jqj is singular at
jqj ¼ 2jkj; and thus the Raman spectra for phonons
with jqj ¼ 2jkj will be enhanced. Further, the
phonon jqj wave vectors increase with increasing
laser excitation energy. Using the fact that the
phonon dispersion relation is symmetric around
the G or K point, the phonon energy continuously
changes along the various branches of the phonon
dispersion relations by changing the laser energy.
This is the physical origin of D-band phonon
modes in sp2 carbons. Another contribution to the
intermediate Raman frequency features comes
from phonons with jqj ¼ 0: Although the density
of phonon wave vectors in resonance jqj is not

singular at jqj ¼ 0; the phonon dispersion relations
around the symmetry points are flat (except for
acoustic modes around the G point), and this gives
rise to a singular phonon density of states (phonon
DOS) [17].
The D-band phonon modes come from the

second highest frequency phonon dispersion
modes in sp2 carbons by inter-valley phonon
scattering. Since there are six phonon dispersion
curves in 2D graphite, we can consider twelve
possible double resonance peaks, which are gen-
erally dispersive depending on the slope of the
phonon dispersion relation. Using the relation
between jqj and the laser energy, we can assign the
experimental results for many dispersive phonons,
and the results are summarized in Table 1. Tan
et al. reported two dispersive relatively lower
phonon frequency modes in graphite whiskers
(GW) [11], which we assign to two of the three
acoustic modes, the in-plane tangential (iTA) and
longitudinal acoustic (LA) modes which are
resonant through an intra-valley scattering pro-
cess. The features around 1480 and 860 cm�1 are
assigned for the first time to the inter-valley, in-
plane tangential optical (iTO) and intra-valley,
out-of-plane tangential optical (oTO) phonon
branches, respectively. The broad weak signal
around 1580 cm�1; which is known as a back-
ground of the strong G-band peaks, is assigned to
intra-valley scattering of the LO phonon disper-
sion branch. Furthermore, some non-dispersive
modes can be assigned to jqj ¼ 0 phonon modes.
In Fig. 2, we show the fitted phonon dispersion

relations of graphite to the measured intermediate
phonon frequencies. The original phonon disper-
sion relations that we used are based on inelastic
neutron scattering experiments data [17] which are
not so accurate in the higher frequency region.
Since we do not get phonon frequency information
near the M point from Raman spectra, we used
lower frequency inelastic neutron scattering data
[17], denoted by open circles, which are important
to get good convergence for the fitting. The
calculated frequencies and their dispersion slopes
are consistent with each other and are in excellent
agreement with the experimental results for all of
these features. The details of the fitting procedure
will be presented elsewhere [19].

Fig. 1. Energy contours of 2D graphite. E ¼ EðkÞ; and Eðk þ qÞ
are shown as thick solid circles around the hexagonal corners of

the K or K0 points in the Brillouin zone of 2D graphite. When

the energy increases, the circles are deformed to a triangle

denoted by dotted line which connects three nearest neighbor M

points to a K point. Dotted circles around the K and G points

give all possible qinter and qintra vectors for a given k vector

measured from G; shown near the upper-right K point.
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In the double resonance phonon process, there
are two resonant conditions: resonances with the
incident and the scattered light, and thus a broad
peak can be decomposed into two peaks, but it

might be difficult in practice to decompose the
broad experimental peaks into two peaks. How-
ever, when we measure both the Stokes and
anti-Stokes peaks, the peak which comes from
resonance with the incident photon should have
the same energy for both the Stokes and anti-
Stokes processes. Furthermore, the frequency
separation of the scattered light resonance peak
from the incident light resonance peak is the same
for the Stokes and the anti-Stokes features. Thus,
from the simultaneous measurement of the Stokes
and anti-Stokes features, we can determine the
slope of the phonon dispersion curve reliably. In
preliminary measurements for the D-band of PPP-
derived 2D graphite, a value of 58 cm�1 eV�1 was
obtained [20], slightly higher than the previous
value of 53 cm�1 eV�1:
Elastic scattering provides another process to

get one-phonon energy loss, and some electronic
potential for defects is then needed for this elastic

Table 1

Assignment of intermediate phonon modesa

Mode assignment Theoretical value Experimental observations

branch(process) oth½qo=qE	 oexp½qo=qE	

oTA (G; q ¼ 2k) 45½26	 —

iTA (G; q ¼ 2k) 300½121	 288½129	6

LA (G; q ¼ 2k) 430½173	 453½216	6

oTA (K; q ¼ 2k) 500½�28	 —

oTO (K; q ¼ 2k) 640½26	 —

— 750½�147	5

oTO (G; q ¼ 2k) 850½�5	 865½13	3

oTO (G; q ¼ 0) 855½0	 860½0	5

iTA (K; q ¼ 2k) 900½�58	 820½�57	1; 865½�53	4; 1084½�74	2; 1094½�77	1

iTA (K; q ¼ 0) 1000½0	 970½129	5; 1060½0	5; 1081½22	4

LA (K; q ¼ 2k) 1250½�5	 —

LA/LO (K; q ¼ 0) 1260½0	 —

LO (K; q ¼ 2k) 1350½48	 1352½43	1; 1345½50	4; 1354½46	6

iTO (K; q ¼ 2k) 1450½�11	 1480½�83	1

iTO (K; q ¼ 0) 1490½0	 1500½�	2

iTO (G; q ¼ 2k) 1555½�20	 —

iTO/LO (G; q ¼ 0) 1580½0	 1582½0	3

LO (G; q ¼ 2k) 1600½4	 1622½0	1; 1623½0	2; 1623½9	6

aThe first column shows the phonon dispersion mode (i ¼ in-plane or o ¼ out-of-plane; T ¼ tangential or L ¼ longitudinal; A ¼
acoustic or O ¼ optical; and G ¼ intra-valley or K ¼ inter-valley; q ¼ 0 or 2k). The second column shows the calculated phonon

frequencies (for Elaser ¼ 2:41 eV) and phonon frequency dispersions with laser energy qo=qE (between brackets) for the Raman

features predicted to appear in the Raman spectra of sp2 carbons according to the double resonance theory. The third column

correlates the predicted frequencies and dispersion with many Raman features experimentally observed in different sp2 carbons,

including (1) highly ordered pyrolytic graphite (HOPG) [14], (2) pyrolytic graphite (PG) [13], (3) single wall carbon nanotubes

(SWNTs) [15], (4) 12C ion implanted HOPG (C-HOPG) [12], (5) micro-crystalline graphite (MG) [5], and (6) graphite whiskers (GW)

[11]. The frequencies are displayed in cm�1 and the frequency dispersions in cm�1 eV�1:

Fig. 2. Fitted graphite phonon dispersion relations to the

intermediate frequency Raman peaks (solid circles). To get

good convergence, we also use some inelastic neutron data,

which are denoted by open circles.
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scattering process. Since inter-valley elastic scat-
tering requires relatively large q values, the
corresponding scattering potential for an electron
should be short range, smaller than the lattice
constant a ¼ 0:246 nm: Thus, a short range
potential, such as a missing carbon atom or a
pentagon–heptagon pair may be a candidate for
giving rise to D-band light scattering.

3. D-band spectra of single wall carbon nanotubes

In the case of single wall carbon nanotubes
(SWNTs), a resonance effect similar to that in sp2

carbons is expected. In fact, Raman measurements
of SWNT bundles [10,21–24], and isolated SWNTs
[25–32] show a dispersive behavior by changing the
laser energy. In particular, Alvarez et al. [15]
reported three dispersive phonon modes around
850 cm�1 for SWNT bundles. One of the three is
not so dispersive, and this mode can be assigned to
intra-valley, TO phonon dispersion. However, the
other two phonon modes have dispersive slopes
that are too large to be explained by a single
phonon emission second-order process. Thus, the
remaining two dispersive modes are assigned to a
two-phonon second-order process. The largest
slope of the phonon dispersion relations is a
longitudinal acoustic phonon mode near the G
point (216 cm�1 eV�1).
The dispersive nature of the D-band is

explained by a double-resonance process. How-
ever, the dispersive D-band frequency and other
intermediate phonon modes are given by different
SWNTs which are resonant with different laser
energies, taking into consideration that both the
D-band frequency and the energy of the optical
transitions in isolated SWNTs are dependent on
the tube diameter. In SWNTs, the periodic
boundary condition along the circumferential
direction gives discrete k and q vectors which are
expressed by the cutting lines in the 2D BZ (zone
folding). In this case, the zone-folding of the K
point is important to understand the double
resonance process.
For ðn;mÞ nanotubes, suppose that the K point

is folded into the one dimensional (1D) BZ at the
Y point and the distance of Y from the G point in

the 1D BZ is given by [17],

GY ¼
m

dR
jK2j; ð4Þ

where jK2j is the length of the 1D BZ (reciprocal
lattice vector) and dR is the greatest common
divisor (gcd) of ð2m þ nÞ and ð2n þ mÞ: Here dR
can be related to d; which is the gcd of n and m; by
the relation

dR ¼
d if n � m is not a multiple of 3d

3d if n � m is a multiple of 3d:

(
ð5Þ

In semiconducting nanotubes for which n � m is
not a multiple of 3, dR ¼ d and thus m=dR in
Eq. (4) becomes an integer. This means that the K
point is zone-folded into the G point of the 1D BZ
for all semiconducting nanotubes. On the other
hand, in metallic nanotubes, for which n � m is a
multiple of 3, there are two cases (metal-1 and
metal-2) [17]. In metal-1, dR ¼ d and thus the K
point is zone folded into the G point of the 1D BZ,
while in metal-2, dR ¼ 3d; and thus the K point is
zone folded into k ¼ 7jK2j=3:
Very recently Maultzsch et al. [33] discussed the

double resonance effect of single wall nanotubes
and concluded that only metal-2 SWNTs gave rise
to D-band spectra. However, it is clear experi-
mentally that both metal-1 and semiconducting
nanotubes also show D-band spectra, from one
isolated SWNT spectroscopy [27–29]. Since the
resonant energy window of the Raman spectra for
semiconducting and metallic SWNTs are different
from each other, there is no possibility for
observing metallic nanotubes in the semiconduct-
ing energy window for one isolated SWNT. This
discrepancy between theory and experiment may
come from the fact that the k vector which gives
the van Hove singularity (VHS) in the electronic
DOS, kVHS is not always folded exactly to the G
point of the 1D BZ. In fact, the kVHS vectors for
many ðn;mÞ values which are resonant with a given
laser energy exist homogeneously on an energy
contour E ¼ EðkÞ in the 2D BZ. The correspond-
ing locations of the folded kVHS vectors in the 1D
BZ are distributed homogeneously on the 1D BZ.
Thus a double resonance process similar to that
for graphite is expected for all nanotubes. Isolated
SWNT micro Raman measurements show that the
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distance of kVHS from the K point in the 2D BZ is
related to the D-band phonon wave vector for all
SWNTs [29]. The application of the double
resonance theory of graphite to SWNTs works
well, too, for the results of Alvarez et al. [15].
It is noted that the VHS of the electronic DOS

can give sufficient Raman intensity to observe the
RBM and G-band phonon modes from one
isolated SWNT [25,26,34]. In this case, both the
singular enhancement of the first-order resonant
condition and the VHS contribute to the strong
Raman intensity that is observed. Furthermore,
the D-band width from semiconducting nanotubes
is small (B20 cm�1) relative to that of graphite
and some metallic nanotubes. This is due to the
fact that some special k and q vectors are selected
for making the D-band spectra. From these facts,
another possibility is the case that the double
resonance condition is not always necessary for
observing D-band Raman spectra in metal-1 and
semiconducting SWNTs. When both k and q

vectors are near the G point of the 1D BZ, one-
phonon emission, through a first-order process
might contribute to the D-band intensity. The
problem with the first-order process is that the
phonon branch which corresponds to the D-band
does not have Raman active symmetry. The
Raman-active phonon modes instead come from
the five cutting lines near the G points of the 2D
BZ [35,36], and the cutting lines for phonons near
the K point are not Raman active. However,
defects may break the symmetry, or the symmetry
selection rule may be broken under strong
resonance conditions. Further investigation of this
special case is needed in the future for each ðn;mÞ
value.

4. Conclusions

In conclusion, the double resonance theory for
Raman spectroscopy reproduces the phonon dis-
persion relations of graphite. Stokes and anti-
Stokes measurements of intermediate Raman
frequencies determine the slopes of the phonon
dispersion relations. D-band Raman spectra of
SWNTs are explained by the van Hove singular k

vectors which are folded into the 1D BZ for
SWNTs.
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