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Resonant Raman scattering for one single wall carbon nanotube spectroscopy is overviewed. First-order resonance Raman
spectra of the radial breathing mode ofonecarbon nanotube is of importance for assigning(n, m) values to the nanotube.
This assignment of(n, m) values is confirmed by the chirality dependence of other phonon modes. Second-order, one-phonon
emission, and the inter-valley scattering processes of two dimensional graphite and of single wall carbon nanotubes are rele-
vant to disorder-induced D-band Raman spectra. The dispersive nature of the D-band Raman spectra is explained by double
resonance processes. Many weak Raman spectra appearing in the intermediate frequency range, which have been observed for
a long time but never assigned so far, have recently been assigned as double resonance Raman peaks. The second-order Raman
phonon frequencies can be used as a new fundamental tool for determining the phonon energy dispersion relations, especially
for disordered materials and for zone boundary phonons. [DOI: 10.1143/JJAP.41.4878]
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1. Introduction

Recently, we have succeeded in observing resonance Ra-
man spectra from one single wall carbon nanotube (SWNT)
grown by a chemical vapor deposition (CVD) method on a
Si/SiO2 surface.1–4) The Raman spectra, thus obtained, have
much smaller line widths (∼ 5–10 cm−1) than those obtained
for SWNT bundles, which enables us to assign(n, m) val-
ues to a SWNT from its radial breathing mode (RBM) fre-
quency by the use of theory.5) The assignment of(n, m) is
confirmed by other features in the Raman spectra of the same
nanotube.6–8) In this paper we first review the background of
first- and second-order resonance Raman spectroscopy for a
single carbon nanotube and then present new considerations
for the dispersive Raman modes for individual single wall car-
bon nanotubes.

Important key factors for obtaining a Raman signal from
a single nanotube are that: (1) a one-dimensional van Hove
singularity in the joint-density of states (JDOS) of a SWNT
which gives a sharp optical absorption at the correspond-
ing energy, and that (2) the resonance condition with the in-
cident or scattered photon is rigorously satisfied.9) In one-
dimensional materials, the van Hove singularities of the JDOS
appear at the initial and final energy for a valence to conduc-
tion band transition denoted byEii for a pair of symmetri-
cal energy subbands, and each singularity is proportional to
1/

√
E − Eii for E ≥ Eii . A very sharp peak in the JDOS

aroundE = Eii can be treated as a discrete molecular level.
A rigorous resonance corresponds to the case when the laser
excitation energyElaserexactly matches the electronic absorp-
tion transition, thereby providing a strong contribution to the
Raman intensity that is mainly associated with the singular-
ities. Such a resonant nature of the Raman intensity is best
observed by a tunable laser in which the intensity is enhanced
in a factor of 1000 within a small laser energy range of about

20 meV.9) Since the van Hove singular energy positionsEii

depend in a unique way on the diameter and chirality of each
(n, m) nanotube,10,11) the probability of finding a resonant
tube in a laser spot of 1µm diameter is about 1/100–1/10
when the nanotube density is 1–10 per 1µm2, respectively,
for typical samples of isolated SWNTs that have been pre-
pared having a diameter distribution ofdt = 1.85±0.65 nm.5)

Even though there are often more than two nanotubes
within a laser spot, it is rare that both tubes are resonant and
thus yield two different Raman spectra. Therefore it is con-
venient to observe the Raman spectra from one nanotube by
using a sample with several nanotubes per 1µm2. However,
when we want to carry out a detailed study of different SWNT
phonon modes, we need to use a low density sample (less than
1 nanotube perµm2). In first-order Raman processes, there
are two resonant conditions: (1) resonance with incident pho-
ton and (2) resonance with the scattered photon, in which the
Eii matchesElaserandElaser− Ephonon, respectively. When we
observe different resonant Raman modes from a nanotube,
the resonant condition should be with the incident photon,
since the phonon energy (∼ 0.1 eV for optical phonon modes)
is much larger than the resonant window (20 meV, as men-
tioned above). In the actual experiments, we used a low den-
sity sample in which the number of nanotubes per laser spot
is less than unity to exclude the possibility that two peaks in
the observed spectra come from different nanotubes with dif-
ferent resonant conditions. Although it takes a lot of time to
get spectra for a low density sample, we have collected many
spectra, especially for the case that both the RBM and G-band
phonon modes are observed as a resonance with the incident
photon.7,12,13)
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2. Assignment of (n, m) by Raman Spectra

There are several different Raman approaches that can be
used to assign(n, m) to a single nanotube. An internal check
using different approaches then can be used to confirm the as-
signment. In this section, we overview three results obtained
from the first-order RBM and G-band Raman modes.

2.1 Diameter dependence of the RBM frequency
The RBM frequency does not depend on the chirality but

only on the diameter and is inversely proportional to the diam-
eter for a wide range of diameters,dt , from 1 to 2 nm.14) The
phonon frequency is expressed byωRBM = α/dt , whereα is
constant with values ranging from 23415) to 248 cm−1nm.5)

First principles calculations16,17) also give similar values.
As a first approximation, the van Hove singularity energies
Eii are inversely proportional to the diameter: for example
ES

11 = 2γ0aC−C/dt and EM
11 = 6γ0aC−C/dt for the lowest

Eii for semiconducting and metallic SWNTs, respectively,
(see Fig. 1) in whichγ0 = 2.89 eV andaC−C = 1.44Å are,
respectively, the tight-binding parameter and nearest neigh-
bor carbon-carbon distance.11) Thus, for a given laser energy
Elaser and observedωRBM, we can determinedt and select
the best resonantEii value. The number of(n, m) nanotubes
which satisfy both thedt andEii values experimentally for a
givenωRBM are only one or two, if the accuracy ofα is within
the order of 1 cm−1nm. The empirical value ofα is chosen
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Fig. 1. Van Hove singular energy in JDOS,Eii as a function of 1/dt

(the bottom figure) in which circles and cross correspond, respectively, to
metallic and semiconducting chirality(n, m). For a 1.579 eV laser, expand-
ing a rectangle section is shown in the upper figure. The (14,8) nanotube
corresponds to rigorous resonance and the other nanotubes correspoind to
pre-resonance situations.

to satisfy observations on many different RBM peaks at the
same time. Once theα andγ0 are specified by 248 cm−1nm
and 2.89 eV, respectively, for the conditions of our experi-
ments, the assignment for(n, m) values is almost unique.5)

This set of parameters are independently obtained by Yu and
Brus18) to reproduce the Raman spectra obtained with their
thin SWNT bundle sample.

2.2 Stokes and anti-stokes intensity ratio of the RBM
The resonant conditions for the Stokes and anti-Stokes

processes are the same for the incident resonance condition
Eii = Elaser, but different from each other for the scattered
resonance conditionEii = Elaser± Ephonon, where± denotes
the phonon emission (Stokes,−) and absorption (anti-Stokes,
+) spectra, respectively. A typical phonon energy for the
RBM phonon modes (150 cm−1) is 18 meV, which is compa-
rable to the rigorous-resonance window, 20 meV, as discussed
above.9) Under non-resonant conditions, the intensity ratio of
the anti-Stokes to Stokes intensities is given by the Boltzmann
factor, exp(−Ephonon/kBT ), but this is not the case for the res-
onance Raman process in which the relative integrated inten-
sity IAS/IS is governed by the resonant condition. In fact for
some cases, the normalized anti-Stokes peak gives a larger in-
tensity than the Stokes peak. Using this fact, we can clearly
distinguish between(n, m) values for tubes which acciden-
tally give the same diameter and thus the same phonon fre-
quency. Even though two(n, m) values give the same phonon
frequency, theEii ’s do not have the same value, and this is
because of the effect of trigonal warping on the electronic en-
ergy band structure which results in chirality-dependentEii

values.11) The special case where two SWNTs haveωRBM val-
ues within 1 cm−1 does not occur frequently, thus providing
evidence that our selection of the two parametersα andγ0 al-
lows us to predict theEii reliably from the measured Stokes
to anti-Stokes intensity ratio, without any exception.

2.3 Chirality dependent G-band intensity
The E2g Raman-active mode of 2D graphite, appearing at

1582 cm−1 as an isotropic in-plane doubly degenerate mode,
is split in SWNTs by the cylindrical tubular shape and the cur-
vature effect.19) Because of symmetry lowering in SWNTs,
six phonon modes [2A + 2E1 + 2E2 modes denoted as lon-
gitudinal and transverse optic (LO and TO) phonon modes]
can be generally Raman active for chiral nanotubes. For achi-
ral nanotubes, such as armchair and zigzag nanotubes, which
have mirror symmetry parallel to the nanotube axis, only three
of the six symmetry modes (A1g, E1g and E2g) are Raman-
active. These two results should connect smoothly as a func-
tion of chiral angle that defines the spiral structure of SWNTs.
The bond-polarization theory predicts that the relative Ra-
man intensity for each symmetry has a chiral angle depen-
dence, which smoothly connects in the actual experiments
to the cases of achiral nanotubes.8) In experiments, however,
we need to also consider the strong depolarization effect,
whereby a photon is preferentially absorbed when the polar-
ization vector is parallel to the nanotube axis.20) Nevertheless,
experimentally, the G-band is split into two major peaks (G+
and G−) whose relative intensities depend on the chiral angle
of the nanotube. The(n, m) values, tentatively assigned by
analysis of the RBM feature, predict the chirality dependence
of the relative intensities of the G+ and G− band.18,20)
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3. Second-Order Raman Spectra

The assignment of(n, m) can be confirmed, too, by
measuring diameter and chirality dependent effects on the
disorder-induced D-band and its second harmonic G′-band.
The D-band and G′-band features are observed in a second-
order Raman process by which two scattering processes oc-
cur. Here we start with the background of second-order Ra-
man processes.

3.1 D-band and G′-band of graphite
The D-band is observed in many graphitic materials at

around 1355 cm−1 for a laser excitation energyElaser =
2.41 eV,1,16,21–23)and the G′-band which is the second har-
monic of the D-band, appears at about 2710 cm−1. The
D-band and G′-band features are explained by a second-order
Raman scattering process and by double resonance theory.23)

Second-order Raman spectra are generally weak and broad
when compared with first-order Raman processes. However,
if two of the three intermediate states for an excited electron-
hole pair, known as an exciton, are real electronic states, reso-
nance enhancement occurs twice, and thus the corresponding
Raman intensity might be comparable to that of a first-order
process.24) Such an effect is known as a double resonance Ra-
man process.25) An important fact in the second-order pro-
cess is that the scatteringq vectors are not always zero, be-
cause a pair ofq and−q scattering wave vectors can often
make a round trip back to the original excited electronk states
to recombine with the hole. Thus non-zone-center phonon
modes are related to the D-band and G′-band features. For the
D-band spectra, which is a one-phonon process, one of the
two processes is an elastic electron scattering event, induced
by the defect. The D-band intensity can be even stronger than
the G-band intensity for a highly disordered carbon mate-
rial.26,27)On the other hand, in the case of the G′-band, bothq
and−q vectors can be inelastic processes, and thus no defect
is needed. In most graphitic materials, the G′-band is much
stronger than the D-band, and the G′-band feature does not
depend sensitively on the amount of disorder.

Another important factor about two-dimensional (2D)
graphite, is that the initial electron and holek vectors are
around the K point [the corners of the hexagonal Brillouin
zone (BZ)] where the bonding and anti-bondingπ bands
touch each other. Because the two carbon atoms in the unit
cell are not equivalent, the bonding and anti-bonding elec-
tronic bands show a lineark dispersion relation,E(k) =√

3γ0ka/2 in which the electronick vectors are measured
from the K point, anda = √

3aC−C = 2.46Å. Thus when
Elaser increases, the electronk vectors and the corresponding
phononq vectors both increase, giving rise to a dispersion of
the D-band phonon frequency which increases by 53 cm−1/eV
(106 cm−1/eV for G′-band) forElaser in the visible range. It is
noted that the scatteringq vectors are taken from one K point
to an inequivalent K′ point (inter-valley scattering),16,23,28)

since the D-band phonon frequency is related to the phonon
dispersion relation around the K point in 2D graphite. If the
q vectors are given by intra-valley scattering from K to K
(or from K′ to K′), the non-zone-center phonon mode around
the� point is relevant to the second-order, double-resonance
phonon mode.28) The corresponding Raman spectra can ex-
plain dispersive phonon modes appearing in the lower energy

region of the spectra for a graphite whisker,29) which is as-
signed to the acoustic phonon dispersion branch. Using the
relation q = 2k which comes from the singularity in the
density ofq vectors, most of the observed dispersive weak
phonon modes are explained by either intra-valley or inter-
valley phonon modes.28)

Before concluding this subsection, let us list unsolved ob-
servations in graphite that can be explained by the double
resonance effect: (1) disorder-induced phonon modes are dis-
persive, (2) Stokes and anti-Stokes phonon frequencies are
slightly different from each other, (3) the G′-band phonon fre-
quencyωG ′ is not exactly equal to twiceωD, and (4) many
weak features of the dispersive Raman modes are explained
as non-zone-center phonon modes in the phonon dispersion
relations. There is now overwhelming evidence that the dou-
ble resonance theory is generally relevant to the dispersive
Raman modes.28)

3.2 D-band and G′-band of SWNTs
In the case of SWNTs, the 2D electronic and phonon en-

ergy dispersion relations of graphite are zone-folded along the
circumferential direction, which is realized by cutting the 2D
BZ by lines, to obtain a set of 1D energy dispersion relations
for SWNTs. The double resonance theory of graphite can be
applied to SWNTs based on the zone-folded BZ or on cutting
lines in the extended 2D BZ. For simplicity, we explain the
double resonance in the non-zone-folded 2D BZ. As is dis-
cussed in the previous section, van Hove singularities in the
JDOS are essential for obtaining Raman spectra from a single
nanotube. Each van Hove singularity in the JDOS comes from
the flat energy dispersion point on the cutting line, denoted by
kii .30) When the initial (final)k and (or) the scatteredk +q are
van Hove singularkii points, the corresponding D-band and
G′-band features are enhanced significantly.

In the case of the G′-band of SWNTs, it is not generally
possible that bothk andk + q are simultaneouslykii points,
since theE(k) and E(k + q) states have different phonon
energies. Thus, even if the double resonance condition were
satisfied for the 1Dk and k + q vectors, eitherE(k) or
E(k+q) would not correspond to a van Hove singular energy.
An anomalous special situation might occur when the energy
difference between two differentEii ’s of a SWNT coincides
with the phonon energy. This situation is possible for special
metallic nanotubes, for which the DOS is split into two peaks
by the trigonal warping effect30) and the splitting happens to
equal a phonon frequency.

In the case of the D-band of SWNTs, it is possible that both
thek andk + q wavevectors arekii points, since the initialk
and finalk+q states can have the same energy if the scattering
process is elastic. In general there are four possible, second-
order, one-phonon emission, double resonance processes. The
factor of four comes from resonance with either the incident
or scattered photon and from either the elastic or the inelastic
scattering event occurring first in the sequence of the two con-
secutive processes. The corresponding phononq vectors give
two different phonon frequencies, depending only on whether
the elastic or the inelastic scattering process occurs first.31,32)

In PPP-derived disordered graphite, the D-band spectra can
be fitted to two Lorentzian lines which have about the same
intensity, showing the same probability for getting eachq vec-
tor. In the case of SWNTs, even though two of the four cases,
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for which both the initial and final states of the elastic pro-
cess are real electronic states, has a significant Raman inten-
sity at the van Hove singularity as mentioned above, these
two processes give different phonon frequencies, and thus the
observed D-band spectra of the SWNT should be fit by two
Lorentzians.

In the experiment, we observe the D-band spectra for an
isolated single wall carbon nanotube when an optical transi-
tion occurs between VHSs from the valence to the conduction
bands.33) The resonant nature of a given D-band spectrum has
not yet been observed by a tunable laser but we can explain
the oscillatory behavior of the D-band and G′ band observed
in SWNT bundles34) by the double resonance process.16,30,33)

When an equi-energy contour touches the cutting lines of the
1D BZ, the touching point corresponds tokii . The double res-
onance process occurs from or tokii points in the case of
SWNTs, while allk points on the energy contour are possible
for 2D graphite. The overall contribution to the Raman in-
tensity not only for the rigorous resonance condition but also
for the pre-resonance condition from manyk points should be
calculated by integrating for all processes, and such a calcu-
lation will be reported elsewhere.32) In fact, the line width of
the D-band of a SWNT is much smaller (10 cm−1) than that
for graphite (∼ 50 cm−1). The distance of thiskii point from
the K point of the BZ determines the resonant energyEii and
the phonon frequencyωD. Since the direction of the cutting
lines depends on the chiral angle,19) the chirality dependence
of ωD for isolated SWNTs is well explained by the distance
of thekii points from the K point.33) The inter-valley phonon
q vectors which connect twokii points A and B are shown in
Fig. 2. When A is located atkii , the inequivalent B point is lo-
cated at−kii , and for any position ofkii , we can shift A and B
to the nearest K and K′ points as shown in Fig. 2, using the pe-
riodicity of k in BZ. Further when we shift the A point to the

K

K

B

A

C
K

A

Fig. 2. Second-order scatteringq vector for a single wall carbon nanotube.
A and B are the van Hove singularkii points and the vector AB corre-
sponds to the phonon wavevector. When we move the vector AB to�C, it
is clear that K′C = 2K′A′ in which A′ is equivalent to the A point in the
2D Brillouin zone.

� point, the final point B moves to C which lies at a−2kii po-
sition from the same K′ point. Thus, the phonon frequency of
the D-band is relevant to thekii distance, and more precisely
to the opposite side ofkii for the K point. Since the trigonal
warping effect affects both thekii position and the phonon
frequency, a chirality dependence of the D-band frequency is
observed.33)

Thus the D-band and G′-band frequencies as a function of
(n, m) can provide another example for checking the internal
consistency of the(n, m) assignment.

4. Summary

In summary, micro Raman spectroscopy makes it possible
to assign(n, m) values from a single Raman spectrum. The
(n, m) assignment can then be confirmed by determination of
the: (1) RBM resonance condition and the chirality dependent
Eii , (2) Stokes and anti-Stokes intensity ratio of the RBM, (3)
chirality dependent relative intensities of the splitting of the
G-band spectra, and (4) chirality dependent D-band and G′-
band phonon frequencies. A more rapid and precise(n, m)

determination should be made by a tunable laser covering a
much larger laser energy range. Then the overall spectra from
the incident and scattered light resonances of many different
features of the Raman spectra will be obtained, in much better
detail. This will be the subject of a future study.
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Hafner, C. M. Lieber and M. A. Pimenta: Chem. Phys. Lett.354 (2001)
62.

31) L. G. Canc¸ado, M. A. Pimenta, R. Saito, A. Jorio, L. O. Ladeira, A.
Gueneis, A. G. Souza Filho, G. Dresselhaus and M. S. Dresselhaus: to
be published in Phys. Rev. B (2002).

32) A. Gr̈uneis, R. Saito, T. Kimura, L. G. Canc¸ado, M. A. Pimenta, A.
Jorio, A. G. Souza Filho, G. Dresselhaus and M. S. Dresselhaus: Phys.
Rev. B65 (2002) 155405.

33) A. G. Souza Filho, A. Jorio, G. Dresselhaus, M. S. Dresselhaus, R.
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