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Basal-plane incommensurate phases in hexagonal-close-packed structures
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An Ising model with competing interactions is used to study the appearance of incommensurate phases in the
basal plane of a hexagonal-close-packed structure. The calculated mean-field phase diagram reveals various
1q-incommensurate and lock-in phases. The results are applied to explain the basal-plane incommensurate
phase in some compounds of theA8A9BX4 family, like K2MoO4, K2WO4, Rb2WO4, and to describe the
sequence of high-temperature phase transitions in other compounds of this family.@S0163-1829~98!03909-5#
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I. INTRODUCTION

The microscopic origin of incommensurate phases in
roelectrics, magnetic materials, binary alloys, and other
lated systems has been a subject of interest since the
1960’s ~for a review see Ref. 1!. It is now well established
that incommensurate modulation in the majority of tho
systems is caused by the frustrating competition between
ferent interatomic or interspin forces responsible for str
tural or magnetic ordering.

The first approach proposed for studying frustratio
induced incommensurate phases was based on the axial
nearest-neighbor Ising~ANNNI ! model with competing
uniaxial nearest-neighbor~NN! and next-nearest-neighbo
~NNN! interactions in which the structural units have be
described by binary Ising pseudospin variables.1–3 Depend-
ing on the coupling parameters and temperature, this m
was shown to exhibit a rich diagram of commensurate
incommensurate modulated phases when the wave ve
jumps between rational and irrational values of t
reciprocal-lattice period, a phenomenon known as a dev
staircase.

A large variety of incommensurate systems is adequa
described by the ANNNI model and its analogous models2–4

The common feature of these models is that the modula
occurs in the uniaxial high-symmetry direction. There a
however, examples of incommensurate phases where
wave vector is perpendicular to the high-symmetry axis a
can occur in more than one equivalent direction. The app
ance of this kind of incommensurate modulation was stud
for the simple cubic lattice with competing NN and NN
interactions along the cubic axes and their diagonals,5 for the
simple hexagonal lattice with NN and NNN interactions,6–8

and for distorted triangular lattice with only NN interaction9

In this paper we employ the mean-field approximation
study the Ising model on the hexagonal-close-packed~hcp!
lattice, where frustration is uniquely related to the topolo
570163-1829/98/57~9!/5086~7!/$15.00
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of the lattice and is provided by the in-plane NN antiferr
magnetic interaction. We show that this frustration, be
stabilized by the out-plane NN interaction, gives rise to
commensurate phases with the modulation vector lying
the basal plane. We also study the phase diagram of
system when small out-plane NNN interaction is includ
and show that it leads to a rich sequence of phase transiti
The used mean-field consideration is complementary to
previous cluster-approximation studies of the hcp-Is
model10,11 and of the related hexagonal honeycomb-latt
Ising model.10,12

Our interest in the hcp-Ising model is provided by t
transition sequence in several ionicA8A9BX4 compounds
where the orientational ordering ofBX4 tetrahedra drives a
series of structural phases including incommensurate sta4

The variety of transitions can be explained on the basis of
hcp-Ising model where the orientational states ofBX4 tetra-
hedra are described by two discrete Ising variables as
posed by Kurzyn´ski and Halawa.13,14 The review of the re-
cent studies of the two-spin Kurzyn´ski and Halawa model is
given in Ref. 15. We demonstrate that the rigorous treatm
of the model explains the experimentally observed ba
plane incommensurate phases in someA8A9BX4 compounds
and several other features not explored in the previous s
ies.

The paper is organized as follows. In Sec. II the structu
properties of theA8A9BX4 family and the motivation of the
hcp-Ising model are considered. In Sec. III we treat the fr
trated hcp-Ising model within the mean-field approximati
in order to demonstrate the appearance of basal-plane inc
mensurate phases. We derive the phase diagram of the
tem and discuss their relation with the low-temperatu
cluster-approximation diagram of Refs. 10–12. In Sec.
we discuss the application of the obtained results to the
perimental properties ofA8A9BX4 compounds at high tem
peratures.
5086 © 1998 The American Physical Society
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57 5087BASAL-PLANE INCOMMENSURATE PHASES IN . . .
Exploring the Ising model, we use the formal terminolo
of magnetic systems. The properties ofA8A9BX4 com-
pounds are characterized by the electrostatic interactio
BX4 tetrahedra. Consequently, the para-, ferro-, and ant
romagnetic terms of the Ising model correspond to the pa
ferro-, and antiferroelectric terms forA8A9BX4 compounds.

II. COMMENSURATE AND INCOMMENSURATE
PHASES IN A8A9BX4 COMPOUNDS

The structures and transition sequences in theA8A9BX4
family were described in detail in the review articles.4,14

Shortly, theA8A9BX4 compounds can be presented as a
of BX4

22 tetrahedral anions andA91 cations that are regu
larly placed in the sites of a hcp structure. TheA81 cations
form a simple hexagonal lattice.

The order-disorder transitions in these compounds are
lated to the ordering of degenerate orientations ofBX4 tetra-
hedra in theA8A9 matrix. A possible degree of freedom
given by the vertical up/down orientation of the tetrahedr
apexes and an another one by the planar orientation of
tetrahedra. Orientational ordering of the tetrahedra breaks
initial hexagonal symmetryP63 /mmc and leads to a se
quence of structural transitions when temperature decrea
In the Kurzyński and Halawa model13 the vertical and plana
orientations are described by two coupled binary spin v
ables, the orientational ordering being provided by the in
action between neighboring tetrahedra. The ground state
the related two-spins Ising Hamiltonian were shown13 to cor-
respond to the experimentally observed variety of phase
the A8A9BX4 compounds. There is a common hierarchy
the transition sequence ofA8A9BX4 compounds. The verti-
cal orientational ordering occur at higher temperatures~typi-
cally of 600–900 K! than the planar one~below 600 K!.

A characteristic feature ofA8A9BX4 family is the exis-
tence of the incommensurate modulations associated
tetrahedral orientation that often appear as intermed
phases at structural transformations. They can be relate
ther to the planar or to the vertical orientational degrees
freedom of the tetrahedra and occur in the low- and in
high-temperature regions, respectively.

The incommensurate phases of the first type have b
observed in a great number ofA8A9BX4 compounds.4,14

They have the modulation vector directed along
pseudohexagonal axis. The appearance of this kind of inc
mensurate phase was proposed to be related either to a
cific antisymmetric interaction of the planar orientations
tetrahedra in the unit cell14,16–18or to ANNNI like interaction
of the tetrahedra in neighboring basal planes.19

The incommensurate phases of the second type are
subject of the present study. The modulation wave vec
associated with the vertical tetrahedra orientation has the
commensurate component directed in the basal plane o
hcp structure. This phase occurs in alkali molybdates
tungstates K2MoO4, K2WO4, Rb2WO4 in the temperature
interval of 590–750 K.20–22 There is no consistent explana
tion of this kind of incommensurate phase although sev
ideas were proposed in Ref. 14. In this work we explain
appearance of the basal-plane incommensurate structure
result of competitive interactions between the vertical ori
tations of neighboring tetrahedra localized in the same b
of
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plane and in the NN basal planes, as shown in Fig. 1.
In the high-temperature region the planar orientation

the BX4 tetrahedra is disordered and the corresponding
nar spin variable is equal to zero. Thus, in this region,
Kurzyński and Halawa model is effectively reduced to t
one-spin Ising model where the vertical up/down tetrahe
orientations are described by the spin variableSi561. The
following analysis will be restricted to this region.

The interaction between tetrahedra has an electrostatic
ture. The uniaxial anisotropy of the hcp lattice induces dip
lar moments ofBX4 tetrahedra parallel to thec axis. There-
fore, the interaction between the NN tetrahedra
dominanted either by their induced dipolar moments or
intrinsic octupolar moments. In both cases the interactionJin
between two NNBX4 tetrahedra localized in the same bas
plane favors opposite vertical orientations and therefore
an antiferromagnetic nature. In contrast, the sign of the
out-plane interactionJout depends on structural details of th
system like, e.g. the ratioc/a, effective charges, etc. Thu
we consider both the cases of the ferro- and antiferrom
netic interaction forJout.

The mean-field minimization of the free energy given
the next section shows that the incommensurate struc
does exist in a certain region of interaction parametersJin
and Jout. It appears, however, that the account of only N
interaction leads to a degeneracy between different pha
To remove this degeneracy, we introduce the weak out-pl
interactionJout8 between NNN tetrahedra. We show that th
interaction results in structures that are found experim
tally.

III. MODEL AND RESULTS

We use the Ising spin variableSi561 to explore the idea
about frustration-induced basal-plane incommensu
phases. The Hamiltonian is written as

H5
1

2(i j Ji j SiSj , ~1!

where

Jin for the NN in-plane sites,

Ji j 5Jout for the NN out-plane sites,

Jout8 for the NNN out-plane sites, ~2!

FIG. 1. Jin , Jout-NN and Jout8 -NNN Ising interactions in hcp
structure. We use the orthogonal unit cella,b,c with b5aA3.
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as shown in Fig. 1. The negative and positive sign of int
action constants correspond to ferro- and to antiferrom
netic interactions. As discussed in the previous section,
assume thatJin.0, and thatJout andJout8 can take both posi-
tive and negative values. It is convenient to introduce
driving dimensionless parameters:k5Jout/Jin ; l5Jout8 /Jin ,
the last one being assumed to be smaller than one.

Note the following properties of the Hamiltonian~1! that
will be used later:~i! When the ground state for some inte
action parametersk, l is known, the ground state for2k,
2l is easily obtained by inversion of signs of the spins
alternated planes.~ii ! The three-dimensional hcp-Ising mod
can be mapped onto a two-dimensional honeycomb hex
nal lattice Ising model with NN, NNN, and NNNN
interactions.23

The ground state of the system is found by the minimi
tion of the free energy:

F52kT ln Tr exp~2H/kT!. ~3!

At T50 the problem reduces to minimization of the Isin
energy (1/2)(Ji j SiSj over all the possible spin configura
tions. The effective procedure for solving this problem w
developed in Ref. 10. Using the mapping honeycomb→ hcp
lattice and adopting the results of Ref. 10 to our variab
we find that six phases: I, II, III, V, XII, and XIII~in the
notations of Ref. 10! whose structures are shown in Fig.
occur atT50. Their energies per one spin are

EI5Jin~313k13l!, EII5Jin~323k23l!,

EIII 5Jin~211k23l!, EV5Jin~212k13l!,

EXII 5Jin~211k2l!, EXIII 5Jin~212k1l!. ~4!

The coexistence lines of these phases~shown in Fig. 2 by the
dots! are defined by the equilibrium of their energies. A

FIG. 2. Phase diagram of the hcp-Ising model as function of
NN and NNN interaction parametersk5Jout /Jin and l5Jout8 /Jin .
Solid lines correspond to the phase diagram just below the tra
tion from the paramagnetic state. Commensurate phases~roman
numbers and corresponding symmetry groups! are also enumerate
in Fig. 3 and in Table I. Incommensurate phases are given by t
wave vectors (qa ,qb ,qc). Dotted lines present the phase diagram
T50. Note that phases XII and XIII existing atT50 can appear
from the paramagnetic states only via an intermediate incomm
surate phase. We also show the possible localization of s
A8A9BX4 compounds.
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important observation given in Ref. 12 is that the infin
number of other degenerate ground states exists along t
lines. These states become stable at finite temperature d
the entropy factor. The finite-temperature cluste
approximation study shows that the phase sequence ca
quite complex~see Ref. 11 and references therein!.

The low-temperature approach is useful when the val
of the spins are assumed to take a fixed value of either11 or
21. Close toTc , the fluctuations of spins are important an
the absolute value of the averages i5^Si& can be substan
tially smaller than 1. To consider this regime, we minimi
the free energy~3! within the mean-field approximation, th
variabless i being considered as variational parameters
the model. The standard mean-field treatment24 gives the fol-
lowing expression for the free energy:

F5
1

2(i j Ji j s is j1kT(
i
E

0

s i
tanh21s ds. ~5!

In the vicinity of the transition, the absolute values ofs i
are much smaller than 1. Expanding Eq.~5! in a Taylor
series we obtain the Ising-like expression with addition
nonlinear termss i

4 :

F5
kT

2 (
i

s i
21

1

2(i j Ji j s is j1
kT

12(i
s i

4 . ~6!

Note that, unlike the discrete Ising spinsSi561, the vari-
abless i sweep the continuous spectrum between11 and
21. Expression~6! with arbitrary coefficients is frequently
used as a starting phenomenological functional for consid
ing of incommensurate phases in systems with compe
interactions.1,6–8,14 We use this expression as a basic fun

e

si-

ir
t

n-
e FIG. 3. Spin patterns of the commensurate phases that appe
the hcp-Ising model. Large and small circulus correspond to
spin sites in alternating planes of hcp structure. The correspon
lock-in vectors are given in Table I.
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57 5089BASAL-PLANE INCOMMENSURATE PHASES IN . . .
tional that provides the phase diagram of the system.
critical temperature of the transition is given by the high
value of T where the functional~6! first becomes unstabl
with respect to formation of the pattern of nonzeros i .

Let us calculate the critical temperature and the ph
diagram below the transition as a function of the interact
parametersk,l. It is convenient to work with the Fourie
transformed variablessq5( is iexp(iqri). Fourier decompo-
sition of Eq.~6! gives the following energy per one spin:

f 5
1

2(q
„kT12J~q!…sqs2q1

kT

4 (
q

~sqs2q!2

1
kT

4 (
qÞq8

sqs2qsq8s2q8, ~7!

where

J~q!5Jin@«8~ni2nj !1k«~ni !cosqz1l«c~2ni !cosqz#,
~8!

and

«~ni !5cosqn11cosqn21cosqn3 ,

«8~ni2nj !5cosq~n12n2!1cosq~n22n3!

1cosq~n32n1!.

We take n15(0,b/3,0), n25(a/2,2b/6,0), n35(2a/2,
2b/6,0) as shown in Fig. 1.

An important assumption was made that expression~7!
contains no umklapp terms provided by commensur
modulation of the lock-in phases. Actually, the only phas
that give this contribution are these with modulation vec
q5(0,0,0), (0,0,2p/c), (0,2p/b,0), (0,2p/b,2p/c). Their
spin configurations j corresponds to the states I, II, III, an
V of Fig. 3 with equal in-site amplitudess5us j u. Free en-
ergy of these states will be calculated in a more direct w
later.

The finite-q incommensurate structure becomes sta
when the coefficientkT12J(q) is negative. Softening o
kT12J(q) occurs simultaneously in several symme
equivalent points of theq space. The resulting state is pr
vided by the superposition of the corresponding degene
plane waves that can give either a 1q stripe phase, or a
multi-q, double-periodic phase. Later we will show that t
1q phase is more preferable. The modulation amplitudesq is
a complex value satisfyingsq5s2q* . Since the functional
~7! does not lock its phase we considersq to be real.

The transition temperature and the modulation vector
defined bykTinc52min$q%2J(q). We found that theqc com-
ponent of the modulation vectorq is always commensurat
with the reciprocal-lattice vectorc* 52p/c and takes the
values of either 0 or 2p/c. The incommensurate modulatio
appears in the basal plane along either thea or b symmetry
directions. Four incommensurate phases (qa,0,0),
(qa,0,2p/c), (0,qb,0), and (0,qb,2p/c) are possible.

The critical temperatures for the phases (qa,0,0) and
(qa,0,2p/c) are given by

kTa
6/Jin5

~k22l!2

162l
13, ~9!
e
t

e
n

te
s
r

y

e

te

re

where the upper sign corresponds toqc50 and the lower one
to qc52p/c. The modulation vector

qa5
2

a
arccosS 16k

264l D ~10!

changes fromqa50 ~lock-in phases I or II! to qa52p/a
~lock-in phases V or III!.

The critical temperatures for the phases (0,qb,0) and
(0,qb,2p/c) are given by

kTb
6/Jin524@64lx414x36~k22l!x214~6k23!x

7~k1l!11#, ~11!

where

x56$~2362l!1@~2362l!228l~k73!#1/2%/8l.

The modulation vector

qb5
2

b
arccosx ~12!

changes fromqb50 ~lock-in phases I or II! to qb52p/b
~lock-in phases V or III!.

The incommensurate phases can exist only in that reg
of parametersk andl when the arguments of arccos in Eq
~10! and in ~12! are between11 and21.

Depending on the interaction parametersk andl, all four
incommensurate phases can be stable. To find the region
their stability one should compareTinc5Ta,b

6 with the critical
temperatures of the lock-in phases I, II, III, V, XII, and XII
The later is found directly from Eq.~6! since the necessar
summation(Ji j s is j was already performed when calcula
ing Eq. ~4!. For the free energy of the lock-in phases w
obtain

f com5
1

2
~kT12Ecom!s21

kT

12
s4, ~13!

whereEcom is the energy~4! of corresponding commensura
phase atT50. The critical temperatures of transitions a
given by

kTcom522Ecom. ~14!

After calculation of the maximal critical temperature fro
Ta,b

6 and Tcom, we obtain the resulting phase diagram
shown in Fig. 2 by solid lines. The symmetry of the diagra
with respect to the change of sign of both interaction para
etersk and l follows from the property~i! of the Hamil-
tonian ~1!.

To follow the evolution of this diagram when temperatu
decreases one should solve the infinite system of the cou
nonlinear variational equations obtained from the mean-fi
functional ~5!. The rigorous solution of this problem is be
yond the scope of our study. However, qualitative aspe
obtained in a more simple way are discussed below.

Note, first, that the stripe region of incommensura
phases in Fig. 2 appears at the same place where the in
degenerate lines of phase transitions are predicted by
cluster calculations atT50 ~dotted lines!. This indicates,
similarly to the ANNNI model,2,3 the devil’s staircase behav
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ior of the transition sequence belowTinc . An infinite number
of lock-in phases, where the wave vector jumps betw
different rational multiples of the reciprocal-lattice period
appear at low temperatures. Their phase boundaries conv
to the dotted lines atT50. Phases XII and XIII that are
stable at low temperatures can appear from paramagn
state only via intermediate incommensurate phases. The
lution of the incommensurate phases when temperature
creases is shown qualitatively in Fig. 4 forJout

8 50. The
analogous phase diagram obtained in Ref. 13, when the
sibility of an incommensurate phase was not considered
shown in the same figure by the dashed lines.

The phase diagram of Fig. 4 is obtained within the a
proximation when the nonlinearity of the functional is mo
eled by the quartic terms of the Taylor expansion~6! and
when the harmonic plane-wave approximation for the mo
lation is used. The incommensurate phase is described
superposition ofn harmonic plane waves with temperatur
independent modulation wave vector, corresponding to
symmetry equivalent points in theq space and with equa
real amplitudessq . Either stripe phase withn51 or double-
modulated phases withn52 or 3 are possible; in the 3q
case,q1, q2, andq3 form an equilateral 120° star. The ha
monic approximation is as exact asT is closer toTinc . Varia-
tion of q and contribution of higher harmonics atT,Tinc is
expected to be small and leads to a shift of the phase bo
aries of the commensurate low-temperature phases tow
the lower temperature as it happens in the ANNNI model1–3

Under these approximations the energy of the incomm
surate state~7! is written as

f inc5nk~T2Tinc!sq
21

n

2
kTsq

41n~n21!kTsq
4 , ~15!

or, after minimization oversq as

FIG. 4. Phase diagram of hcp-Ising model as function of the
interaction parameterk5Jout /Jin and the reduced temperatu
kT/Jin , when the NNN interactionJout8 50. The transition from the
paramagnetic~P! state to the commensurate phase~roman numbers!
occurs either directly or via intermediate incommensurate pha
(qa,0,0), (qa,0,c* ). Dashed lines correspond to the Kurzyn´ski and
Halawa @Phys. Rev. B34, 4846 ~1986!# phase diagram. Thes4

expansion of the free energy used for the construction of this
gram is applicable above the dotted line.
n
,
rge

tic
o-
e-

s-
is

-

-
a

e

d-
rds

n-

f inc52
1

2

n

2n21

k

T
~T2Tinc!

2. ~16!

Note that Eq.~16! is minimal whenn51, i.e., 1q is the most
stable incommensurate phase. Comparison of Eq.~16! at n
51 with the energy of corresponding commensurate ph
obtained from Eq.~13!, by minimization overs

f com52
3

4

k

T
~T2Tcom!2, ~17!

gives the phase sequence belowTinc . When temperature de
creases, the incommensurate phase is stable up to the
perature

Tc5Tinc2~31A6!~Tinc2Tcom!, ~18!

defined by the conditionf inc5 f com. Below Tc a first order
transition occurs to one of the commensurate phases I, II,
V, XII, or XIII. The region of usu!1 where the above ap
proximations are valid is placed above the dotted line on F
4. Below this line one can get only qualitative ideas abo
the behavior of the transition boundaries.

IV. APPLICATION TO A8A9BX4 COMPOUNDS

We use now the results of the hcp Ising model with co
peting interaction to study the high-temperature phase t
sitions in theA8A9BX4 compounds provided by the vertica
orientation of the apexes of theBX4 tetrahedra. The calcu
lated mean-field phase diagram~Fig. 2! reveals various in-
commensurate and lock-in phases that appear just below
transition and at lower temperatures. Some of the comm
surate phases~I, II, III, and V! were discovered by Kurzyn´ski
and Halawa.13 The occurring commensurate phases, th
correspondence with notation of Ref. 13, their lock-in wa
vectors, and corresponding symmetry groups are enumer
in Table I.

Our calculations reveal the following features of the pha
diagram. The 1q basal-plane incommensurate phases
rected either in thea or b crystallographic direction appea
in the model. The direct first-order transition between pha
I and V and between phases II and III is possible when NN
interaction is included. The new phases XII and XIII ca
occur at low temperatures.

es

a-

TABLE I. The lock-in wave vectors (qa ,qb ,qc) and space sym-
metry groups of the commensurate phases appearing in the
Ising model~see also Fig. 3!. The correspondence between the n
tation of Ref. 10 used also in this paper and the notations use
Ref. 13 are given.

Notations Notations Lock-in vector Symmetry
~Ref. 10! ~Ref. 13! (qa ,qb ,qc) group

I FP (0,0,0) P63mc
II AP (0,0,2p/c) P 3̄m1
III CP (0,2p/b,0) Pmnn
V BP (0,2p/b,2p/c) Pmcn
XII ( p/a,0,0) Pbca
XIII ( p/a,0,2p/c) Pbna
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Table II presents the high-temperature transition
quences for several typicalA8A9BX4 compounds and thei
correlation with the ratioc/a. ~The data were collected o
the basis of Refs. 4,14,25,26.! Only few compounds revea
the high-symmetry parent phaseP63 /mmc associated with
dynamically disorderedBX4 tetrahedra. One can imagin
that in the other compounds the phaseP63 /mmc is virtually
present above the melting point.

According to their high-temperature transition sequen
and to their ratioc/a the A8A9BX4 compounds can be clas
sified in a following way~see, also, Ref. 14!:

~i! Located in the middle part of Table II are the no
underlined compounds with the direct transition~real or vir-
tual! from the phaseP63 /mmc to Pmcn ~phase V!. Only a
few compounds of this numerous group are given; for ot

TABLE II. The ratioc/a and the high-temperature sequences
transitions for severalA8A9BX4 compounds. A question mark sig
nifies that either the information about the transitions at high
temperature is not available or the melting occurs. The basal-p
incommensurate phaseInc has the modulation vector (0,qb,2p/c).

c/aa Transition sequence

K2ZnCl4 1.23 . . .2Pmcn2?
K2WO4 1.24 . . .2Pmcn2Inc2P63 /mmc
K2CoCl4 1.24 . . .2Pmcn2?
K2CoBr4 1.24 . . .2Pmcn2?
K2MoO4 1.24 . . .2Pmcn2Inc2P63 /mmc
Rb2WO4 1.25 . . .2Pmcn2Inc2P63 /mmc

K2SeO4 1.27 . . .2Pmcn2P63 /mmc
Rb2MoO4 1.27 . . .2Pmcn2?
KNaSO4 1.29 . . . 2P 3̄m12?
Cs2WO4 1.29 . . .2Pmcn2?
Rb2SeO4 1.29 . . .2Pmcn2P63 /mmc
K2SO4 1.30 . . .2Pmcn2P63 /mmc
Cs2MoO4 1.30 . . .2Pmcn2?
K2CrO4 1.30 . . .2Pmcn2?
K2MnO4 1.30 . . .2Pmcn2?
NaLiBeF4 1.34 . . .2Pmcn2?
Cs2SO4 1.37 . . . 2Pmcn2P 3̄m12?
Rb2SO4 1.39 . . . 2Pmcn2P 3̄m12?
CsLiBeF4 1.62 . . .2Pmcn2?
CsLiSO4 1.62 . . .2Pmcn2?
RbLiSO4 1.64 . . .2Pmcn2?

KLiBeF4 1.64 . . .2P632?
KLiWO4 1.65 . . .2P632Cubic
KLiMoO4 1.67 . . .2P632Cubic
TlLiBeF4 1.68 . . .2P632?
KLiSO4 1.69 . . .2P632Pmcn2P63 /mmc
RbLiBeF4 1.69 . . .2P632?
RbLiCrO4 1.70 . . .2P632Pmcn2P63 /mmc

aSince the ratioc/a for different compounds is given at differen
temperatures the error bars are estimated as60.02 as the typical
variation of thermal expansion. For compounds having an ort
rhombic Pmcn symmetry this ratio was estimated a
c/(ab/A3)1/2.
-

e

r

examples see Refs. 4,14,25,26. Notably, forall the com-
pounds of this group the ratioc/a varies from 1.27 to 1.64.

~ii ! Located in the middle part of the Table II are th

underlined compounds where the phaseP 3̄m1 ~phase II!
occurs. Two of them, Cs2SO4 and Rb2SO4, demonstrate the

reconstructive transitionPmcn2P 3̄m1. Compounds of this
group have a similar ratioc/a as compounds of~i!.

~iii ! Located in the upper part of Table II are the alka
molybdates and tungstates K2MoO4, K2WO4, Rb2WO4

~Refs. 20–22! that have the intermediate incommensura
phase modulated along crystallographical directionb. The
actual transition sequence there is:Pmcn2(0,qb,2p/c)
2P63 /mmc. To our knowledge, there are no compoun
with an a-directed incommensurate phase, although t
phase already appears in the NN approximation. This gr
has the smallest ratiosc/a.1.2321.25. The other com-
pounds of this group, K2ZnCl4, K2CoCl4, K2CoBr4, have a
similar ratioc/a but the high-temperature phaseP63 /mmc
was not reported. They can be candidates for the basal-p
incommensurate phase if the melting does not precede
Pmcn2Inc2P63 /mmc transition.

~iv! Located in the lower part of Table II are compoun
that demonstrate the phaseP63 that is a subgroup ofP63mc
~phase I!. Several A8A9BeF4 compounds and KLiMoO4,
with virtual P632P63 /mmctransition belong to this group
Two other compounds, KLiSO4 and RbLiCrO4, have the se-
quenceP632Pmcn2P63 /mmc.27,14 These are particula
systems since the complete vertical ordering of the tetrahe
occurs only in the room-temperature hexagonal phaseP63.
The orthorhombic phasePmcn is characterized by a partia
vertical disorder of tetrahedra. These compounds reveal
reconstructive transitionI -V. They can probably be consid
ered as an intermediate case between classes~i! and ~iii !.
Compounds of group~iv! have the largest ratiosc/a.1.64
21.70.

Following Kurzyński and Halawa,13 we assume that the
sign and magnitude ofJout ~and therefore ofk) depend criti-
cally on the ratioc/a. The interactionsJin and Jout8 are less
sensitive to variation ofc/a. Compounds of groups~i!, ~iii !,
~iv! reproduce the phase diagram of Fig. 2 if one suppo
that l,20.5 and thatJout changes its sign from negativ
~ferromagnetic! to positive~antiferromagnetic! when the hcp
lattice goes from its expanded along thec axis form with
c/a.1.63, to the contracted form withc/a,1.63. It is inter-
esting to observe that the dipolar-dipolar interaction betw
two NN out-planeBX4 tetrahedra changes its sign exactly
c/a51.63. The value of the modulation vectorqb in molyb-
dates and tungstates is correlated with the ratioc/a in the
following way: the smaller the ratioc/a the moreqb deviates
from the lock-in value 2p/b of the phasePmcn.22 This
behavior is consistent with our calculations~12!. Compounds
of the group~ii ! seem to have a positivel and are placed in
the upper right corner of the diagram.

It would be interesting to study the evolution of the pha
sequences inA8A9BX4 compounds with a continuous varia
tion of the interaction parameters. One can achieve this, e
by the application of uniaxial pressure along the hexago
axes that slightly changes the ratioc/a. In particular, one can
expect to obtain the commensurate-incommensurate tra
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tion, a-directed incommensurate phases, and the phase
with symmetry Pbca ~or their subgroups!. The classical
compound K2SeO4 from group~i!, having the smallest ratio
c/a51.27 could be a good candidate to achieve a Lifsh
point and a basal-plane incommensurate phase when sub
ted to an uniaxial pressure.

Another interesting result could be obtained by the app
cation of an electrical fieldE along the hexagonal axis tha
breaks the mirror-basal-plane symmetrySi→2Si in the
Hamiltonian ~1!. This results in the additional invariant
E( is i andE( is i

3 in the functional~6!. The first one slightly
favors the ferroelectric phase I. The second one gives
additional third-order termE(sq1sq2sq3 in Eq. ~7! where
the vectorsq1 ,q2 ,q3 form the equilateral triangle~calcula-
tions are analogous to those in Ref. 6!. This would lead to
the splitting of the transition (0,qb,2p/c)2P63 /mmc into
t

XII

tz
mit-

li-

he

two transitions, with intervention of the 3q modulated in-
commensurate phase.

In our consideration an interaction with elastic degrees
freedom that is known to be important in ferroelectrics h
been neglected. We expect that this coupling breaks the
continuity of the transition fromP63 /mmc to the low-
temperature phase as it was observed in severalA8A9BX4
compounds. The corresponding analysis is currently
progress.
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