INVESTIGATION OF 131 HERBIG Ae/Be CANDIDATE STARS ${ }^{1}$

S. L. A. Vieira, ${ }^{2}$ W. J. B. Corradi, ${ }^{2}$ S. H. P. Alencar, ${ }^{2,3}$ L. T. S. Mendes, ${ }^{2}$
C. A. O. Torres, ${ }^{4}$ G. R. Quast, ${ }^{4}$ M. M. Guimarães, ${ }^{2}$ and L. da Silva ${ }^{5}$
Received 2002 August 19; accepted 2003 August 29

Abstract

We present a new catalog of 108 Herbig Ae/Be candidate stars identified in the Pico dos Dias Survey, together with 19 previously known candidates and four objects selected from the $I R A S$ Faint Source Catalog. These 131 stars were observed with low- and/or medium-resolution spectroscopy, and we complement these data with high-resolution spectra of 39 stars. The objects present a great variety of $\mathrm{H} \alpha$ line profiles and were separated according to them. Our study suggests that most of the time a Herbig Ae/Be star will present a double peak $\mathrm{H} \alpha$ line profile. Correlations among different physical parameters, such as spectral type and $v \sin i$ with $\mathrm{H} \alpha$ line profiles were searched. We found no correlation among $\mathrm{H} \alpha$ line profiles and spectral type or $v \sin i$ except for stars with P Cygni profiles, where there is a correlation with $v \sin i$. We also use preliminary spectral energy distributions to seek for any influence of the circumstellar medium in the $\mathrm{H} \alpha$ line profiles. The presence of $\left[\mathrm{O}_{\mathrm{I}}\right]$ and $\left[\mathrm{S}_{\mathrm{II}}\right]$ forbidden lines is used together with the $\mathrm{H} \alpha$ line profiles and these preliminary spectral energy distributions to discuss the circumstellar environment of the Herbig Ae/Be candidates. The distribution of the detected $\left[\begin{array}{lll}\mathrm{I} & \mathrm{I}] \text { and }[\mathrm{S} & \mathrm{II}] \text { forbidden lines among different spectral types points to a }\end{array}\right.$ significantly higher occurrence of these lines among B stars, whereas the distribution among different $\mathrm{H} \alpha$ profile types indicates that forbidden lines are evenly distributed among each $\mathrm{H} \alpha$ line-profile type. Combining the distance estimates of the Herbig candidates with the knowledge of the interstellar medium distribution, we have found that 84 candidates can be associated with some of the more conspicuous SFRs, being in the right direction and at a compatible distance. As a further means of checking the properties of the HAeBe candidates, as well as their present evolutionary status, the derived luminosities and effective temperatures of the stars with possible association to the star-forming regions and/or Hipparcos distances were plotted together with a set of pre-main-sequence evolutionary tracks on an HR diagram. A set of 14 stars were found out of their expected positions in the HR diagram.

Key words: catalogs - circumstellar matter - ISM: clouds - stars: pre-main-sequence techniques: spectroscopic

1. INTRODUCTION

Determining whether a star belongs to the Herbig Ae/Be (HAeBe) group or not has been a topic of great discussion, with various criteria being used in the literature for the classification. In general, to be undoubtedly considered an HAeBe star, a candidate should present the following characteristics:

1. spectral type A or earlier, with emission lines;
2. located in an obscured region;
3. fairly bright nebulosity in its immediate vicinity;
4. present an anomalous extinction law;
5. show infrared excess;
6. be photometrically variable; and
7. display line profiles of $\mathrm{Mg}_{\mathrm{II}}(\lambda 2800)$ in emission.

The first three criteria were proposed by Herbig (1960) to define pre-main-sequence (PMS) stars of intermediate

[^0]mass. The last four are an extension proposed by Thé et al. (1994, hereafter TWP) to encompass the large set of new candidates. However, very few stars satisfy all of them. One possible explanation is that the HAeBe group spans a large range of evolutionary stages (Malfait et al. 1998).

A feature common to all HAeBe objects is the presence of infrared excess due to thermal reradiation, usually explained by the presence of an accretion disk or an almost symmetric circumstellar halo. Malfait et al. (1998) proposed different envelope shapes based on the spectral energy distributions (SEDs) obtained for 45 HAeBe stars. Imhoff (1994) found a correlation between the UV Mg if line profile and infrared excess. All the stars in his sample with strong nearinfrared excess showed the $\mathrm{Mg}_{\text {II }}$ line with P Cyg (indicator of winds) or double-peaked profiles (winds or disks), while those with weak IR excess presented the Mg II line in absorption.

Forbidden lines such as [O I] ($\lambda 6300$ and $\lambda 6364$) and [$\mathrm{S}_{\text {II }}$] ($\lambda 6716 / \lambda 6731$) trace the emission from low-density regions near the stars. The shape of the forbidden-line profiles can indicate the presence of disks or outflow characteristics. When a disk exists, these lines are expected to be blueshifted and asymmetric, as in T Tauri stars (TTSs) (Finkenzeller 1985), since the receding part of the outflow will be hidden by the disk. In HAeBe stars there is still a debate on the origin of the observed forbidden lines. Almost all observed [$\mathrm{O}_{\text {I }}$] lines are symmetric, and some authors (e.g., Böhm \& Catala 1994; Böhm \& Hirth 1997) favor the idea of an origin in a spherically symmetric wind without the presence of disks. Others, in contrast, (Corcoran \& Ray 1997) suggest
that these lines come from winds originating in the outermost parts of a disk, since the forbidden lines are very narrow compared with the typical stellar wind velocity of hundreds of kilometers per second inferred from P Cyg profiles of permitted lines.

The presence of disks around HAeBe stars can be probed by simultaneous photometric and spectroscopic observations. Grinin et al. (1994) and Vieira et al. (1999) observed Algol-like minima accompanied by variations in the $\mathrm{H} \alpha$ profile of UX Ori and HD 100546, which can be explained by inhomogeneities or clumps orbiting the star in an edgeon disk. Nowadays, a few HAeBe stars, including HD 100546, have had their disks directly imaged with coronographic techniques (Augereau et al. 2001; Mouillet et al. 2001).

The aim of this work is to present a statistical analysis of a sample of 131 HAeBe stars for which we have low- and medium-resolution spectra, covering the spectral range 4300-6800 $\AA .{ }^{6}$ For most of them (107) we also have nonsimultaneous $U B V R I$ photometry, which is used to obtain physical parameters.

2. DATA SELECTION

Using the IRAS Point Source Catalog, a search for new TTSs was conducted at the Observatório do Pico dos Dias (operated by the Laboratório Nacional de Astrofísica/ MCT, Brazil), the so-called Pico dos Dias Survey (PDS) (Gregorio-Hetem et al. 1992; Torres et al. 1995; Torres 1999). The candidate stars were selected by searching for starlike objects brighter than 14 mag (eye estimated) in the images of the Digitized Sky Survey within 3.3σ of the IRAS position errors, south of 30° north and possibly associated with sources having infrared fluxes with spectral indices in the interval

$$
\begin{align*}
& -1.35 \leq \alpha_{1} \leq 2.0 \tag{1}\\
& -1.85 \leq \alpha_{2} \leq 1.5 \tag{2}
\end{align*}
$$

The indices were defined as follows:

$$
\begin{align*}
& \alpha_{1}=3.14 \times \log \left(F_{25} / F_{12}\right)-1 \tag{3}\\
& \alpha_{2}=2.63 \times \log \left(F_{60} / F_{12}\right)-1 \tag{4}
\end{align*}
$$

where F_{12}, F_{25}, and F_{60} are fluxes in the infrared at 12,25 , and $60 \mu \mathrm{~m}$, respectively. Known QSOs, active galactic nuclei, and planetary nebulae were rejected, as well as stars in the Herbig \& Bell Catalog (Herbig \& Bell 1995, hereafter HBC).

Since our search for TTSs using IRAS colors was based on dust properties and not on the star itself, our selection criteria also included HAeBe stars. It is more difficult to be certain of the classification of a HAeBe star than of a TTS, because there is no feature like the $\mathrm{Li}(\lambda 6707)$ line as a clear signature of this class of objects. We used the following criteria to extract the HAeBe candidate objects:

1. stars that present spectral type earlier than F5 with emission in $\mathrm{H} \alpha$, and

[^1]2. $\mathrm{H} \alpha$ that does not seem to come from the circumstellar nebula, and
3. objects that are not supergiants, symbiotics, or LBVs, and
4. objects that have the spectral index $\beta \gtrsim-2$.

The β index is defined as $\beta=0.75 \log \left(F_{12} / F_{V}\right)-1$, where F_{V} is the flux in the visual band. This last condition allows to eliminate weaker infrared sources as classical Be or Vega-like stars.

Using these criteria, the PDS identified 105 HAeBe candidate stars (three being HAeBe binaries), but actually only 92 brighter than 14 mag.

The main previous compilations of HAeBe stars are HBC and TWP. In the HBC, using the first of the above criteria to define HAeBe stars, there are 71 candidates. In TWP there are 108 candidates (in their first table), 63 in common with HBC. Excluding three stars from the list of TWP that seem to be misclassified, the HBC+TWP forms a sample of 113 " known "HAeBe candidates. From these stars, only 41 obey the PDS magnitude, declination, and spectral index limits. Due to its long duration, 18 stars of the PDS were also proposed as HAeBe candidates by TWP (by definition, none are part of the HBC), and all of the other 23 stars are both in HBC and TWP. Thus the "complete" sample within the PDS limits would be of 115 stars (92 from PDS plus 23 from HBC).

Actually, this is not a truly complete sample, first because of the variations in magnitude and $\mathrm{H} \alpha$ emission that could

Fig. 1.-Histograms showing distribution of HAeBe candidates from $\operatorname{PDS}($ top $)$ and HBC (bottom) according to spectral indices α_{1} and α_{2}.
TABLE 1
Log of Spectroscopic Observations of Herbig Ae／Be Candidate Stars

－	
会速	－
$\begin{aligned} & \stackrel{0}{2} \\ & \underset{\sim}{2} \\ & \text { in } \end{aligned}$	
$\stackrel{\sim}{\sim}$	
ふ	壬
免®	
$\hat{a} \approx$	
－	
总	E
$\underset{\sim}{\dot{\sim}}$	
ふ	
艺	
へิこ	

TABLE 1-Continued

$\begin{aligned} & \text { PDS } \\ & \text { (1) } \end{aligned}$	Name (2)	IRAS (3)	S. R (4)	Sp. Type (5)	Type (6)	F. L. (7)	PDS (1)	Name (2)	IRAS (3)	S. R. (4)	Sp. Type (5)	Type (6)	F. L. (7)
241	GSC 4823-0146	07061-0414	M, H	B0	I	[O_{1}]	096........	HD 323771	17306-3921	L, M	B5 Vp	IV	-
027.........	DW CMa	07173-1733	M, H	B2?	IV	[$\mathrm{I}_{\text {I }}$]	465........	Hen 3-1475	17423-1755	M	B7	III	[I]
	HBC 552	07178-4429	M	F+sh	II	[O I]	469	GSC 5673-0127	17481-1415	M	A0	I	-
249.	GSC 6546-3156	07222-2610	M	A0	I	-	$473^{\text {T }}$......	HD 163296	17533-2156	L, M, H	A0	II	[$\left.\mathrm{OI}_{\mathrm{I}}\right]+\left[\mathrm{S}_{\text {II }}\right]$
250	GSC 6542-2339	07225-2428	M	O9?	III	$\left[\mathrm{O}_{\mathrm{I}}\right]+\left[\mathrm{S}_{\text {II }}\right]$	477		17575-1647	M	B1	III	[O I]
133........	SPH 6	07230-2539	M	B6	III	$\left[\mathrm{O}_{\mathrm{I}}\right]+\left[\mathrm{S} \mathrm{HI]}^{\text {I }}\right.$	514.....	HD 169142	18213-2948	L, M, H	A9	I	[I]
255.	SS73 6	07296-1921	M	B1?	II	[O I]	$518^{\mathrm{T}} \ldots . .$.	MWC 297	18250-0351	M	B0	I	[O I]
134........	SS 127	07303-2148	M	B6	II	-		HBC 282	$18262+0006$	M	B+sh	II	[I]
257.........	GSC 5988-2257	07394-1953	M	B3	II	[$\mathrm{O}_{\text {I }}$]	520	GSC 0446-0153	$18275+0040$	M	F3V	II	[I]
QT2	GSC 8143-1225	F07577-5014	L	F3 V	?	-	530.		$18391+0805$	M	F0 V?	I	$\left[\mathrm{OI}_{\mathrm{I}}\right]+\left[\mathrm{S} \mathrm{HI]}^{\text {I }}\right.$
272........	HD 68695	08100-4356	L, M	A0 V	I	-	543........		18454+0250	M, H	B1	I	
277........	CD-38 4380	08213-3857	L, M	F3 V	I	-	545.....	MWC 610	$18483+0838$	M, H	B2	II	-
031S.......	HD 72106S	08277-3826	M	A0	I	?	551........		18528+0400	M	O9?	III	[$\mathrm{I}_{\text {] }}$]
QT3	GSC 8581-2002	F08432-5945	L	A5 V	?	-		HBC 287	18583-3657	M	B9	?	-
033.........	GSC 7679-0293	08469-4037	L, M	A0	II	-		HBC 288	18585-3701	M	A0+sh	II	[$\mathrm{O}_{\text {I }}$]
034........		08482-4541	L, M	B2	II	[O I]	$564{ }^{\text {T }} \ldots . .$.	HD 179218	19089+1542	M, H	A0 V	I	[I]
	HD 76534N	08533-4316	M	B2	II	-	581........	GSC 2150-0266	$19343+2926$	M, H	B0.5 IV	I	[OI$]+\left[\mathrm{S} \mathrm{III}^{\text {I }}\right.$
	HD 76534S	08533-4316	M	B3	II	-		HD 190073	20005+0535	M, H	A0 IVp+sh	IV	[I]
281.	SAO 220669	08539-4413	L	B4	II?	-							

[^2]cause some loss of objects. Furthermore, a sample based on IRAS could not form a complete sample because of its incomplete and inhomogeneous sky coverage. Another problem may arise with the spectral index limits. As the $I R A S$ spectral indices are optimized for a TTS search, we checked how they work for HAeBe using the 57 HBC HAeBe that have $I R A S$ fluxes. In Figure 1 we show the histograms of both spectral indices of the PDS and HBC samples. For the HBC sample, considering the $I R A S$ flux limits, we used stars that have at least one of the spectral indices defined. One can see that both samples have similar distributions for α_{1}, showing that the used limits are adequate. In the case of α_{2} some HAeBe candidates may have been lost in PDS because their indices could be out of the limits (specially for the upper limit). But within the PDS criteria, the 115 stars form a nearly complete sample. It is important to note that our sample is less biased toward bright objects than other catalogs since we used IRAS colors (not limited by the source brightness) as selection criteria.

In the present paper we added to the 105 stars observed in the PDS (or 108, if each member of the binaries is counted) 19 stars that were previously identified as HAeBe candidates: 10 from TWP and nine from HBC. We also included four stars from the IRAS Faint Source Catalog, HD 290500, GSC 8143-1225, GSC 8581-2002, and HD 114981. Thus, we are presenting in this paper 131 HAeBe candidates.

The PDS and IRAS identifications, the spectral classification, and other information about the HAeBe candidates discussed in the following sections can be found in Table 1.

3. OBSERVATIONS

3.1. Photometry

Johnson $U B V(R I)_{c}$ measurements were gathered for 107 of the 131 stars in 63 nights during a period of 8 yr (19901998). The observations were collected at OPD (Brazil) with the 60 cm Zeiss telescope equipped with the FOTRAP photometer (Jablonsky et al. 1994). Standard stars were taken from Graham (1982), and the data were reduced using a package developed by Jablonsky et al. (1994). Further details of the reduction scheme can be found in Torres (1999).

Interstellar extinction was determined using the $B-V$ and $V-I$ colors, which are less affected by the presence of emission lines, and the calibrations of Schmidt-Kaler (1982) and Kenyon \& Hartmann (1995) using spectral types determined as explained in the next section. Since our main goal is to have only indicative values, we used $R=3.3+$ $0.28(B-V)_{0}+0.04 E_{(B-V)}$ (Schmidt-Kaler 1982) for all stars, independently of their position in the sky. The photometric data used and the derived parameters are listed in Table 2.

3.2. Spectroscopy

Low- and medium-resolution spectra of all the objects presented in Table 1 were used to carry out a statistical analysis of the features supposedly associated with the HAeBe class. Examples of such spectra are shown in Figure 2, covering the total observed wavelength range at each resolution (low: 4790-6880 \AA and medium: 6290-6745 \AA, except for three stars where the spectra start at $6500 \AA$). We also used high-resolution echelle spectra collected for 39 stars at ESO (Chile) and the Lick Observatory.

FIG. 2.-Medium-resolution spectrum of PDS 225 (left) and lowresolution spectrum of PDS 353 (right). Both spectra show the $\mathrm{H} \alpha$ line in emission.

The low-resolution spectra were collected with the Cassegrain spectrograph of the 1.6 m telescope at OPD, using a 1024×1024 pixel CCD and a diffraction grating of 600 lines mm^{-1}. The spectra have a signal-to-noise ratio $(\mathrm{S} / \mathrm{N})$ of ≈ 80, and a resolving power of $R=1000$. The same CCD and a diffraction grating of 600 lines mm^{-1} were used with the Coude spectrograph to obtain the mediumresolution spectra ($R=9000$), except for some stars where other CCDs were used $(1152 \times 770$ pixels and 578×385 pixels). To confirm the spectral classification, some stars were reobserved at La Silla with the 1.52 m ESO telescope using the Boller \& Chivens Cassegrain spectrograph ($R=5000$). Reduction of the spectra collected at OPD was performed in a standard way using the IRAF package, while the ESO data were reduced with the MIDAS package. All the spectra are not flux calibrated, so each spectrum has been continuum-normalized.

The high-resolution spectra were collected with the Coudé Auxiliary Telescope using the Hamilton Echelle Spectrograph at Lick Observatory and the ESO 1.52 m telescope using the FEROS echelle spectrograph. The reduction of the Lick data was performed in a standard way described by Valenti (1994) and the FEROS reduction was automatically performed on-line by MIDAS routines. Both reduction packages include flat fielding, background subtraction, removal of cosmic rays, wavelength calibration, and barycentric correction.

Spectral types, in most cases, were determined from limited spectral range around $\mathrm{H} \alpha$ using a grid of standards (Torres 1999). The mean uncertainty in this type of determination, using stars classified in the literature as comparison, is about one spectral subtype for the B stars and two for the A and F ones. Nevertheless, since the spectral range is limited and not very adequate for spectral classification at those temperatures, we can exceptionally expect greater errors (up to five subtypes). Our proposed spectral types are in Table 1, and the corresponding effective temperatures (Kenyon \& Hartmann 1995) in Table 2.

4. SPECTROSCOPIC ANALYSIS

4.1. $\mathrm{H} \alpha$ Line Profiles

During our 9 yr of observations, 22 stars were observed more than once. Eight of them changed their $\mathrm{H} \alpha$ line profile

TABLE 2
Photometric Observations of Herbig Ae/Be Candidates

PDS (1)	(2)	$U-B$ (3)	$B-V$ (4)	$V-R$ (5)	$R-I$ (6)	$\log T_{\mathrm{eff}}$ (7)	PDS (1)	V (2)	$U-B$ (3)	$B-V$ (4)	$V-R$ (5)	$R-I$ (6)	$\log T_{\text {eff }}$ (7)
002.	10.87	0.01	0.38	0.23	0.23	3.829	033.	12.34	0.22	0.29	0.18	0.19	3.979
004.......	10.66	0.23	0.37	0.21	0.25	3.979	034.	13.99	0.02	0.76	0.55	0.62	4.270
168......	17.30	-	-	2.20	1.65	3.850	281.....	8.87	-0.03	0.59	0.37	0.42	4.188
172.	7.57	0.04	0.14	0.09	0.11	3.941	286...	12.15	0.48	1.76	1.24	1.15	4.400
174.......	12.84	-0.11	0.81	0.66	0.76	4.272	$290 .$.	14.51	-0.07	0.69	0.48	0.55	4.000
176.......	9.84	0.17	0.17	0.10	0.11	3.979	297.......	12.03	0.16	0.31	0.20	0.24	3.895
178*.....	7.78	0.08	0.25	0.16	0.17	3.940	303.......	9.26	-0.03	0.05	0.04	0.06	3.979
179.	9.68	0.08	0.22	0.09	0.11	3.979	$037 .$.	13.54	0.50	1.52	1.16	1.17	4.340
180.	10.14	0.11	0.33	0.16	0.19	3.880	315...	10.86	-0.71	0.21	0.20	0.19	4.550
114.	10.02	0.09	0.09	0.06	0.07	4.021	322N.....	12.01	-0.46	0.25	0.16	0.19	4.342
183.......	8.31	0.12	0.28	0.18	0.21	3.880	324.......	14.45	-0.14	0.90	0.62	0.68	4.404
184.......	10.10	0.12	0.20	0.14	0.16	3.965	327........	8.47	-0.71	0.13	0.11	0.12	4.405
185S.	6.49	-0.24	0.03	0.04	0.05	4.076	339.	7.78	0.03	0.29	0.18	0.18	3.869
187........	12.79	0.22	0.37	0.23	0.37	3.980	$340 .$.	6.75	-0.09	-0.01	0.03	0.00	4.021
190.......	9.27	-0.12	0.03	0.04	0.05	4.021	057........	9.24	0.15	0.18	0.11	0.13	3.979
191.......	8.88	0.05	0.13	0.05	0.07	3.965	344.....	13.15	-0.31	0.25	0.20	0.18	4.188
192...	9.88	0.09	0.32	0.20	0.24	3.857	139...	13.31	0.10	1.41	0.89	0.93	4.477
193.......	13.85	-	1.50	1.02	1.07	4.021	061.	6.59	-0.03	0.21	0.17	0.18	3.979
194.......	9.80	0.12	0.16	0.09	0.15	3.914	$140 \ldots$	13.11	0.62	1.17	0.77	0.73	3.838
198.......	13.72	1.00	1.62	1.08	1.10	3.857	353.....	13.21	0.11	0.82	0.76	0.68	4.188
016.......	9.01	-0.02	0.06	0.07	0.08	4.021	$361 . .$.	12.85	-0.25	0.50	0.36	0.40	4.272
201......	8.92	0.23	0.35	0.21	0.23	3.895	QT4	11.48	0.24	0.46	0.29	0.34	3.897
204......	12.80	-0.27	0.92	0.82	0.68	4.405	364.	13.46	-0.08	0.47	0.41	0.42	4.150
018.......	13.40	0.69	1.48	1.05	1.12	4.114	371*....	15.70	-	1.50	0.95	0.99	4.500
019.......	13.91	0.37	1.05	0.67	0.69	4.188	067.....	13.50	0.30	1.53	1.15	1.04	4.500
020.......	10.64	-0.07	0.05	0.04	0.00	4.077	069* ...	9.80	-0.20	0.32	0.30	0.38	4.272
021.	10.38	-0.37	0.30	0.26	0.25	4.188	389.	14.18	-	1.87	1.14	1.12	3.940
022.	10.23	0.04	0.13	0.09	0.08	3.979	394.	13.54	0.37	0.81	0.52	0.55	3.857
207......	14.01	-	1.29	0.87	1.01	4.000	395.	8.40	0.03	0.24	0.14	0.15	3.880
124.	12.44	0.18	0.53	0.29	0.34	3.979	144*	12.79	0.31	0.49	0.30	0.33	3.980
211.....	13.73	0.26	0.85	0.57	0.68	3.980	398A	7.13	0.05	0.10	0.05	0.06	3.979
126.......	11.82	0.32	0.53	0.30	0.36	3.895	399*	8.64	-0.48	0.56	0.43	0.44	4.340
216.......	14.67	0.00	1.00	0.94	0.74	4.342	076.......	8.67	0.25	0.50	0.32	0.34	3.857
023.......	13.52	0.30	1.39	0.95	1.01	4.400	406.......	13.93	0.62	0.61	0.39	0.41	3.914
024.......	13.26	0.32	0.36	0.28	0.29	3.940	078.	8.18	0.11	0.35	0.24	0.26	3.914
$130 \ldots$	13.40	0.36	0.66	0.44	0.52	3.979	080.	9.10	0.38	0.52	0.31	0.34	3.848
225.	6.91	-0.77	0.04	0.12	0.14	4.271	415N..	12.04	0.47	0.92	0.57	0.62	3.857
025...	12.50	0.18	0.55	0.34	0.37	3.941	431.	13.42	0.21	0.57	0.40	0.43	3.979
229*	13.13	0.12	0.57	0.39	0.50	3.979	453.	12.92	0.25	0.78	0.48	0.53	3.838
234.	15.04	-	1.19	1.10	0.89	4.500	095.	10.98	-0.14	0.60	0.45	0.46	4.230
241	12.06	-0.38	0.65	0.61	0.34	4.477	096.	11.03	-0.31	0.30	0.27	0.34	4.190
027.......	13.00	0.29	1.32	1.00	1.02	4.340	465	12.87	-0.03	0.97	0.88	0.85	4.340
249.......	14.20	0.06	0.53	0.46	0.53	3.980	469....	12.77	0.30	0.56	0.38	0.44	3.979
250.......	15.01	-	1.37	1.04	1.03	4.480	473	6.89	0.11	0.10	0.07	0.09	3.979
133.......	13.13	-0.04	0.48	0.34	0.29	4.140	477.	14.42	0.13	1.12	0.94	0.95	4.477
255.......	13.02	-0.35	0.64	0.65	0.39	4.400	514.......	8.15	-0.02	0.28	0.19	0.20	3.979
134.......	12.20	-0.11	0.41	0.28	0.27	4.146	518.......	12.18	1.29	2.10	1.96	1.42	4.500
257........	15.45	-	0.90	0.66	0.73	4.000	$520 \ldots$	14.69	-	1.65	1.30	1.20	3.829
QT2	11.97	0.21	0.64	0.40	0.39	3.821	$530 \ldots$	14.04	0.37	0.57	0.42	0.50	3.910
272.......	9.82	0.08	0.10	0.06	0.10	3.979	543.......	12.52	0.47	2.04	1.27	1.29	4.477
277.......	9.96	0.05	0.41	0.25	0.25	3.829	545.......	8.84	-0.25	0.59	0.38	0.41	4.342
031*......	8.50	-0.11	0.00	0.01	0.00	3.979	551........	16.60	-	-	1.50	1.27	4.500
QT3	7.23	-0.58	-0.10	-0.04	-0.06	4.207	564.	7.39	0.09	0.08	0.05	0.05	3.941
							581........	11.65	-0.29	0.67	0.62	0.54	4.410

Notes.-Photometric observations in cols. (2)-(6), and effective temperatures in col. (7). The two stars marked with an asterisk are double and the integrated magnitudes were used. A hyphen means that there is no measurement.
from single to double peak or vice versa, and three maintained the double-peaked profile while the primary and secondary peaks exchanged their positions, and 11 remained with the $\mathrm{H} \alpha$ profile stable, showing only minor changes in the intensities.

Any model that aims to explain the $\mathrm{H} \alpha$ variations needs systematic observations of the $\mathrm{H} \alpha$ line and preferentially also some data covering other wavelengths, including several emission lines, to constrain the many model parameters. There are some recent works on line-profile modeling

Fig. 3.-Examples of observed line profiles with the classification proposed by Reipurth et al. (1996). (a) Type I; (b) type II; (c) type III; and (d) type IV.
of HAeBe stars (e.g., Shevchenko 1999; Bouret \& Catala 1998; Strafella et al. 1998; de Winter et al. 1999), which use different approaches to explain the $\mathrm{H} \alpha$ line profiles and/or their variations. They use clumpy circumstellar environments, magnetic fields, winds with velocity gradients, rotation, or combinations of two or more scenarios. A short discussion of the HAeBe models can be found in Reipurth et al. (1996).
Reipurth et al. (1996) proposed a classification system for $\mathrm{H} \alpha$ line profiles in PMS objects. In this system they are separated in four groups, exemplified in Figure 3 and as follows:

1. Type I profiles are symmetric without, or with only very shallow, absorption features.
2. Type II profiles are double-peaked, with the secondary peak having more than half the strength of the primary.
3. Type III profiles are double-peaked, with the secondary peak having less than half the strength of the primary.
4. Type IV profiles have P Cyg line characteristics.

The objects in our sample present $\mathrm{H} \alpha$ line profiles according to this system as follows:

1. type I: 29 stars (24%);
2. type II: 53 stars (43%);
3. type III: 23 stars (18.5%);
4. type IV: 18 stars (14.5%).

This distribution of line profiles agrees with what was found by Reipurth et al. (1996) with a totally different and independent sample, type II being the most common and type IV the least common line profile among HAeBe stars. This fact suggests that most of the time a HAeBe star will present type II $\mathrm{H} \alpha$ line profile.
Some authors (e.g., Vieira et al. 1999; Beskrovnaya et al. 1998) made a systematic study of the HAeBe stars HD 100546 and HD 163296 and explained the variations in their $\mathrm{H} \alpha$ profile by planetesimal bodies orbiting near the star and interaction of the wind with the circumstellar environment, respectively. PDS 034 and PDS 033 showed $\mathrm{H} \alpha$ profile variations similar to those observed in HD 100546 and HD 163296 (Figs. 4 and 5), deserving a more accurate study to confirm whether this kind of behavior can be explained by the same models.
Another interesting variation observed in double-peaked profiles is the flip over of the blue and red peaks, probably caused by the presence of a density structure (cometary bodies) in the circumstellar disk (Telting et al. 1994; de Winter et al. 1999). Two stars in our sample, PDS 018 and PDS 024 (Fig. 6), had profile variations that may be explained by this scenario. Again, it is important to notice that systematic observations are needed to confirm this hypothesis.
Because of the high variability of the $\mathrm{H} \alpha$ line profiles in a period of months, weeks, or even days, it is important to notice that the line profile is not correlated to the stellar mass or the stellar evolutionary status, the proposed classification being a snapshot of the current star properties. The objects that changed their $\mathrm{H} \alpha$ line profile from one type to another were classified using the most recent available spectrum. Since they are only eight stars, our choice does not affect significantly our statistics. Another group of seven

Fig. 4.- $\mathrm{H} \alpha$ line profile of PDS 034 observed in three different epochs. One can see the line profile changing from type I with humps (left) to type III (right).

FIg. 5.- $\mathrm{H} \alpha$ line profile of PDS 033 observed in two different epochs. The line profile changed from type I (left) to type II (right).
objects has a very poor S / N, and it is impossible to assign any of the discussed types to them.

We also tried to associate the line-profile distribution with the index β (defined in $\S 2$), but no correlation was found.

In a similar work with a smaller sample (57 objects) Finkenzeller \& Mundt (1984) found that stars with type IV line profiles were clustered among B8 to A0 spectral types. We do not verify in our sample such a correlation between spectral type and $\mathrm{H} \alpha$ line profile. The 18 stars presenting type IV profile are evenly distributed among all spectral types (see Table 1).

We also tried to find some correlation between the $\mathrm{H} \alpha$ line-profile type and the projected rotational velocity ($v \sin i$). Only 29 of our stars presented visible absorption lines with a reasonable S / N that could be used to determine $v \sin i$. We gathered atomic line data from the Vienna Atomic Line Database (VALD, Piskunov et al. 1995) and used the SME line synthesis code (Valenti \& Piskunov 1996)

FIg. 6.-H α line profiles of PDS 024 and PDS 018 observed in two different epochs. One can see the flip over of the red and blue peaks.

FIG. 7.-Sample of fitted (solid lines) and observed (plus signs) spectra for four HAeBe objects with different values of $v \sin i$.
to fit the absorption lines and determine the rotational velocities.

We used three absorption lines observed in the following wavelengths: 6347,6371 , and 6677 A. The initial parameters used in the SME code were effective temperature, $\log g$, and microturbulence and macroturbulence velocities (taken from Gray (1992) according to the stellar spectral type); these estimates led to a good fitting for $v \sin i$ (Fig. 7). The measured $v \sin i$ and the corresponding $\mathrm{H} \alpha$ line-profile types and spectral types of the 29 stars are presented in Table 3.

We did not find any correlation between spectral type and $v \sin i$. As one can see from Table 3, there is also no correlation between $\mathrm{H} \alpha$ profile type and $v \sin i$ for types I, II, and III. However, all stars presenting $\mathrm{H} \alpha$ type IV line profiles have rotational velocities clustered below $\sim 100 \mathrm{~km} \mathrm{~s}^{-1}$. This fact is expected, since stars with P Cyg line profiles are expected to have strong winds and consequently strong mass loss, rapidly loosing angular momentum and being slow rotators.

4.2. $\left[\mathrm{O}_{\mathrm{I}}\right](6300$ and $6364 \AA)$ and $[\mathrm{S}$ II] (6716/6731 $\AA)$ Forbidden Lines

Using the low-, medium-, and high-resolution spectra obtained for all the stars, [O_{I}] and/or [$\left.\mathrm{S}_{\mathrm{II}}\right]$ lines were detected in 59 out of 128 objects (three stars have spectra beginning at 6500 A , and we consequently cannot say anything about the presence of [O I]). This amount corresponds to 46% of our sample, and it can be regarded as a lower limit since we do not have high-resolution spectra of all the stars and could therefore be missing some low-intensity

TABLE 3
Rotational Velocities for Herbig Ae/Be Candidates

Object	$\begin{gathered} v \sin i \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$	Type	Sp. Type
PDS $225 ~$	225	I	B3
PDS 514.	58	I	A0 V
PDS 002	175	I	B0 V
PDS 564	88	I	A3 V
PDS 395.	52	I	A8 V
HD 52721	456	I	B2 Vn
PDS 174.	144	II	B3
PDS 180.	125	II	A8 V
PDS 327	132	II	B1
PDS 361	190	II	B3
PDS 398A	281	II	A0 V
PDS 545.	238	II	B2
PDS 076	97	II	F0 V
PDS 080	120	II	F1 III
HBC 282	142	II	B+sh
HD 95881	74	II	A0
HBC 552.	128	II	F+sh
HD 76534	116	II	B2
PDS 069N.	158	III	B3
PDS 339.	100	III	A9 V
HBC 551.	245	III	B5
HD 53367	55	III	B4
PDS 183.	59	IV	A8 V
PDS 315.	44	IV	O8
PDS 172...............	90	IV	A3 V
PDS $201 ~$	119	IV	A7 V
HD 98922	52	IV	B9
HBC 078	85	IV	A5 V
HD 150193.............	103	IV	A0 V

forbidden lines in the low- and medium-resolution observations. In some cases, however, forbidden lines detected in low- and medium-resolution spectra were not present in the high-resolution observations (taken at a different epoch), suggesting that those lines also present variable intensities.

The distribution of the detected forbidden lines among different spectral types and $\mathrm{H} \alpha$ line-profile types can be seen in Table 4. We have an almost equal number of A (40\%) and B (45%) stars in our sample; therefore, the results in Table 4 point to a significantly higher occurrence of forbidden lines among B stars. The forbidden line distribution among different $\mathrm{H} \alpha$ profile types is nearly identical to the $\mathrm{H} \alpha$ profile distribution in our sample (see § 4.1), indicating that forbidden lines are evenly distributed among each $\mathrm{H} \alpha$ line-profile type.

In a previous work Böhm \& Catala (1994) detected [O I] in stars with $\mathrm{H} \alpha$ line profiles of types II, III and IV and did not detect it in stars with type I profiles. Since types II, III, and IV are characteristic of stars with stellar winds and [O I] is expected to originate in jet/outflow regions associated with mass-loss processes, they suggested that objects with type I profiles do not present stellar winds or have very low mass-loss rates. As can be seen in Table 4, 29\% of the [O I] lines detected by us belong to type I stars, leading us to believe that the Böhm \& Catala (1994) sample is strongly affected by selection effects in this aspect.

The distribution in our sample of $\left[\mathrm{O}_{\mathrm{I}}\right]$ and $\left[\mathrm{S}_{\text {II }}\right]$ forbidden lines supports the results of Corcoran \& Ray $(1997,1998)$, who also found that the forbidden lines are concentrated among B type stars and are observed among type I H α line-

TABLE 4
Distribution of the Forbidden
Lines among Different Spectral Types and H α Line-Profile Types

Type	Distribution (\%)
Spectral Type	
B	54
A.	30
F	8
O........................	8
H α Profile	
I	29
II........................	41
III	18
IV	12

profile stars. Corcoran \& Ray (1997, 1998), however, found that forbidden lines were more common among type II line profiles, while our results point to an equal distribution among all profile types. Selection effects may explain their results, since the majority of their stars belong to group II in the work of Hillenbrand et al. (1992), which generally presents $\mathrm{H} \alpha$ line profiles of types II and III.

5. DISCUSSION AND ANALYSIS

5.1. Circumstellar Environment

The Balmer line profiles and the presence of forbidden lines are strongly connected with the circumstellar environment. To check this correlation, we use SEDs calculated for 62 HAeBe stars in our sample by M. Sartori \& J. GregorioHetem (private communication), using the disk model of Gregorio-Hetem \& Hetem (2002). In this model the star is surrounded by an extended and flat disk and a thin dust

Fig. 8.-Example of SED fitting using the model of Gregorio-Hetem \& Hetem (2002). The solid thick line is the resulting total emission, and different lines are used to show contributions from the star (dashed line), the disk (solid line), and the envelope (dotted line). The observed data are represented by open squares.
shell envelope. The disk is assumed to be passive, optically thick, and geometrically thin. The inner radius of the disk is constrained by the adopted grain destruction temperature (1500 K), and the outer disk radius defines the inner radius of the envelope. The total radiation emitted is the sum of the contributions of the star, the disk, and the envelope. In this preliminary analysis the disk and envelope contributions were not disentangled. We will only discuss stellar and circumstellar (disk+envelope) contributions to the SED.

The stellar contribution is calculated assuming a blackbody emission attenuated by the opacity of the envelope (see § 3 of Gregorio-Hetem \& Hetem 2002). The star temperature that defines the blackbody is obtained from the calibration between spectral type and effective tem-
perature proposed by de Jager \& Nieuwenhuijzen (1987) for main-sequence stars. The optical depth used in the calculation of the attenuation is initially estimated by the observed color excess $E(B-V)$ and then iterated during the model fit.

The observational data used to fit the model are composed of $U B V R I$ photometry, IRAS far-infrared fluxes, and, whenever available, $J H K$ 2MASS photometry. The SED calculations will be discussed in detail in a companion paper. An example of an SED fit is presented in Figure 8.

Figure 9 shows histogram plots of the circumstellar contribution to the SED versus the total number of stars (a), the stars presenting forbidden lines (b), and the $\mathrm{H} \alpha$ line profile types (c, d, e, and f).

FIg. 9.-Distribution of HAeBe stars according to the circumstellar contribution to the SED. (a) All the HAeBe stars in our sample; (b) stars presenting forbidden lines; and $(c)-(f)$ stars according to their $\mathrm{H} \alpha$ line-profile types.

Fig. 10.-Distribution of the PDS HAeBe stars in Galactic coordinates.

We can see from Figure 9 that forbidden lines are concentrated in objects that have significant circumstellar contribution. We also notice that $\mathrm{H} \alpha$ line-profile types present the following distribution: type I line profiles are concentrated around objects with less significant circumstellar contribution, type II in the more significant circumstellar ones, and types III and IV represent intermediate situations with a histogram peaking at objects that present $30 \%-60 \%$ of circumstellar contribution to the SED.

5.2. Galactic Distribution

To improve the proposed classification of the HAeBe candidates found in the PDS, minimum distances were calculated assuming that the stars are on the main sequence. It is important to keep in mind that these are only indicative values, since HAeBe stars may have strong photometric variations and our estimates of the reddening are independent of the galactic environment as the factor R is obtained in the same way.

We used these minima distances to investigate the possible relationship between the candidates and the main star-forming regions (SFRs). Figure 10 shows a plot of the Galactic distribution of the HAeBe candidates. As one can see, the stars are concentrated around the Galactic plane, mostly between $-25^{\circ} \leq b \leq 25^{\circ}$.

To further investigate the connection between stars and star-forming regions, we plotted in Figure 11 the HAeBe
stars over the opacity levels of the photographic Dark Clouds Catalogue compiled by Feitzinger \& Stuwe (1984). Around $l \approx 270^{\circ}$ there is a well-known tunnel of low reddening near the Galactic plane, which allows us to find HAeBe candidates even at great distances. Figure 12 shows the HAeBe stars in the Orion region superposed on the contours of the larger molecular clouds found by the Columbia millimeter-wave telescope in the third Galactic quadrant (Maddalena et al. 1986).

Combining the distance estimates of the Herbig candidates with the knowledge of the interstellar medium distribution, we have found that 84 candidates seem to be associated with some of the more conspicuous SFRs, being in the right direction and at a compatible distance. For 24 stars the proposed association is not clear enough within the given uncertainties. Two candidates do not have photometric data and no other indicator of their distance could be found. In this case only a positional coincidence with the SFR could be given. Another two candidates were not considered in this analysis since they have been recently recognized as a protoplanetary nebula: PDS 465 (GarcíaHernández et al. 2002) and PDS 581 (Castro-Carrizo et al. 2002).

The results are summarized in Table 5. The first column contains the star identification in the PDS catalog, except where otherwise noted. The following columns contain the Galactic coordinates l and b in degrees, the photometric and Hipparcos distances of the star in parsecs, the distance and name of the proposed star-forming region associated to the HAeBe candidate, as well as its reference in the literature. The last column contains general comments, such as other HAeBe designations or suggestions of associated starforming regions. The other 19 stars used to complement the data are also listed at the end of the table.

When available, Hipparcos distances were preferred. In some cases we were able to find kinematic distances $\left(d_{\text {kin }}\right)$ to the SFR. It should be noted that the photometric distances were calculated assuming that the stars are in the main sequence. Therefore, to be certain of the association of HAeBe candidates and SFR, we need to improve the distance determination of the stars, especially of the more distant ones, as well as the distance of the less well-studied SFRs. Given such limitations, caution should be exercised in using the proposed associations.

Fig. 11.-Location of the PDS HAeBe stars (squares) within the studied area. The clouds' contours are the lowest opacity level of the photographic catalog by Feitzinger \& Stuwe (1984).

Fig. 12.-PDS HAeBe stars in the Orion region superposed on the contours of the larger molecular clouds found by the Columbia millimeterwave telescope in the third Galactic quadrant (Maddalena et al. 1986).

5.3. Evolutionary Status

As a further means of checking the properties of the HAeBe candidates, as well as their present evolutionary status, the derived luminosities (calculated according to Balona 1994) and effective temperatures of stars in Table 2 were plotted together with a set of PMS evolutionary tracks on an HR diagram, as shown in Figure 13. The luminosities were calculated using the distances and errors from Hipparcos, when available, or to the associated SFR and their uncertainties, as explained in the previous section.

The evolutionary tracks were computed using the ATON 2.0 stellar evolution code (Mazzitelli 1989; Mazzitelli et al. 1995; Ventura et al. 1998). The input physics for all models were the same, namely, opacities taken from the OPAL (Iglesias \& Rogers 1993) opacity tables, supplemented by those at low and intermediate temperatures of Alexander \& Ferguson (1994); the convection model was the standard mixing length theory, with α (ratio of the mixing length to the pressure scale height) set to 1.5 , and the chemical composition was set to the solar one ($Y=0.271, Z=0.0175$), which is typical of Population I stars.

As one can see, most HAeBe candidates not only are located within the usual mass range ($2-10 M_{\odot}$) for HAeBe stars but are also near the ZAMS. The group of stars with masses between 1.5 and $2 M_{\odot}$ is expected in our sample, since the selection criteria of HAeBe stars adopted by the PDS program included stars earlier than F5.

Considering the error bars, a set of 14 stars (Table 6) has luminosities and temperatures that put them out of the expected position for an HAeBe object, all of them deserving more accurate study. The stars above the considered mass range (Table 6) include two that are suspected to be protoplanetary nebulae: PDS 067 (Miroshnichenko et al. 1999) and PDS 234 (Garcia-Lario et al. 1993, 1997). Regarding the stars below the ZAMS, three of them are classified as HAeBe objects: PDS 176 (van den Ancker et al. 1998; Piétu et al. 2003), PDS 004 (Miroshnichenko et al. 1999), and PDS 193 (Thé et al. 1994).

5.4. Evolved HAeBe Objects

During the evolution of HAeBe stars the circumstellar disk or envelope is cleared by planetesimal or cometesimal bodies and stellar winds. In this evolutionary stage the disk

Fig. 13.-Evolutionary tracks from 1.5 up to $10 M_{\odot}$ (solid lines) and the isochrones corresponding to $10^{3}, 10^{4}, 10^{5}$, and 10^{6} (dashed lines) and 10^{7} (dash-dotted line), respectively. The stars with distances taken from SFR are shown as dots. The big open dots are stars with Hipparcos distances.
(envelope) contribution to the $\mathrm{H} \alpha$ emission is very weak and the $\mathrm{H} \alpha$ line is almost totally formed at the stellar chromosphere. Sometimes the remote and cool shell is responsible for a central absorption.

The following objects have $\mathrm{H} \alpha$ line profiles that might be explained by this evolutionary scenario (Fig. 14): PDS 031S, $080,179,201 \mathrm{~A}, 281,290$, and 303. For three of them (PDS 031S, 080, and 201) the SED was calculated and the circumstellar contribution is very low: 12.3% for PDS 031S, 31.4% for PDS 080, and 27\% for PDS 201.

6. CONCLUSIONS

Although HAeBe objects present a great variety of $\mathrm{H} \alpha$ line profiles, our study shows that the type II line profile seems to be the most common. This is the same result as that of Reipurth et al. (1996), with a different sample, suggesting that most of the time a HAeBe star will present a type II $\mathrm{H} \alpha$ line profile. A correlation between the $\mathrm{H} \alpha$ line profile and $v \sin i$ was only found for stars that have a type IV line profile, which is expected because the stellar wind causes the loss of angular momentum, and these stars will become slow rotators.

In our sample [O_{I}] and [S_{II}] forbidden lines and $\mathrm{H} \alpha$ type II line profiles are concentrated in objects that have a strong circumstellar contribution to the SED. The forbidden lines also tend to occur more frequently among B than A stars, supporting the results of Corcoran \& Ray (1997, 1998).

The distribution of forbidden lines among different $\mathrm{H} \alpha$ line profiles is the same as the distribution of objects among $\mathrm{H} \alpha$ profile types. This fact shows that there is no correlation between the presence of forbidden lines and the $\mathrm{H} \alpha$ lineprofile type, contrary to what was found by Corcoran \& Ray $(1997,1998)$ and Böhm \& Catala (1994). It is important

TABLE 5
PDS Stars and Their Proposed Star-Forming Regions Association

Name	l	b	$d_{\text {phot }}$	$d_{\text {Hip }}$	$d_{\text {SFR }}$	SFR	Ref.	Comments
Taurus-Auriga								
004	161.19	-20.46	580	\ldots	250-300	Per OB2	4	V1185 Tau
168	174.87	-17.06	130		130-150	LDN 1536	1	
172.	173.47	-7.90	150	131_{115}^{156}	140-160	Tau	2	HD 31648
178N.	180.76	-6.19	220	$150{ }_{110}^{236}$	140-160	LDN 1554	3	...
178S	180.76	-6.19	220	150_{110}^{236}	140-160	LDN 1554	3	
183.......................	181.26	-4.77	140	$204{ }_{165}^{268}$	140-160	Tau	2	\ldots
Gemini								
020E	192.14	-3.60	1200	\ldots	1000-1500	Gem OB1	5,6	
204.......................	184.88	-1.73	2600		1100	WB 711	1993	BFS 50
Orion								
016.	209.59	-17.43	480	422_{272}^{935}	460-650	Ori OB1	8	\ldots
$018 . ~$	215.88	-17.48	380	...	300-700	Ori A	7	
023.	219.39	-10.06	1700	\ldots	670-1130	Southern Ori	10	Mon R2 $(d=830 \mathrm{pc})$
114.	202.58	-18.46	730		460-650	Ori OB1	8	LDN 1614
176........................	211.03	-25.61	540	$164{ }_{129}^{224}$	300-460	Ori	7	V1366 Ori
179.......................	200.32	-18.11	470	952-330	460-650	Ori OB1	8	...
180	201.07	-18.34	300	$645-80$	300-460	Ori	7	V1409 - ${ }^{\text {- }}$
184.	193.21	-12.28	510		360-440	λ Ori	9	V1409 Ori
185S	188.50	-8.88	180	3422_{22}^{742}	360-440	λ Ori	9	HR 1847
190	205.71	-17.25	550	...	300-700	Ori A	7	\ldots
191.	210.56	-19.41	320	\ldots	300-700	Ori A	7	vdB 46
192	205.50	-16.84	270	\ldots	360-640	Ori B	7	V1247 Ori, vdB50
193.	210.72	-19.38	600	\ldots	300-700	Ori A	7	...
194	209.40	-18.73	230	\ldots	300-700	Ori A	7	
198	211.25	-19.39	190		300-700	Ori A	7	V599 Ori
201	204.98	-14.81	170	$285{ }_{196}^{521}$	460-650	Ori B	7	V351 Ori
Canis Major								
024.	227.69	-8.15	1800	\ldots	2000	CMa	10	\ldots
025.	235.81	-10.50	790	\ldots	660-730	Collinder 121	10, 48	\ldots
$027 .$.	231.81	-1.96	1100	\ldots	1200-1300	CMa	10, 14	...
133.......................	239.58	-4.63	2500	\ldots	2460	LDN 1664	1,12	\ldots
134.	237.00	-1.32	1800	\ldots	2090	SS 127	12	\ldots
229 N .	216.23	-0.49	1600	\ldots	1300-1600	Mon	14	
234.	217.05	-0.05	4200	\ldots	3000-4600	Sh 2-287	46	Iron Clad neb.
$241 . ~$	218.75	1.86	3900	\ldots	5300-8300	Sh 2-288	46	Ced 92
249.......................	239.94	-5.03	2300	\ldots	2460	LDN 1664	1,12	...
255.	234.77	-0.27	4500	\ldots	3000-5400	Sh 2-309	12,46	\ldots
257........................	236.38	1.49	3000		4300	$\mathrm{G} 236.4+1.49$	12	
Monoceros								
021	216.46	-15.42	1100	\ldots	1000-1200	LDN 1653-1656	1,10	V791 Mon
022	221.20	-17.16	690	...	780-880	NGC 2149	11	AE Lep
124.	213.19	-12.56	1000	...	780-880	LDN 1646	13	...
126.......................	214.40	-11.31	500	\ldots	780-880	Mon R2	14	
130	219.59	-3.79	1200		1000-2000	BFS 63	10, 46	CMaR1 $(d=1315 \mathrm{pc})$
Vela and the Gum Nebula								
031S	257.63	0.25	670	$288{ }_{204}^{490}$	200-240	Gum Nebula	17	\ldots
033	261.62	1.84	1400	...	850-1150	RCW 32	46	\ldots
034........................	265.70	-1.20	2900	...	1800-2190	Vela OB1	8	...
272	260.26	-5.60	600	\ldots	500-900	Vela OB2	16,48	\ldots
277	257.33	-1.05	210	...	200-240	Gum Nebula	17	\ldots
281	265.23	0.52	340	.	450-600	Vela	11, 18	\ldots
286.......................	268.58	-0.05	560	...	450-600	Vela	11, 18	\ldots
290	274.70	-1.46	1800	...	1800-2190	Vela OB1	8	\ldots
$297 . ~$	278.86	-2.47	770	\ldots	700-800	DC 278.2-2.1	15, 16	\cdots

TABLE 5-Continued

Name	l	b	$d_{\text {phot }}$	$d_{\text {Hip }}$	$d_{\text {SFR }}$	SFR	Ref.	Comments
Carina								
037.	282.31	-0.77	720	\ldots	800	DC 282.4+0.5	17	SA 192
303.	282.88	-3.14	435	\ldots	800	DC 282.8-3.2	17	SA 192
322 N	286.87	2.90	3800	\ldots	2200-2800	Car OB1	8, 28	DC 287.7+2.9
$324 .$.	290.36	-2.83	5500	\ldots	3200-8800	G35	46	
327.	289.62	0.62	1200		1650-2750	Car OB2	8,46	$\mathrm{G} 37(d=3200 \pm 500)$
	291.58	6.81	110	111_{102}^{121}	120-150	Carina	19	SA 193
Centaurus and Crux								
057......................	294.13	1.47	410	\ldots	500-700	DC 295.0+1.3	21	close to Sh 2-131
067.	309.7	-1.48	1700	\ldots	1500-2300	Cen OB1	8,46	RCW $80(d=3800 \pm 700)$
139.	296.19	0.02	2200	\ldots	1750-3250	Cru OB1	8,46	RCW $62(d=2100 \pm 300)$
140.	298.70	2.87	290	\ldots	150-200	Coalsack	21	
353.	299.68	-0.60	1200	\ldots	900-1400	Coalsack	20	SS 73
361.	304.33	0.62	2700	\ldots	1700-2400	Cen OB1	8	...
364.	306.25	0.29	2600		1500-2700	RCW 75	46	
Chamaeleon-Musca								
061.	300.23	-15.59	115	116_{109}^{124}	140-200	Cha	23	DX Cha
340.	296.37	-8.32	190	103_{97}^{110}	100-120	DC 296.2-7.9	22	HD 100546
Norma								
399A	326.98	-1.24	874	\ldots	600-700	Norma	24	\ldots
399B	326.98	-1.24	874	\ldots	600-700	Norma	24	\cdots
389.	318.78	-3.91	240	\ldots	150-200	G317-4	17	Circinus
394.	320.94	-4.99	670	\ldots	400-600	Circinus	25	Sandqvist 165
406.	338.59	9.35	1200	...	1000-1400	Norma	24	...
431.	342.37	0.10	1300		1000-1400	Norma/Ara	24	
Lupus and Ophiuchus								
076.	349.91	23.50	118	...	110-160	Sco R1	27	\ldots
078	347.41	17.81	119	253_{183}^{405}	110-160	$\rho \mathrm{Oph}$	17, 26	\ldots
080.	352.43	20.44	139	131_{114}^{154}	110-160	ρ Oph/Sco OB2	17, 8	\ldots
095.	353.11	-0.72	950	...	1100-1700	RCW 131	28	\ldots
096.	349.87	-3.54	1300	...	850-1150	DC 349.8-3.5	29, 30	vdB 91
395.	333.24	10.19	160	\ldots	130-160	Lupus	17	\ldots
398A	4.19	36.91	170	99_{91}^{108}	110-160	ρ Oph	17, 26	
415N	352.07	18.44	280		110-160	ρ Oph/Sco OB2	17, 8	LDN 1687
473.	7.24	1.48	160	121_{109}^{139}	110-160	ρ Oph	17, 26	HD 163296
Serpens, Aquila, and Scutum								
518.	26.81	3.52	230	\ldots	220	Scutum	11,7	Aql Rift ($d=200$)
520.	31.14	5.06	180	\ldots	200-350	Serpens	31	...
$530 . ~$	39.09	5.87	1000	\ldots	600-1000	W50	32, 49	\ldots
545.	40.62	4.09	560		500-700	LDN 637	1	\ldots
564.......	49.21	2.88	197	244_{200}^{313}	200-300	Aquila	33	\ldots

Stars from PDS without Clear Association to Star-Forming Regions								
002	293.76	-64.10	340	\ldots				Isolated?
019........................	219.84	-18.12	1700	\ldots	850-1150	Southern Ori	27	
344.......................	295.41	-2.70	4100	\ldots	1300-2500	DC 296.1-2.5	8,46	Cru OB1
069N.....................	316.49	21.14	1200	\ldots	100	G316.4+21.2	33	MBM 112
144N.....................	345.61	21.77	2000	\ldots	...	Magnani 124	36	...
144S	345.61	21.77	1030	\ldots		Magnani 124	36	
174	203.54	-24.69	1700	\ldots	460	G203.4-24.7	33	LDN 1615/1616
187.	208.19	-19.90	1600	\ldots	300-700	Ori A	7,46	UY Ori
207........................	181.48	4.60	600	...	3000-4400	LDN 1557	34, 6	...
$211 . ~$	182.28	4.92	1100	\ldots	3000-4400	LDN 1557	34, 6	
216.......................	196.93	0.64	2700	\ldots	850-1150	Mon OB1	7	$d_{\text {kin }}=4700 \mathrm{pc}$
$225 . ~$	208.45	2.40	360	\ldots	930-1600	Rosette	35	$d_{\text {kin }}=930 \mathrm{pc}$
250	238.48	-4.17	4100	...	2460	LDN 1664	1,12	
315.......................	286.61	-1.92	6500	\ldots	2000-3000	Car OB1	8	
371N.....................	315.31	24.86	6000			\ldots

TABLE 5-Continued

Name	l	b	$d_{\text {phot }}$	$d_{\text {Hip }}$	$d_{\text {SFR }}$	SFR	Ref.	Comments
Stars from PDS without Clear Association to Star-Forming Regions								
453.	359.45	6.15	490	\ldots	\ldots	LDN 1767/1773	34	\ldots
469	13.26	6.46	1100	\ldots		LDN 330	37	
477	12.21	3.21	2900		900-1500	Sgr R1	8	
514	3.40	-7.82	130	\ldots				Isolated
543......................	35.13	2.08	414		≥ 1000	LDN 616	50	
551	37.01	0.98	3500		2000	CO 38+2	49	LDN 628
QT4	307.89	24.00	457	\ldots	\ldots			V958 Cen
QT2	264.54	-10.72	309	\ldots	\ldots	DC 264.5-11.3	15	Gum Nebula
QT3	276.24	-10.60	492	\ldots	\ldots	DC 276.2-10.6	15	
Stars without Distance but with Remarkable Positional Coincidence								
QT1	203.65	-18.27			360-640	Ori B	7	
141	303.04	-14.24			140-200	DC 303-14	38	DK Cha
Stars from Other Haebe Catalogs Used To Complement the Data								
HBC 078	172.50	-8.00		144_{126}^{167}	140-160	Tau-Aur	2	AB Aur
HD53367.	223.70	-1.91	\ldots	2500_{185}^{370}	500	vdB 86	29	V750 Mon
HD 52721	224.15	-2.87	...	$910^{-5} 7$	670-1130	Southern Ori	10	...
HBC 548	224.37	-2.73	\ldots	...	810-1150	CMa OB1	47	HT CMa
HBC 551.	224.53	-2.43	\ldots		810-1150	CMa OB1	47	HU CMa
HBC 552	256.14	-14.07	\ldots	500_{288}^{-}	450	Gum Nebula	18	NX Pup
HD 76534N	264.41	1.05	\ldots	4100_{268}^{888}	450-600	Vela	40	OU Vel
HD 76534S	264.41	1.05	\ldots	$410{ }_{268}^{884}$	450-600	Vela	40	OU Vel
HD 85567	282.67	-5.43	\ldots	1000_{591}^{3225}	800-2500	Carina	41	...
HD 98922	289.77	7.23	...	$1040{ }_{632}^{2900}$	1000-2000	Centaurus	42	
HD 95881	294.40	-10.47	\ldots	DC 295.3-13	43	Globule 121
Hen 3-847	304.60	13.95	\ldots			V1028 Cen
HBC 596.	317.08	-4.19	\ldots	\ldots	150-200	G317-4	17	Circinus
HBC 619.	339.53	9.38	\ldots	210_{176}^{253}	130-160	Lupus	44	V856 Sco
HD 150193.	355.60	14.85	...	$150{ }_{119}^{200}$	100-140	Ophiuchus	26	...
HBC 288	359.94	-17.84	\cdots	$8{ }_{5}^{18}$	130-170	DC 359.9-17.9	45	R CrA
HBC 287	359.99	-17.78	130	...	130-170	DC 359.9-17.9	45	TY CrA
HBC 282	30.46	5.11		...	200-300	Aql Rift	7,11	VV Ser
HD 190073..............	46.47	-13.09		5000_{750}^{-}		V1295 Aql

References.-Reference code: (1) Hilton \& Lahulla 1995; (2) Cohen \& Kuhi 1979; (3) Ungerechts \& Thaddeus 1987; (4) de Zeeuw et al. 1999; (5) Haug 1970; (6) Carpenter et al. 1995; (7) Dame et al. 1987; (8) Dambis et al. 2001, (9) Murdin \& Penston 1977; (10) Maddalena et al. 1986; (11) Feitzinger \& Stuwe 1986; (12) Wouterloot \& Brand 1989; (13) Herbst \& Racine 1976; (14) Maddalena \& Thaddeus 1985; (15) Hartley et al. 1986; (16) Lizeau et al. 1992; (17) Franco 1990; (18) Pettersson 1991; (19) Knude 1984; (20) Franco 1989; (21) Corradi et al. 1997; (22) Vieira et al. 1999; (23) Whittet et al. 1997; (24) Haug \& Bredow 1977; (25) Haug et al. 1966; (26) Knude \& Høg 1998; (27) Racine 1968; (28) Higdon \& Lingenfelter 1996; (29) Eggen 1978; (30) Persi et al. 1991; (31) Eiroa 1991; (32) Dame \& Thaddeus 1985; (33) Yonekura et al. 1999; (34) Lynds 1962; (35) Turner 1976; (36) Magnani et al. 1985; (37) Parker 1991; (38) Gregorio-Hetem et al. 1988; (39) Keto \& Myers 1986; (40) Duncan et al. 1996; (41) Feinstein 1995; (42) Courtès et al. 1970; (43) Feitzinger \& Stuwe 1984; (44) Tachihara et al. 1996; (45) Marraco \& Rydgren 1981; (46) Avedisova 2000; (47) Herbig 1991; (48) Kaltcheva 2000; (49) Andersson 1991; (50) Myers 1975.

TABLE 6
Stars out of the Expected Position in the
HR Diagram

PDS	Name
PDS 204.....................	MWC 778
PDS 234	GSC 4805-1306
PDS 241.	GSC 4823-0146
PDS 255.	SS73 6
PDS 286.	Hen 3-248
PDS 324.	IRAS 10554-6237
PDS 327.	HD 96042
PDS 139.	IRAS 11507-6148
PDS 067.	Hen 3-938
PDS 176.....................	HD 34282
PDS 193.	GSC 4779-0040
PDS 140.	GSC 8645-1401
PDS 415N.	CD -23 12840
PDS 004......................	GSC 1811-0767

to note that the completeness of our sample gives support to our results.

When plotted in the HR Diagram, 14 stars lie out of the expected position for HAeBe stars. Three of them were already classified as HAeBe stars and two as protoplanetary nebulae. The remaining nine objects need more study, mainly in distance determination.

An investigation of the possible relationship of the HAeBe candidates found in the PDS with the main SFR shows that 84 candidates seem to be associated with one of the more conspicuous SFRs, being in the right direction and at compatible distances. Twenty-four stars need a more accurate study in order to assign any association to them.

Still considering the $\mathrm{H} \alpha$ line profile, eight objects presented a line profile (weak emission inside the absorption well) that can be explained by an evolutionary scenario where the shell is almost absent (evolved HAeBe stars). Since HAeBe stars show great variability in the $\mathrm{H} \alpha$ line

FIg. 14.-H α line profiles of the presumably evolved HAeBe objects
profile, it is important to follow the behavior of these stars in order to confirm this classification.

The authors wish to thank M. Sartori and J. GregorioHetem for the SED calculation. S. L. A. V., W. J. B. C., and L. T. S. M. acknowledge CNPq (grant 471537/2001-02) and

FAPEMIG for partial financial support for doing this work. S. H. P. A. acknowledges support from FAPESP (grant 00/06244-9), and CAPES (PRODOC program). M. M. G. acknowledges support from CAPES. C. A. O. T. acknowledges support from CNPq (grant 200356/02-0). This research has made use of of the SIMBAD database, operated at CDS, Strasbourg, France.

REFERENCES

Alexander, D. R., \& Ferguson, J. W. 1994, ApJ, 437, 879
Andersson, B.-G., Warnier, P. G., \& Morris, M. 1991, ApJ, 366, 464
Augereau, J. C., Lagrange, A. M., Mouillet, D., \& Ménard, F. 2001, A\&A, 365, 78
Avedisova, V. 2000, Baltic Astron., 9, 569

Balona, L. A. 1994, MNRAS, 268, 119
Beskrovnaya, N. G., et al. 1998, A\&AS, 127, 243
Böhm, T., \& Catala, C. 1994, A\&A, 290, 167
Böhm, T., \& Hirth, G. A. 1997, A\&A, 324, 177
Bouret, J.-C., \& Catala, C. 1998, A\&A, 340, 163

Carpenter, J. M., Snell, R. L., \& Schloerb, F. P. 1995, ApJ, 450, 201
Castro-Carrizo, A., et al. 2002, A\&A, 386, 633
Cohen, M., \& Kuhi, L. V. 1979, ApJS, 41, 743
Corcoran, M., \& Ray, T. P. 1997, A\&A, 321, 189 .1998, A\&A, 331, 147
Corradi, W. J. B., Franco, G. A. P., \& Knude, J. 1997, A\&A, 326, 1215
Courtès, G., Georgelin, Y. P., Georgelin, Y. M., \& Monnet, G. 1970, in IAU Symp. 38, The Spiral Structure of our Galaxy, ed. W. Becker \& G. I. Kontopoulos (Dordrecht: Reidel), 209

Dame, T. M., \& Thaddeus, P. 1985, ApJ, 297, 751
Dame, T. M., et al. 1987, ApJ, 322, 706
Dambis, A. K., Mel'nick, A. M., \& Rastorguev, A. S. 2001, Astron. Lett., 27, 58
de Jager, C., \& Nieuwenhuijzen, H. 1987, A\&A, 177, 217
de Winter, D., et al. 1999, A\&A, 343, 137
de Zeeuw, P. T., et al. 1999, AJ, 117, 354
Duncan, A. R., Stewart, R. T., Haynes, R. F., \& Jones, K. L. 1996, MNRAS, 280, 252
Eggen, O. J. 1978, PASP, 90, 436
Eiroa, C. 1991, ESO Sci. Rep., 11, 197
Feinstein, A. 1995, Rev. Mexicana Astron. Astrofis., 2, 57
Feitzinger, J. V., \& Stuwe, J. A. 1984, A\&AS, 58, 365 (erratum: 1986,
A\&AS63, 203)
-. 1986, ApJ, 305, 534
Finkenzeller, U. 1985, A\&A, 151, 340
Finkenzeller, U., \& Mundt, R. 1984, A\&AS, 55, 109
Franco, G. A. P. 1989, A\&A, 215, 119
1990, A\&A, 227, 499
García-Hernández, D. A., et al. 2002, A\&A, 387, 955
Garcia-Lario, P., et al. 1993, A\&A, 267, L11 1997, A\&AS, 126, 479
Graham, J. A. 1982, PASP, 94, 244
Gray, D. F. 1992, The Observation and Analysis of Stellar Photospheres (2d ed.; New York: Cambridge Univ. Press)
Gregorio-Hetem, J., \& Hetem, A., Jr. 2002, MNRAS, 336, 197
Gregorio-Hetem, J., Sanzovo, G. C., \& Lépine, J. R. D. 1988, A\&AS, 76, 347
Gregorio-Hetem, J., et al. 1992, AJ, 103, 549
Grinin, V. P., et al. 1994, A\&A, 292, 165
Hartley, M., et al. 1986, A\&AS, 63, 27
Haug, U. 1970, A\&AS, 1, 35
Haug, U., \& Bredow, K. 1977, A\&AS, 30, 235
Haug, U., Pfleiderer, J., \& Dachs, J. 1966, Z. Astrophys., 64, 140
Herbig, G. H. 1960, ApJS, 4, 337

- 1991, ESO Sci. Rep., 11, 59

Herbig, G. H., \& Bell, K. R. 1995, Lick Obs. Bull., 1111, 5073
Herbst, W., \& Racine, R. 1976, AJ, 81, 840
Higdon, J. C., \& Lingenfelter, R. E. 1996, A\&AS, 120, 349
Hillenbrand, L. A., et al. 1992, ApJ, 397, 613
Hilton, J., \& Lahulla, J. F. 1995, A\&AS, 113, 325
Iglesias, C. A., \& Rogers, F. J. 1993, ApJ, 412, 752
Imhoff, C. L. 1994, in ASP Conf. Ser. 62, The Nature and Evolutionary Status of Herbig Ae/Be Stars, ed. P. S. Thé, M. R. Pérez, \& E. P. J. van den Heuvel (San Francisco: ASP), 107

Jablonsky, F., Baptista, R., Barroso, F., Jr., Gneiding, C., Rodrigues, F., \& Campos, R. P. 1994, PASP, 106, 1172

Kaltcheva, N. T., \& Hilditch, R. W. 2000, MNRAS, 312, 753
Kenyon, S. J., \& Hartmann, L. 1995, ApJS, 101, 117
Keto, E. R., \& Myers, P. C. 1986, ApJ, 304, 466
Knude, J. 1984, in IAU Colloq. 81, Local Interstellar Medium, ed.
Y. Kondo, F. C. Bruhweiler, B. D. Savage (Washington: NASA), 149

Knude, J., \& Høg, E. 1998, A\&A, 338, 897
Lizeau, R., Lorenzetti, D., Nisini, B., Spinoglio, L., \& Moneti, A. 1992, A\&A, 265, 577
Lynds, B. T. 1962, ApJS, 7, 1
Maddalena, R. J., \& Thaddeus, P. 1985, ApJ, 294, 231
Maddalena, R. J., Morris, M., Moscowitz, J., \& Thaddeus, P. 1986, ApJ, 303, 375
Magnani, L., Blitz, L., \& Mundy, L. 1985, ApJ, 295, 402
Malfait, K., Bogaert, E., \& Waelkens, C. 1998, A\&A, 331, 211
Marraco, H. G., \& Rydgren, A. E. 1981, AJ, 86, 62
Mazzitelli, I. 1989, ApJ, 340, 249
Mazzitelli, I., D'Antona, F., \& Caloi, V. 1995, A\&A, 302, 382
Miroshnichenko, A. S., et al. 1999, A\&A, 347, 137
Mouillet, D., Lagrange, A. M., Augereau, J. C., \& Ménard, F. 2001, A\&A, 372, L61
Murdin, P., \& Penston, M. V. 1977, MNRAS, 181, 657
Myers, P. C. 1975, ApJ, 198, 331
Parker, N. D. 1991, MNRAS, 251, 63
Persi, P., Polcaro, V. F., Viotti, R., \& Origlia, L. 1991, MNRAS, 251, P1
Pettersson, B. 1991, ESO Sci. Rep., 11, 69
Piétu, V., Dutrey, A., \& Kahane, C. 2003, A\&A, 398, 565
Piskunov, N. E., Kupka, F., Ryabchikova, T. A., Weiss, W. W., \& Jeffery, C. S. 1995, A\&AS, 112, 525

Racine, R. 1968, AJ, 73, 233
Reipurth, B., Pedrosa, A., \& Lago, M. T. V. T. 1996, A\&AS, 120, 229
Schmidt-Kaler, T. 1982, in Landolt-Börnstein, Group VI, Volume 2, ed. K.-H. Hellwege (New York: Springer), 454

Shevchenko, V. S. 1999, Astron. Rep., 43, 246
Strafella, F., Pezzuto, S., Corciulo, G. G., Bianchini, A., \& Vittone, A. A. 1998, ApJ, 505, 299
Tachirara, K., Dobashi, K., Mizuno, A., Okawa, H., \& Fukui, Y. 1996, PASJ, 48, 489
Telting, J. H., Heemskerk, M. H. M., \& Henrichs, H. F., \& Savonije, G. J. 1994, A\&A, 288, 558
Thé, P. S., de Winter, D., \& Pérez, M. R. 1994, A\&AS, 104, 315
Torres, C. A. O. 1999 , Special Publ. 10 (Rio de Janeiro: Obs. Nac.)
Torres, C. A. O., et al. 1995, AJ, 109, 2146
Turner, D. G. 1976, ApJ, 210, 65
Ungerechts, H., \& Thaddeus, P. 1987, ApJS, 63, 645
Valenti, J. A. 1994, Ph.D. thesis, Univ. California, Berkeley
Valenti, J. A., \& Piskunov, N. 1996, A\&AS, 118, 595
van den Ancker, M. E., de Winter, D., \& Tjin, A., \& Djie, H. R. E. 1998, A\&A, 330, 145
Ventura, P., Zeppieri, A., Mazzitelli, I., \& D’Antona, F. 1998, A\&A, 334, 953
Vieira, S. L. A., Pogodin, M. A., \& Franco, G. A. P. 1999, A\&A, 345, 559
Whittet, D. C. B., et al. 1997, A\&A, 327, 1194
Wouterloot, J. G. A., \& Brand, J. 1989, A\&AS, 80, 149
Yonekura, Y., et al. 1999, PASJ, 51, 837

[^0]: ${ }^{1}$ Based on observations made at the Obsevatório do Pico dos Dias/ LNA (Brazil), ESO (Chile), and the Lick Observatory.
 ${ }^{2}$ Departamento de Física, ICEx, Universidade Federal de Minas Gerais, C.P. 702, 30161-970 Belo Horizonte, MG, Brazil;
 slvieira@fisica.ufmg.br, wag@fisica.ufmg.br, silvia@fisica.ufmg.br, luizt@fisica.ufmg.br,mmg@fisica.ufmg.br.
 ${ }^{3}$ Universidade de São Paulo, IAG, Departamento de Astronomia, Rua do Matão 1226, Cidade Universitária, 05508-900 São Paulo, Brazil.
 ${ }^{4}$ Laboratório Nacional de Astrofísica, MCT, Rua Estados Unidos 154, 37504-364 Itajubá, Brasil; beto@lna.br germano@lna.br.
 ${ }^{5}$ Observatório Nacional, MCT, Rua General José Cristino 77, 20921-400 São Cristóvão, Rio de Janeiro, Brazil; licio@on.br.

[^1]: ${ }^{6}$ The low- and medium-resolution spectra are available for download at http://www.fisica.ufmg.br/~svieira/TRANSF.

[^2]: Notes.- The first column is the star identification in the PDS program, the T superscript identifying the PDS objects also proposed to be HAeBe by The et al. 1994. QT (from Quast and Torres) are
 ned resolution: L for low, M for medium, and H for high; col. (5) has the spectral type classification by the PDS program. Col. (6) has the H α line-profile classification according to Reipurth et al. 1996, the question mark means that the spectra quality is too poor to blasifid and "abs" means that the profic is in absorption. Col. (7) shows the presence of forbidden lines: [O IT* means that only 6300.31 A is present; the question mark means that the spectra begin at $6500 \AA$ and nothing can be said about the presence of the $\left[\mathrm{O}_{\mathrm{I}}\right]$ lines; the minus sign means that $\left[\mathrm{O}_{\mathrm{I}}\right]$ and $\left[\mathrm{S}_{\mathrm{II}}\right]$ forbidden lines are not
 present.

