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Abstract. The influence of the so–called “reflection effect”
(mutual illumination in a close binary) on the gravity–
brightening exponent (β) is studied using the UMA (Uppsala
Model Atmosphere) code. The model is applied to convective
grey (in the sense of continuum–only–opacity) and non–grey
(line–blanketed) atmospheres with3 700 K < Teff < 7 000 K,
illuminated by grey and non–grey fluxes. The results for grey
atmospheres illuminated by grey or non–grey fluxes are very
similar. In this caseβ mostly depends on the amount of incident
energy and on the illumination direction, apart from the depen-
dence on the effective temperature already discussed for non-
illuminated models in a previous work (Alencar & Vaz 1997).
The existence of a maximum in theβ(Teff) relation is due to
the interplay between the convection and opacity properties of
the models. The external illumination increases the values ofβ,
that is, the larger the amount of incident flux the larger the value
of the exponent. This effect is caused by the “quenching” of
convection as the external illumination heats the surface layers
of the illuminated star, thus bringing it closer to radiative equi-
librium, whereβ is close to unity. We provide a polynomial fit
to the variation ofβ with the fundamental parameters, in order
to make it possible to easily account for the effect in light curve
synthesis programs.

For line–blanketed illuminated atmospheres there is an
additional dependence on the effective temperature of the
incident flux (the heating temperature). This is related to the
overall wavelength dependence of the spectral line opacity.
Particularly in the UV, the line opacity is so strong that
it prevents a significant amount of the incident flux from
penetrating to the continuum formation layers. The quenching
of convection by the external illumination and the related
increase ofβ are thus partly prevented.
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1. Introduction

In order to improve the results obtained by eclipsing binary
light curve models, and to avoid the multiplicity of solutions,
it is convenient to keep as many parameters as possible fixed
at their observed or theoretical values. The gravity–brightening
exponent (β) of convective atmosphere stars is usually assumed
to be equal to the theoretical valueβ = 0.32 (Lucy 1967),β
being defined by the equation

F ∝ gβ , (1)

proposed by von Zeipel (1924) for radiative atmospheres.
In Alencar & Vaz (1997, hereafter Paper I) it was shown

that the gravity–brightening exponent of a non-illuminated con-
vective atmosphere depends on the star’s effective temperature,
Lucy’s result being a good approximation only as a mean value
for non-illuminated atmospheres. In Paper I, where a brief re-
view of the observational and theoretical work on the gravity–
brightening effect was presented, it was also demonstrated that
external illumination tends to increase the value ofβ.

External illumination is significant in many eclipsing bina-
ries, as evidenced by the conspicuous “reflection effect” in their
light curves. Nevertheless, until now, no particular attention has
been paid to its influence on theβ exponent. Our goal in the
present study is to clarify the dependence ofβ on external illu-
mination.

In Sect. 2 we describe our method and study the cases of grey
and non–grey convective illuminated atmospheres, presenting
the results (for the grey case) as a polynomial expression. Fur-
ther, we explain whyβ has a maximum in theTeff interval
studied. We discuss the results in Sect. 3, and summarize our
conclusions in Sect. 4.

2. The atmosphere model

We use the Uppsala Model Atmosphere (UMA, Gustafsson et
al. 1975, Bell et al. 1976) code, in a version by Vaz & Nordlund
(1985), as described in Paper I. The code is intended for cool
(3 500 K < Teff < 8 000 K) atmospheres, and assumes hydro-
static equilibrium, a plane–parallel structure, and local thermo-
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dynamic equilibrium. Convection is modeled with the mixing
length recipe.

An illuminated model is defined by its effective tempera-
tureTeff , its surface gravitational accelerationg, mixing length
parameterα = l/HP , and chemical composition (fixed at solar
abundance in this work). The external illumination is param-
eterized by the direction of illuminationµ (the cosine of the
incidence angle with respect to the surface normal), the effec-
tive temperature of the illuminating starTh and its apparent
radiusrh (the ratio between the radius of the illuminating star
and the distance from its centre to the surface of the reflecting
star). The mixing length parameter was kept fixed atα = 1.5 for
the illuminated models (in Paper I it was shown that the gravity–
brightening exponent does not depend strongly on this parame-
ter). We refer to models with and without spectral line absorp-
tion as “non–grey” and “grey”, respectively. The “grey” models
include the variation of continuum opacity with frequency (as
in Nordlund & Vaz 1990). We study grey (continuum–only)
and non–grey (line–blanketed) illuminated atmospheres in con-
vective equilibrium. The spectral lines are treated in the ODF
(Opacity Distribution Function) approximation. The limits of
the ODF tables constrain the effective temperature of stars in
this study to a range corresponding to (ZAMS) stars with masses
in the interval0.6 M� to 1.5 M�.

2.1. The method

Starting from a reference (log g = 4.5) non-illuminated model
we adjustTeff for illuminated models with the samelog g until
the adiabat at the bottom of the illuminated model becomes
equal to that of the reference model. These models represent
the illuminated and the non–illuminated sides of the same star,
by having the same entropy at the bottom. We then use the
illuminated model withlog g = 4.5 as a reference and follow the
procedure described in Paper I to determineβ, by examining
how the total flux of the illuminated models varies withg (Eq. 1).

Note that our method givesβ as a function of parameters
that were chosen primarily for convenience of computing stel-
lar atmosphere models, rather than for their direct applicability
to binary systems. Thelog g, rh, andµ parameters, for exam-
ple, are interrelated through the value of the radius of the star.
When applying these results to the study of a particular binary
system, it is necessary to interpolate in our parameter space
to the particular combination of parameter values appropriate
to a given point on the stellar surface. The resulting values of
the gravity–brightening exponent will vary between points on
the reflecting stellar surface, a property that is shared with the
limb-darkening coefficients, which are also affected by external
illumination (Alencar & Vaz 1999).

We used suitable values for thelog g interval, to reproduce
the range of distortions covered in Paper I. Eq. (1), proposed by
von Zeipel (1924) for atmospheres in radiative equilibrium and
applied by Lucy (1967) to stars with convection, proved to be
a good approximation for all the intervals used. The correlation
coefficients in the linear regressions used to determineβ were
always close to unity (the smallest one found was 0.987).

Fig. 1. log T vs. log P for convective grey non-illuminated (solid thin
line) and illuminated models withα = 1.5, µ = 0.93.

The values ofTeff , Th and of the relative flux,

Frel,µ = [Th/Teff ]4rh
2µ, (2)

used in the present work are representative of values for de-
tached, semi–detached, and Algol systems found in the litera-
ture (Alencar & Vaz 1999).

In Sect. 2.2 we present the results obtained with grey atmo-
sphere models illuminated by grey and non–grey fluxes. Initially
we usedTh = 3 700 K, 4 500 K, 7 000 K andTh = 10 000 K to
check for a possible correlation betweenβ andTh. However, the
correlation turned out to be betweenβ and the relative flux and
we chose to compute most of the models withTh = 7 000 K.
The illuminating non–grey fluxes withTh ≤ 7 000 K were gen-
erated with the UMA code, while forTh = 10 000 K we took
the fluxes from Kurucz (1979). The grey fluxes were generated
from a standard grey model (see, e.g. Mihalas 1978). It is worth
mentioning that, even in our most extreme case of external il-
lumination (Teff = 6 700 K,Frel = 1.5), the “heated” effective
temperature of the illuminated models (keeping the constraint
on the entropy at the bottom) did not exceed the validity limit
of UMA, staying withinT heated

eff
<∼ 8 000 K.

In Sect. 2.3 we give the results obtained with non–grey at-
mospheres illuminated by grey and non–grey fluxes. In this case
β does depend onTh, andFrel,µ alone is no longer sufficient to
account for the correlations found.

2.2. Convective grey (continuum–only) atmospheres

Some of the models obtained with this method are shown in
Fig. 1. The solid lines represent our reference models (withlog g
= 4.5); the thin line represents the non-illuminated model, while
the thick line is the illuminated one. The other models are the
illuminated and distorted ones. The relation oflog T to log P is
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Fig. 2. β(t, Frel,µ, µ): calculations (grey models) and parametric surfaces (see Eq. (4) to (6)), presented for 4 values ofµ. The curved grids
represent the parameterization whose coefficients are shown in Table 1, and the points represent the calculations.

the same at the bottom of the atmospheres so that the different
models have the same entropy at the bottom, as discussed above.

We calculated models by varyingrh andTh for different val-
ues ofTeff (illuminated atmosphere), and four values of the an-
gle of incidence of the radiation (µ = cos θ = 0.06943, 0.33001,
0.66999 and 0.93057). The correspondingβ values are shown
in Fig. 2, whereFrel,µ (Eq. 2), represents the influence of the
parameters related to the illuminating flux, andt = Teff ×10−3

is the relevant parameter of the illuminated atmosphere. Note
that in all panels of Fig. 2 the curve forFrel,µ = 0 corresponds
to the results of Paper 1 (no external illumination). Note also
thatβ depends strongly on the amount of external illumination,
represented byFrel,µ. A weaker dependence on the angle of
incidence of the external radiation,µ, is also visible.

Theβ exponent increases with the incident flux, represented
by Frel,µ and saturates whenβ reaches its value for radiative

atmospheres. This is most noticeable for models computed with
incidence direction close to the surface normal (µ = 0.93 and
0.67) in Fig. 2.

The general trend revealed in Paper 1 ofβ having a maxi-
mum for a certain value ofTeff is repeated here for all values of
Frel,µ. The maximum shifts to lowerTeff with increasing values
of Frel,µ.

2.2.1. The behaviour ofβ for non-illuminated models

The maximum inβ(Teff) is caused by changes in the convection
and opacity properties of the models. For lowTeff , convection
is rather efficient, because of the high mass densities and low
total energy fluxes. The entropy jump at the surface is corre-
spondingly small and its changes even smaller, yielding small
β when we force the entropy at the bottom of the models to be



S.H.P. Alencar et al.: The gravity-brightening effect and stellar atmospheres 559

Table 1. cnlj coefficients for Eqs. (4)-(6), corresponding to the para-
metric surfaces of Fig. 2 (grey models). All calculations were per-
formed with double precision. The number inside parentheses is the
power of 10 by which the entry must be multiplied (e.g.c050 =
−0.00186340).

a0

c0l0 c0l1 c0l2 c0l3

b00 1.24496 (0) 7.86878 (1) –3.32836 (2) 3.26944 (2)
b01 –3.37761 (0) –7.49532 (1) 3.17539 (2) –3.12273 (2)
b02 1.96572 (0) 2.82025 (1) –1.19617 (2) 1.17755 (2)
b03 –4.55033 (-1) –5.24475 (0) 2.22605 (1) –2.19342 (1)
b04 4.73747 (-2) 4.82560 (-1) –2.04876 (0) 2.02029 (0)
b05 –1.86340 (-3) –1.75850 (-2) 7.46664 (-2) –7.36785 (-2)

a1

c1l0 c1l1 c1l2 c1l3

b10 –2.62765 (0) 3.38727 (3) –1.01772 (4) 6.82868 (3)
b11 –9.75380 (0) –3.29553 (3) 9.81068 (3) –6.56626 (3)
b12 8.06846 (0) 1.26666 (3) –3.73692 (3) 2.49471 (3)
b13 –2.24768 (0) –2.40423 (2) 7.03300 (2) –4.68350 (2)
b14 2.68404 (-1) 2.25419 (1) –6.54300 (1) 4.34712 (1)
b15 –1.17767 (-2) –8.35587 (-1) 2.40850 (0) –1.59682 (0)

a2

c2l0 c2l1 c2l2 c2l3

b20 1.29112 (2) –9.98733 (3) 2.78191 (4) –1.86921 (4)
b21 –1.12583 (2) 9.63611 (3) –2.66734 (4) 1.79080 (4)
b22 3.89523 (1) –3.67200 (3) 1.01055 (4) –6.77833 (3)
b23 –6.70992 (0) 6.91170 (2) –1.89208 (3) 1.26791 (3)
b24 5.76212 (-1) –6.42985 (1) 1.75181 (2) –1.17284 (2)
b25 –1.97307 (-2) 2.36651 (0) –6.42031 (0) 4.29475 (0)

a3

c3l0 c3l1 c3l2 c3l3

b30 –1.95456 (2) 7.51194 (3) –2.01052 (4) 1.34888 (4)
b31 1.80820 (2) –7.19551 (3) 1.91845 (4) –1.28727 (4)
b32 –6.62234 (1) 2.72277 (3) –7.23386 (3) 4.85339 (3)
b33 1.20214 (1) –5.09115 (2) 1.34832 (3) –9.04429 (2)
b34 –1.08251 (0) 4.70739 (1) –1.24314 (2) 8.33660 (1)
b35 3.87011 (-2) –1.72301 (0) 4.53872 (0) –3.04289 (0)

a4

c4l0 c4l1 c4l2 c4l3

b40 5.85147 (1) –1.64930 (3) 4.32086 (3) –2.90577 (3)
b41 –5.41777 (1) 1.57005 (3) –4.10386 (3) 2.76141 (3)
b42 1.98294 (1) –5.90521 (2) 1.54029 (3) –1.03671 (3)
b43 –3.59233 (0) 1.09786 (2) –2.85819 (2) 1.92392 (2)
b44 3.22512 (-1) –1.00971 (1) 2.62425 (1) –1.76645 (1)
b45 –1.14890 (-2) 3.67784 (-1) –9.54449 (-1) 6.42438 (-1)

constant. This can be observed in Fig. 3, where we showlog T
vs.log P for a set of 5 values ofTeff and 4 values oflog g (Frel =
0). The effective temperature may be approximated byTτ=2/3
(marked in Fig. 3). The total flux is proportional toσT 4

eff and,
using Eq. (1),β is thus proportional to the total extension of
∆Tτ=2/3 obtained for eachTeff and models withlog g varying
between 3.5 and 5.0 (the vertical bars in Fig. 3).

TheTeff = 3900 K models are so adiabatic thatβ is small (the
points atTτ=2/3 almost follow one adiabat). For intermediate
Teff , convection becomes less efficient, with a correspondingly
larger entropy jump near the surface. The stabilizing influence
of convection thus diminishes, and the values ofβ increase (as

Fig. 3. log T vs. log P for convective non-grey non-illuminated mod-
els with α = 1.5, µ = 0.93 and different values ofTeff . For each
value ofTeff there are 4 models with different values oflog g, which
match the entropy of the reference model (log g = 4.5) at the bottom.
The and• symbols mark theτRoss = 2/3 (Rosseland mean) layers.
The vertical bars mark the extension of the temperature variation with
the differentlog g for eachTeff atτRoss = 2/3. The length of these bars
is proportional toβ. The thin continuous lines are contours oflog κ
(again shown as Rosseland mean) constant, labelled fromlog κ = -2.0
to 2.5 in equal steps of 0.5 dex.

illustrated by the increase of the extension of the vertical bars
in Fig. 3 forTeff <∼ 5500 K).

For even higherTeff the influence of the opacity becomes
significant. The temperature dependence ofκ (i.e.∂ log κ/∂ log T )
is much larger than its pressure dependence (∂ log κ/∂ log P ). This
is clear from Fig. 3, which shows that the contour levels of con-
stantlog κ tend to run parallel to thelog P axis, especially as
log T increases. The physical reason for this is thatTeff en-
ters the regime where H is the dominant electron contributor
and where, consequently, hydrogen ionization implies that the
opacity (predominantlyH−) increases very rapidly with tem-
perature. To appreciate how the temperature sensitivity ofκ in-
fluencesβ it is useful to consider the approximationτ ∼ κP/g,
according to which, ifg is increased, it does not take much of
an increase inT to compensate for the change. One may derive

β≈ ∆ log T 4

∆ log g
≈ 4[

∂ log κ
∂ log T

]
P

+
[
1+

[
∂ log κ
∂ log P

]
T

]/
d log T
d log P

, (3)

whered log T/d log P is the logarithmic temperature gradient of
the model atτ = 2/3, and the dependence ofd log T/d log P on g
has been ignored. Eq. 3 shows thatβ does indeed become small

for large values of
[

∂ log κ
∂ log T

]
P

.
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As discussed further below (see Sect. 3), an increasing exter-
nal flux tends to extinguish convection. Illuminated models thus
tend to approach radiative equilibrium, and henceβ increases
as the amount of illumination increases.

After Paper I was published, Claret (1998) submitted a work
dealing with the calculation of the gravity–brightening exponent
(and of limb-darkening coefficients as well) using a different
approach. By using a modified version of the triangles technique
(Kippenhahn et al. 1967), Claret (1998) computedβ values of
non-illuminated models for aTeff interval larger than in Paper I.
His results are presented as a function of the logarithm of the
model masses, starting at the Solar mass. Considering values at
the ZAMS, the temperature interval of3.56 < log Teff < 3.85,
covered in our work, corresponds to−0.222 < log(m/M�) <
0.176. Claret’s (1998) results are in good agreement with those
from Paper I with respect to the behaviour ofβ in the common
region (3.81 < log Teff < 3.85) covered by both works.

The lower limit inlog Teff of Claret’s models (3.81) is larger
than the value for which we found a maximum inβ (atlog Teff ≈
3.74, Frel = 0). However, his calculation of the evolution ofβ
with age for two of the models does confirm the existence of such
a feature (see his Fig. 5, for the evolution of a 2 M� model off
the Main Sequence, and his Fig. 6. for the evolution of a 1 M�
model from the Pre-Main Sequence phase). There is no specific
comment about this behaviour in his work and Claret (1998)
interprets the general trends inβ changes in terms of convection
only. However, as explained above, this behaviour is due to the
interplay between the convection and opacity properties of the
models.

2.2.2. A polynomial approximation forβ

The variation ofβ for illuminated grey atmospheres is primarily
a function ofTeff , Frel,µ andµ. In order to easily account for
this dependence in light curve synthesis programs, we separate
each variable using polynomials:

β =
∑4

n=0an(t, µ)Fn
rel,µ (4)

where an(t, µ) =
∑5

l=0bnl(µ)tl (5)

and bnl(µ) =
∑3

m=0cnlmµm, with t = Teff × 10−3 (6)

The theoretical grid obtained is shown in Fig. 2, with the values
determined from the atmosphere model overplotted. The 120
cnlj coefficients obtained with grey models are listed in Table 1.
The standard deviation of the parametric fit isσ = 0.022 (26
models), with no systematic tendency ofσ with the incidence
angle. Due to the numeric operations involved, we advise the
use of the full precision given in Table 1, in order to keep errors
≤0.1% when calculatingβ from Eqs. (4)-(6). Care must be taken
in any attempt to extrapolate beyond the limits given in Fig. 2.

In Fig. 4 we showβ calculated for grey atmospheres (Teff =
3697 K,µ = 0.9306) illuminated by grey and non–grey fluxes for
different values ofTh (3 700 K, 4 500 K, 7 000 K and 10 000 K).
Our parametric approximation (Eqs. 4–6) is also included. One
can see thatβ does not depend significantly onTh for grey

Fig. 4. β(Frel,µ=0.9306), for grey atmospheres illuminated with grey
(g) and non–grey (ng) fluxes with different values ofTh. The solid line
corresponds to our parameterization given by Eqs. (4) to (6) and the
coefficients in Table 1.

illuminated models. Similar results are obtained for grey models
with other values ofµ and ofTeff .

2.3. Convective non–grey (line–blanketed) atmospheres

Using the same procedure as in Sects. 2.1 and 2.2 we constructed
non–grey atmosphere models illuminated by grey and non–grey
fluxes. The gravity–brightening exponent values obtained are
close to the grey ones for effective temperatures of the illumi-
nating stars (Th) close to those of the illuminated stars (Teff ).
However, for a given illuminated star and a fixed incident flux,
β decreases with the effective temperature of the illuminating
star, showing that there is a dependence ofβ onTh beyond the
dependence through the incident flux (∝ T 4

h ).
The differences between model atmospheres illuminated by

grey and non–grey fluxes are small relative to the differences
between the grey and non–grey illuminated models. Thus, sig-
nificant changes ofβ are not related to the use of line–blanketed
illuminating fluxes, but rather to the interaction between a line–
blanketed illuminated atmosphere and the overall spectral distri-
bution of the illuminating flux. Representative results are shown
in Fig. 5, for a particular line–blanketed illuminated atmosphere
(Teff = 3 697 K) and different illuminating fluxes (a result ob-
tained with a grey illuminated model is shown for comparison).

It is clear from Fig. 5 that at least one more parameter is in-
fluencing the results in the case of non–grey illuminated models.
By comparing the illuminated grey and non–grey models we re-
alized that the main difference between them is that the spectral
line opacity prevents part of the incident flux from reaching the
continuum formation layers in the non–grey models. Because
most of the spectral line opacity occurs in the UV, an increasing
amount of the incident flux is intercepted for increasing effective
temperatures of the illuminating star. The more of the incident
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Fig. 5.β(t, Frel,µ), for non–grey atmospheres illuminated by grey (g)
and non–grey (ng) fluxes with different values ofTh. The solid line has
the same meaning as in Fig. 4.

flux that is intercepted, the smaller is the influence of the illu-
mination on the convection. As a consequence, the increase of
β with increasing illumination is reduced in non–grey models
relative to grey models.

3. Discussion

The values of theβ exponent in grey atmospheres illuminated
by grey and non–grey fluxes are very similar. In these models
β primarily depends on the effective temperature of the illu-
minated star, the relative flux and the illumination direction.
The exponent increases as the relative flux increases, until it
approaches the von Zeipel value (β = 1) for radiative stars.

Non–grey atmospheres illuminated by grey and non–grey
fluxes also have similarβ, but for these atmospheresβ also
depends on the effective temperature of the illuminating star,
Th. In line with the discussion above, this extra dependence may
be thought of in terms of how much of the incident flux reaches
the continuum formation layers of the illuminated atmosphere.
As Th increases, theβ values decrease, following nevertheless
a similar behavior as a function of the relative flux, as can be
seen in Fig. 5.

Some models in Fig. 5 (e.g.,Teff = 3 697 K illuminated with
Th = 3 700 K andFrel > 1) haveβ values slightly larger than
1 (by <∼3%). These values are consistent with unity within the
errors of our method, and may be a numerical artifact. For grey
models theβ values return to unity for even larger values of
Frel, and for non–grey models a similar asymptotic behavior
may be expected. It is somewhat inconsistent to consider mod-
els with large values ofFrel andTh ∼ Teff , though, since the
geometrical parameters needed would not be physically mean-
ingful (e.g. the apparent radius would imply one star touching

Fig. 6. log T vs.log P for convective non–grey non-illuminated (solid
line) model withTeff = 3697K and the same model illuminated by
grey and non–grey fluxes withTh = 10 000K, µ = 0.93 and different
relative fluxes. The signs mark theτ = 2/3 layers, as in Fig. 3.

or even intersecting the other). However, if one performs the
calculation, the asymptotic behavior is indeed found also for
the non–grey illuminated models, withβ <∼ 1 for Frel ∼ 2.2.
On the other hand, Eq. (3), in principle, does not preventβ > 1
values. For instance, for an adiabatic ideal gas withκ constant
and d log T

d log P = 2/5, one would haveβ = 8/5. For a real gas, if
the opacity increased sufficiently slowly with temperature and
pressure, andd log T

d log P was sufficiently large, Eq. (3) would allow
β > 1 values, also.

The asymptotic approach to the von Zeipel value of the
gravity–brightening exponent may be understood as follows:
When a model atmosphere is heated by a large external flux, a
significant part of the convection is extinguished (hence most
of its original flux vanishes) and the model practically becomes
one in radiative equilibrium, obeying the von Zeipel law asymp-
totically. This is illustrated in Fig. 6 where we show a non–grey
model withTeff = 3 697 K illuminated by grey and non–grey
fluxes withTh = 10 000 K and twoFrel,µ values. The greater
the amount of external illumination, the more the model devi-
ates from thelog T vs. log P relation characteristic of convec-
tive equilibrium. This happens especially forτ <∼ 1 and affects
deeper layers as the amount of external illumination increases.

However, asTh increases, the external heating flux is shifted
towards the UV. Due to the larger photospheric absorption in
UV, the external flux penetrates less into the photosphere of the
illuminated model, and hence convection is less affected. The
smaller change in convection yields a smallerβ value, and the
effect of increasing the exponent is pushed to higher relative
fluxes. An immediate consequence is that line–blanketed illu-
minated atmospheres haveβ values which must depend on the
metal abundance [Fe/H] of the model.

Somewhat more subtle effects could result from the interfer-
ence of spectral line patterns in the illuminating and illuminated
stars. As a particular case, when similar stars orbit each other in
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Fig. 7. Penetration factors (f ) for the models presented in Fig. 5. The
symbols are the same as in Fig. 5, the larger symbols correspond to
the corrected relative fluxes. The solid line has the same meaning as in
Fig. 4.

elliptical orbits, the spectral line patterns of the stars will match
optimally at apogee and perigee, and there will be a correspond-
ing maximum in the amount of illumination of the continuum
layers. For non-zero Doppler shifts the illumination of the con-
tinuum layers will decrease. However, the size of this effect is
only of the order of the difference between grey and non–grey
illuminating models. As mentioned above, this difference is, in
general, small.

3.1. The penetration factor

In light of the discussion of the non–grey results of Sect. 2.3, the
results for grey models obtained in Sect. 2.2 are more general
than they might seem at first sight. The relative fluxes in the non–
grey case should be regarded as the effective amount of flux that
penetrates to the continuum formation layers. We may describe
this effect through a “penetration” factor,f , that, multiplied
by the incident flux, gives a new corrected flux that may be
used to interpolateβ with the grey parameterization coefficients
given in Table 1 (Frel,µ = fFrel,µ,Total). For grey illuminated
atmospheresf = 1, whilef < 1 for line–blanketed illuminated
models. This interpretation is strictly correct only if there exists
a unique “penetration” factor for each set of parameters (Teff ,Th
andµ). Fig. 7 shows the models presented in Fig. 5. It illustrates
that it is indeed possible to find a factorf that brings together
all the points for each set of parametersTeff , Th andµ to be
fitted by the parametric curves given by Eqs. (4) to (6) and the
coefficients of Table 1.

Fig. 7 shows thatf differs between cases where the incident
flux is a continuum–only (g) or a line–blanketed (ng) one. This is

due to minor differences in the amount of flux in the UV region.
However, to a good approximation we may assume that the
penetration factor is related only to the opacity distribution of the
illuminated model. The surfaces presented in Fig. 2 may then be
used to determineβ even in the non–grey case, using appropriate
values for the incident flux and the penetration factor.

In the present work we have concentrated on establishing the
existence of such a penetration factor, by empirically calculating
it and showing that it is the same for each family of models.
However, it should be possible to calculatef from a knowledge
of the effective temperature of the incident flux (amount of UV)
and of the opacity properties of the atmosphere model in the
upper layers (determining how much of the UV flux that is
blocked). Studies of how to actually compute this factor for
each situation are in progress and will be published elsewhere.

3.2. Possible tests

The secondaries of Algol-type systems are convective stars with
effective temperatures around 5 000 K and may be used, with
some caution, to test the gravity–brightening exponents deter-
mined here. The main problem with Algol systems is the trans-
fer of mass between the components, which frequently causes
distortion of the light curves due to spots on the stars. Neverthe-
less, some of these systems, whose absolute parameters are well-
determined have been satisfactorily fitted with Lucy’s value 0.32
kept fixed (e.g. TV Cas, Khalesseh & Hill 1992; AT Peg, Maxted
et al. 1994; HU Tau, Maxted et al. 1995). In Algol-type systems
Th is much greater than the secondary’s effective temperature
(Th ≈ 10 000 K) yielding a large relative flux (Frel,µ > 1.0)
and consequently a value ofβ much greater than 0.32, if we
use the results obtained with grey atmospheres. But the results
presented in the last section show that, in this case (Th � Teff ),
the value of the exponent decreases substantially from the value
obtained with grey illuminated atmospheres. This is a reassur-
ing point for our predictedβ values, since, even taking into
account the difficulties in modeling Algols, it is expected from
the published results thatβ should not differ very much from
Lucy’s value. In most of the cases the authors had to let the
reflection albedos vary in order to fit the light curves, and the
results are albedos greater than those theoretically predicted for
such stars. Theβ exponents assumed in these works are smaller
than they should be according even to our non–grey results, pos-
sibly yielding an incorrect determination of the higher reflection
albedos.

As stressed both in Paper I and by Claret (1998), compar-
isons between the theoretical calculations and the empirical de-
terminations ofβ available at present are problematic and incon-
clusive, although promising (see Fig. 3 of Paper I and Fig. 7 of
Claret 1998). A possible test of the results presented here is to fit
the light curves of Algol-type stars using our predictedβ values,
to see if it is possible to improve upon earlier results. Such tests
are currently underway, with our results (of this work and Pa-
per1, forβ, and of Alencar & Vaz 1999, for the limb-darkening
coefficients) being implemented in a version of the WD model
for light curve synthesis and solution of eclipsing systems (Wil-
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son & Devinney 1971, Wilson 1979, Vaz et al. 1995, Casey et
al. 1998).

4. Summary and conclusions

The most general result of the present paper is that we have
demonstrated for the first time the influence of external illumi-
nation on the gravity–brightening exponent, showing that exter-
nal illumination increases the value ofβ. This suggests that the
classical value ofβ = 0.32 may be too small for binary systems
with close components.

The results presented here extend our results from Paper I for
illuminated convective atmospheres, providingβ in the range
3 700 K < Teff < 7 000 K, for varying amounts of external il-
lumination and angles of incidence. For illuminated convective
grey atmospheres the gravity–brightening exponent may be cal-
culated from the effective temperature of the illuminated star,
the external radiation angle of incidence, and the incident flux
of radiation that reaches the continuum forming layers in the
illuminated star. The general trend ofβ having a maximum in
theTeff range covered in this work is interpreted as being caused
by an interplay between the convection and opacity properties
of the atmosphere model.

For illuminated non–grey atmospheres the gravity–
brightening exponent also depends on the spectral distribution
of the incident flux. WhenTh does not differ by more than
∼ 25% from Teff , the results obtained with illuminated grey
atmospheres may be used. For larger relative temperature dif-
ferences, one needs to correct the relative incident flux with a
penetration factor, corresponding to the absorption of UV flux
in the upper layers of the illuminated model. The penetration
factor is necessarily a function of the metal abundance of the
atmosphere, but this aspect has not been studied in the present
paper.
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