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Abstract

Correlation-driven screening of disorder is studied within the typical-medium dynamical mean-field theory (TMT–DMFT) of the

Mott–Anderson transition. In the strongly correlated regime, the site energies ei
R characterizing the effective disorder potential are

strongly renormalized due to the phenomenon of Kondo pinning. This effect produces very strong screening when the interaction U is

stronger than disorder W, but applies only to a fraction of the sites in the opposite limit ðUoW Þ.

r 2007 Elsevier B.V. All rights reserved.

PACS: 71.27.+a; 72.15Rn; 71.30+h

Keywords: Strong correlation; Disorder; Metal–insulator transition; Hubbard model
1. Introduction

Theories that are able to capture both the Mott [1] and
the Anderson [2] mechanisms for electron localization have
remained elusive despite many years of effort. An attractive
approach to this difficult problem has recently been
proposed by combining the dynamical mean-field theory
(DMFT) [3] of the Mott transition and the typical-medium
theory (TMT) [4] of Anderson localization. This new
formulation of the Mott–Anderson problem has been
explored in recent work by Vollhardt and collaborators [5]
using numerical renormalization-group methods, but the
precise mechanism for the critical behavior of this model
remains to be elucidated. Here we examine the mechanism
for disorder screening within this theory, which explains
several aspects of the results found in Ref. [5].

Within TMT–DMFT, a lattice problem is mapped onto
an ensemble of single-impurities problems, which are
embedded in a self-consistently determined bath. Recent
work of Ref. [6] examined the behavior of a collection of
single-impurity models in the situation where the bath seen
by the impurities was chosen to mimic the approach to the
e front matter r 2007 Elsevier B.V. All rights reserved.
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Mott–Anderson transition. In this work, the impurity
quasiparticle weight Zi was shown to present a scaling
behavior as a function of the on-site energy ei and the
distance t to the transition. These findings, however, are
not sufficient to address the disorder screening behavior of
the model, which requires the description of the renorma-
lized disorder potential. In this paper, we demonstrate that
a scaling procedure similar to that presented in Ref. [6] can
also be carried on for the renormalized energy ei

R.

2. Renormalization of the disorder potential

We consider a collection of Anderson impurity models
[6] with on-site repulsion U, on-site energies ei, and the
total spectral weight t of the cavity field. Within
TMT–DMFT, t! 0 as the metal–insulator transition is
approached, being a measure of the distance to the
transition. Without loss of generality [6], we consider a
featureless model bath with non-vanishing spectral weight
for �t=2ooot=2 and zero otherwise. Our goal is to
describe the statistics of the renormalized site energies in
the limit t! 0.
The impurity models were solved at zero temperature

using the SB4 method [7,6], which provides a parametriza-
tion of the low-energy (quasiparticle) part of the local
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Fig. 1. Renormalized energy eR as a function of the on-site energy e for a
collection of single-impurity problems close to the Mott–Anderson

transition ðt! 0Þ. The parameters used were U ¼ 1:75 and W ¼ 2:8.
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Fig. 2. Scaled renormalized energy eR=t1=2 as a function of t=t�ðdeÞ
showing that the results for different (and positive) e can be collapsed onto

a single scaling function with two branches. Different symbols correspond

to different e; the upper (bottom) branch contains results for e4U=2
ðeoU=2Þ. The inset shows the scaling parameter t� as a function of

je=W � 0:3125j for the upper (squares) and bottom (circles) branches. The

parameters used were U ¼ 1:75 and W ¼ 2:8.
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Fig. 3. Arithmetic and geometric density-of-states (ADOS and TDOS,
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Green’s function, given by

GiðonÞ ¼
Zi

ion � ei
R � ZiDðonÞ

. (1)

Here Zi is the local quasiparticle weight and ei
R is the

renormalized site energy. The details of the calculations
mirror those of Ref. [6].

The results for the renormalized energy ei
R as a function

of �W=2oeioW=2, in the vicinity of the Mott–Anderson
transition ðt! 0Þ, are shown in Fig. 1. As in Ref. [6], we
find two-fluid behavior, where sites with jeijoU=2 turn
into local magnetic moments, corresponding to ‘‘Kondo
pinning’’ [8] ei

R! 0. For the remaining sites, ei
R! ei þ

U=2 or ei
R ! ei �U=2, as they become, respectively,

doubly occupied (those with eio�U=2) or empty (those
with ei4U=2). We should emphasize that such two-fluid
behavior thus emerges only for sufficiently strong disorder,
such that UoW . Otherwise all sites turn into local
magnetic moments, and the Mott transition for moderate
disorder retains a character similar to that found within the
standard DMFT approach [8].
respectively) at the Fermi level as a function of U, for W ¼ 1:5, when the

TMT–DMFT self-consistent loop is performed.
3. Scaling analysis

These results can alternatively be presented in a scaling
form as shown in Fig. 2. Here we show that it is possible to
collapse the family of curves eRðt; deÞ=t0:5, where de ¼
ðei � e�Þ=e� and e� ¼ U=2, onto a single universal scaling
function eRðt; deÞ=t0:5 ¼ f ½t=t�ðdeÞ� with two branches, one
for eioe� and other for ei4e�. In agreement with Ref. [6]
(inset of Fig. 2), the crossover scale t�ðdeÞ�jdejf, with
exponent f ¼ 2. In the limit t! 0, we find that the branch
corresponding to eioe� has the asymptotic form f ðxÞ�x3=2

(here x ¼ t=t�ðdeÞ), corresponding to eRðtÞ�t2. Similarly,
for ei4e�, f ðxÞ�x�1=2 corresponding to eRðtÞ� constant.
For xb1 the two branches merge, viz. f ðxÞ�A� B�x�0:5.
4. Disorder screening

Within TMT–DMFT, the Anderson localization effects
are manifested by the reduction of the typical density of
states (TDOS), since the (algebraic) average (ADOS)
remains finite even in an Anderson insulator. When
disorder is strongly screened due to the correlation effects,
the two quantities should not differ much, as illustrated by
the results of Fig. 3. Here we present the results of the fully
self-consistent solution, as the Mott-like transition is
approached by increasing U for W ¼ 1:5. Close to the
transition, both averages approach the clean limit (dashed
line), indicating a strong screening effect. These results are
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consistent with those found in the numerical renormaliza-
tion-group solution of the TMT–DMFT equation of
Ref. [5] .

As discussed above, strong disorder screening is expected
near the Mott-like transition ðU4W Þ, which indeed
corresponds to the mechanism responsible for the results
in Fig. 3. When the transition is approached at strong
disorder ðUoW Þ (not shown), strong screening effects are
found only for a fractions of the sites (i.e. of the volume of
the sample), indicating different critical behavior at the
Mott–Anderson transition. The details of the critical
behavior in this case will be discussed elsewhere.
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