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We study the relationship between the pseudogap and Fermi-surface topology in the two-dimensional
Hubbard model by means of the cellular dynamical mean-field theory. We find two possible mean-field
metallic solutions on a broad range of interactions, doping, and frustration: a conventional renormalized
metal and an unconventional pseudogap metal. At half filling, the conventional metal is more stable and
displays an interaction-driven Mott metal-insulator transition. However, for large interactions and small
doping, a region that is relevant for cuprates, the pseudogap phase becomes the ground state. By increasing
doping, we show that a first-order transition from the pseudogap to the conventional metal is tied to a
change of the Fermi surface from hole- to electronlike, unveiling a correlation-driven mechanism for a
Lifshitz transition. This explains the puzzling link between the pseudogap phase and Fermi surface
topology that has been pointed out in recent experiments.

DOI: 10.1103/PhysRevLett.120.067002

In order to understand superconductivity [1–3], one
must first understand the normal metallic state, appearing
above a critical temperature (Tc), from which it takes its
roots. The high-Tc superconductivity in cuprates remains
unsolved, mainly because its normal metallic state, the
pseudogap (PG) phase, has not been well understood. It has
therefore been a central issue to establish the origin of the
pseudogap and its relationship with the high-Tc super-
conducting mechanism [4]. The PG has been revealed [5,6]
in spectroscopic responses [7], and thermodynamic
and transport properties [8], by a loss of spectral weight,
which departs from the conventional Fermi liquid (FL)
theory of metals [9,10]. Recent experiments have pointed
out that when a Lifshitz transition [i.e., a change of
Fermi Surface (FS) topology from electronlike (e) to
holelike (h)] is tuned in the PG phase of a cuprate material,
the PG ends abruptly. This takes place, for instance, at a
doping p� on the overdoped region of Bi2Sr2CuO6þδ [11],
Bi2Sr2CaCu2O8þδ [12,13], and in La1.6−xNd0.4SrxCuO4

[14]. This finding has been strongly debated, as it chal-
lenges our current understanding of the PG phase [4] and its
relationship with superconductivity.
Here we give a rational explanation to all of these

observations within the framework of the two-dimensional
Hubbard model, solved with the cellular dynamical mean-
field theory (CDMFT) [15–17]. We first show that two
metallic solutions exist: a rather regular correlated Fermi-
liquid metal (CFM), and a PG metal (PGM) that violates
Fermi-liquid theory by developing a pole divergence in the
self-energy. This result could account for contradicting
reports about the existence of the Mott metal-insulator

transition (MIT) at half filling (zero doping) in two
dimensions. The PGM is metastable at weak interactions,
having higher energy than the CFM. However, by increas-
ing the interaction at low doping (the region relevant for
underdoped cuprates), the PGM emerges as the stable
phase, up to the doping value p�. This is consistent with
the CDMFT results of Sordi et al. [18]. Most importantly,
we show that the PGM is bound to always have a h-FS.
The CFM instead can undergo a Lifshitz transition at a
doping plt. However, for a strong interaction, the CFM is
stable only for doping p > plt; i.e., it has always an e-FS.
Hence, the transition from the PGM to the CFM at p� is
accompanied by a corresponding change from a h-FS to an
e-FS, unveiling a novel correlation-driven mechanism of
the Lifshitz transition. These results explain why the PG
must sharply end when a Lifshitz transition occurs [11], or
is tuned by pressure [14], in cuprates.
We consider the two-dimensional one-band Hubbard

model:

H ¼ −
X

kσ

ξkc
†
kσckσ þU

X

i

ni↑ni↓; ð1Þ

where ckσ ¼ ð1/ ffiffiffiffi
L

p ÞPi expð−ik · riÞci;σ destroys an elec-
tron with spin σ and momentum k, niσ ¼ c†iσciσ is the
density operator on site i of a L-site square lattice.
ξk ¼ −2tðcos kx þ cos kyÞ − 4t0 cos kx cos ky − μ, where t
(t0) is the (next) nearest-neighbor-site hopping integral, and
μ is the chemical potential controlling the doping level
p ¼ 1 − ð1/LÞPi;σhniσi. We implement the CDMFT at
zero temperature (T ¼ 0) using Lanczos. This mapsH onto
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a 2 × 2 cluster coupled to an 8-site bath [19–21] (see Sec. I
of the Supplemental Material (SM) [22]). The numerical
calculation provides the frequency dependent Green’s func-
tion in the corner points of the first quadrant of the Brillouin
zone (BZ). To obtain the lattice quantities in momentum
space, we perform a periodization based on the cumulant
[23–25]. We calculate the total energy as described in
Ref. [26] and in Sec. II of the SM, which includes
Ref. [27]. We set t ¼ 1 and explore the paramagnetic phase
diagram in theU − t0 space at half filling [Fig. 1(a)], and the
U − p space at fixed t0 ¼ −0.1 [Fig. 1(b)]. At T ¼ 0, the
ground state is the broken symmetry phase: antiferromag-
netism at half filling and small doping, and superconduc-
tivity upon doping. These phases have been widely studied
within CDMFT [16–18,28–33]. Here we focus on the
paramagnetic solution which, albeit being the normal-state
ground state only at T > Tc, is the mean-field phase from
which broken orders take roots. This allows us to study the
FS topology and its relationship with the pseudogap.
We start with the half filled system [Fig. 1(a)]. A relevant

question is whether in two dimensions a gap is present in
the paramagnetic solution at any small U, like in one
dimension [34], and as it was proposed by P.W. Anderson
[35], or whether the system becomes a regular metal under
a critical Uc, i.e., there is a Mott MIT, like in infinite
dimensions [36]. This issue has been considered by various
groups using quantum cluster methods [37–42], but it has
not been completely clarified. In these studies, it was
considered the particle-hole symmetric t0 ¼ 0 case, which
is especially singular because a k ¼ ðπ; πÞ nesting vector
acts on the whole FS producing divergent susceptibilities. It
is very likely then that at T ¼ 0 a gap always opens in the
system. To verify Anderson’s conjecture we have consid-
ered t0 ≠ 0. Our main result is that, forU < Uc, we find two
different metallic solutions, the CFM and the PGM, as it is
shown in Fig. 1(a). The PGM coexists with the CFM for a
broad range of U and t0 values, disappearing only for large
jt0j. For an interaction greater than U ≃ 5t, we recover the

well-known Mott insulating phase. We shall now show
that the CFM is the FL solution displaying the Mott
transition, in agreement with the statements of publications
[37–39,42], while the PGM solution always presents a gap
in the spectra reminiscent of the solution found in the works
of Refs. [40,41].
For this purpose, we set t0 ¼ −0.1 and display in Fig. 2

the spectral function Aðk;ωÞ ¼ −ð1/πÞImGðk;ωÞ and the
imaginary part of the self-energy ImΣðk;ωÞ at k ¼ ð0; πÞ,
close to the Fermi level (jωj < 0.8t) (see SM Sec. III for a
broader ω range, including the Hubbard bands). The CFM
(red-dotted curve) displays typical features of a FL: a finite
spectral peak at the Fermi level ω ¼ 0 [Fig. 2(a)] and ∼ω2

behavior in ImΣ [Fig. 2(b)]. The PGM (black-solid curve)
displays sharply distinct features. Aðk;ωÞ has a minimum

FIG. 1. (a)U − t0 phase diagram for the normal state of the two-dimensional Hubbard model at half filling (p ¼ 0). The blue, pink, and
dark regions bound, respectively, a Mott insulator (INS), a correlated Fermi-liquid metal (CFM), and a coexisting pseudogap metal
(PGM). The CFM always has lower energy than the PGM (in parenthesis). (b) U − p phase diagram with t0 ¼ −0.1. The blue vertical
line at p ¼ 0 is the INS. The continuous red line plt marks a Lifshitz transition, where the FS topology changes from electronlike (e-FS)
to holelike (h-FS). The dashed black line p� marks the boundary where the PGM energy becomes higher than the CFM one.
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FIG. 2. Low-energy spectral function Aðk;ωÞ (a) at k ¼ ð0; πÞ
and corresponding imaginary part of the self-energy ImΣðk;ωÞ
(b) of the two coexisting CFM and PGM at half filling, U ¼ 4.0,
t0 ¼ −0.1. A comparison of Aðk;ωÞ (c) and ImΣðk;ωÞ
(d) between the PGM and the Mott insulator for U ¼ 5.0,
t0 ¼ −0.1. Inset: The spectral gap of Aðk;ωÞ as a function of
U for the PGM (circles) and the Mott insulator (triangles).
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at ω ¼ 0 [Fig. 2(a)], showing a small gap Δ, which we plot
in the inset of Fig. 2(c) (circles) as a function of U, together
with the insulator gap (triangles). ImΣ displays a polelike
divergence [Fig. 2(b)], which breaks the FL. This behavior
of the self-energy is similar to what is expected in a Mott
insulator [blue-dotted curve in Fig. 2(d)], whose gap is
always characterized by a pole in the self-energy, though
in the PGM, the intensity of the divergence is reduced and
the two solutions are not smoothly connected, showing a
coexistence region [inset of Fig. 2(c)].
We find that at half filling and a different t0, the CFM

always shows a lower energy than the PGM, as displayed in
Fig. 3(a). This validates the concept of Mott MIT, which is
also in the two-dimensional Hubbard model (see SM for the
kinetic and potential energies). The unstable PGM remains,
reminiscent of Anderson’s RVB theory [35,43], though
relevant differences have been already pointed out [44].
However, the PGM can become the relevant lowest-

energy phase upon doping. In the U − p phase diagram
of Fig. 1(b), where t0 ¼ −0.1, we can clearly identify
three regions: The PGM (I), the CFM (IV), and a
coexisting CFM-PGM region (II and III). In this latter
case [see Fig. 3(b) for U ¼ 3, 4], the CFM always has the
lowest total energy. For U > Uc ≃ 5t, at small doping
(region relevant for underdoped cuprates), the PGM
emerges as the stable solution, while the CFM persists
at high dopings. These results are consistent with those of
Refs. [18,45], which show a small first-order coexistence
region between regions I and IV, which closes at a tricritical
point and become continuous for U ≥ 7t. We think that
our Lanczos-implementation has difficulty entering into
this small coexistence region, and we cannot say if the
transition becomes second order for U ≥ 7t. However, the
first-order character of the transition in the region that we
considered is shown by the fact that the PGM and the CFM
are not smoothly connected.
In the doped system, we confirm the key physical

properties differentiating the CFM and PGM phases,
established for half filling. Namely, the PGM always
breaks the FL displaying a peak in ImΣ [see Figs. 4(a),
4(c), and 4(d)], which has now moved slightly to a positive

frequency. On the other hand, the CFM phase is FL-like
on all the phase diagram, displaying a well behaved ω2

dependence of ImΣ [Fig. 4(b), (c), (d)].
Let us now discuss the implications of these findings in

the context of the PG phase of cuprates and its relationship
with the FS topology. This has been the subject of
pioneering studies [18,23,30,31,46–52], though the physi-
cal mechanism at the origin of this relationship has
remained not well clarified. The first crucial observation
is that the pole in the self-energy in the PGM solution
strongly enhances the scattering in the neighborhood of
k ¼ ð0; πÞ (antinodes in cuprates). As a consequence, the
spectral weight on the FS around k ¼ ð0; πÞ is strongly
suppressed, giving a point of origin to the well-known
break of the FS into arcs. This can be shown in the spectral
function Aðk;ω ¼ 0Þ plotted in Fig. 5(a), (c). These results
are consistent with previous CDMFT studies [30,47,53]
and well describe the angle-resolved photoemission spec-
troscopy measurements on cuprates [7]. The CFM does not
show any Fermi arc [Fig. 5(b), (d)], rather the spectral
intensity is enhanced at the antinodes because of the
proximity to a van Hove singularity.
The second crucial observation (insets of Fig. 4) is

that the PGM solution always has a h-FS. To get some
insight into this issue, we notice that in the PGM the low-
frequency pole in the self-energy can be well-described by
Σðk;ωÞ ≃ V2/ðω − ξfkÞ. This expression has been derived
in the framework of a low-energy model called a “hidden
fermion” [44,54], but it has also been proposed by
complementary approaches to the PG phase of cuprates
[48,55–57]. ξfk is located slightly above the Fermi energy in
the antinodal region. We see then that, if kF is the Fermi
wave vector of the noninteracting system located on the
ð0; πÞ − ðπ; πÞ side of the BZ, such that ξkF

¼ 0, the

p
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FIG. 3. Total energy E (a) as a function of the interaction at half
filling and (b) as a function of doping, both for t0 ¼ −0.1.
Red-open symbols correspond to the CFM solution, while black-
filled ones represent the PGM.
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FIG. 4. Comparison of the imaginary part of the self-energy at
the antinodal point k ¼ ð0; πÞ, between CFM and PGM solutions
in various regions [(a) region I, (b) IV, (c) II, (d) III] of the U − p
phase diagram of Fig. 1. Inset displays the corresponding FS in
the first quadrant of the BZ (kx, ky ∈ ½0; π�).
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polelike singularity of the self-energy in the interacting
system acts in such a way that the new Fermi wave vector
k0
F is given by ξk0

F
− V2/ξfk0

F
¼ 0. If ξfk0

F
is positive as it is

for k ¼ ð0; πÞ, it acts as an enhanced chemical potential
(see SM Sec. IV) and k0

F > kF; i.e., the interacting FS is
more holelike. To undergo a transition from the h-FS to the
e-FS in the PGM, the FS must cross the k ¼ ð0; πÞ point,
but this is preempted by the pole singularity of the self-
energy. One possibility is to have the pole singularity
position ξfk move to negative frequencies. As noticed in
Ref. [49], this can be achieved by tuning t0 to positive
values, which is equivalent to consider electron-doped
cuprates, as the same tuning can be realized by a par-
ticle-hole transformation of the Hamiltonian (1) that
changes the sign of t0 [53]. Another possibility is to have
the pole singularity disappear (V → 0), but in this case, one
loses the PGM solution. We then establish an indissoluble
tight relationship within the PGM solution between the
pole in the self-energy, the PG, and the holelike FS.
Putting it all together, we provide a rational under-

standing to the experimental observations that the PG
ending point is linked to a Lifshitz transition, and above
all, why this appears first order [12,13], or at least very
sharp [11,14], in experiments. Starting from a weak U
[see Fig. 1(b)], the stable solution is the CFM, which by
increasing doping, presents a renormalized [49] Fermi
liquidlike Lifshitz transition at p ¼ plt [continuous red
line in Fig. 1(b)], where one goes continuously from a h-FS
to an e-FS. There is no PG in this case; the PG is present in

the PGM, which has a h-FS [Fig. 5(c)], but this phase is
unstable. When the plt boundary on the U − p phase
diagram meets the PGM-CFM transition boundary p�
(black-dashed lines) at the stronger U ≃ 5.5t, we find for
p < p� the PGM as the stable solution, which has a h-FS,
while for p > p�, the CFM is the stable solution, but this
already has an e-FS [Fig. 5(b)]. By increasing p, the change
from h-FS to e-FS is bound to the PGM-CFM phase
transition (plt ≡ p�), which is first order, providing a
correlated mechanism for the Lifshitz transition. This is
consistent with the experimental observations in Bi-based
[11–13] and La-based compounds [14]. On the other
hand, there is a region of the phase diagram in the range
4.5t < U < 5.5t, where the PGM-CFM transition takes
place at a doping smaller than the Lifshitz transition of the
CFM solution; i.e., p� < plt. At p�, the PG disappears, but
the FS is still holelike. This may account for the Tl-based
[58,59] and Y-based [60] cuprates, which have been
reported to have a h-FS but no PG. This may also crucially
depend on the jt0/tj value, as pointed out in Ref. [49]. Our
paramagnetic CDMFT phase diagram of the two-dimen-
sional Hubbard model can then fully account for apparently
contradicting and debating experimental results on different
members of the cuprate family, showing that there truly
exists a tight relationship between PG and FS topology.
This should manifest itself in cuprates whenever a Lifshitz
transition takes place in the pseudogap phase.
In conclusion, we have studied the paramagnetic normal

state of the two-dimensional Hubbard model at zero
temperature for a broad range of interaction, U, frustration,
t0, and doping level, p. Our main finding is the coexistence
of a correlated Fermi liquid metal (CFM) with a non-Fermi
liquid metal (PGM). At half filling, we answer an open
debate by showing that the CFM is the stable solution and
displays a correlation-driven Mott MIT differently from the
PGM, which instead displays a PG in the spectra. Next, we
show that for strong interactions and small doping, a region
relevant for underdoped cuprates, the PGM becomes the
stable solution. This result is at the origin of a correlation-
driven Lifshitz transition, as by increasing doping, a first-
order transition takes place from the PGM phase, which has
a h-FS, to the CFM, which at these interaction values has an
e-FS. Our theory rationalizes the variety displayed on the
phase diagram of the cuprate family, telling us that if the PG
meets a Lifshitz transition, then it should collapse. This also
implies that the PG cannot exists on an e-FS. The behavior
of the PG that is sensitive to the FS topology must be
contrasted with the one of superconductivity, which does
not appear much affected by the Lifshitz transition [13].
This may represent the key to finally unveiling the true
nature of the relationship between the PG and the high-Tc
mechanism. Future experimental and theoretical investiga-
tions should be pursued in this direction.
During our investigations, we became aware of the work

of Ref. [49], whose results are in good agreement with ours.

FIG. 5. Spectral function Aðk;ω ¼ 0Þ in the first quadrant of
the BZ for the CFM and the PGM. At weak interactionU ¼ 3 and
small doping p ¼ 0.05, the underlying FS is holelike in both
solutions. In this case, however, the CFM is the stable solution,
not showing Fermi arcs. At strong interaction U ¼ 7.0, the PGM
is stable at small doping (p ¼ 0.06), displaying Fermi arcs and a
h-FS, while the CFM is stable at high doping (p ¼ 0.16),
displaying no arc and an e-FS.
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Our PGM, however, is found as a second metastable
solution distinct from the CFM. This, in particular, dis-
closes the origin of the tight link between the PG and the
correlated first-order Lifshitz transition.
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Capone, G. Kotliar, and A.-M. S. Tremblay, Anomalous
superconductivity and its competition with antiferromag-
netism in doped Mott insulators, Phys. Rev. B 77, 184516
(2008).

[30] M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G.
Kotliar, and A. Georges, Pseudogap opening and formation
of Fermi arcs as an orbital-selective Mott transition in
momentum space, Phys. Rev. B 80, 064501 (2009).

PHYSICAL REVIEW LETTERS 120, 067002 (2018)

067002-5

https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1080/00018730500459906
https://doi.org/10.1103/PhysRevLett.63.1700
https://doi.org/10.1103/PhysRevLett.63.1700
https://doi.org/10.1103/PhysRevLett.62.1193
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1038/ncomms1229
https://doi.org/10.1038/ncomms1229
https://doi.org/10.1103/PhysRevLett.114.147001
https://doi.org/10.1103/PhysRevLett.114.147001
https://doi.org/10.1103/PhysRevB.96.094525
https://doi.org/10.1038/s41467-017-02122-x
https://doi.org/10.1038/s41467-017-02122-x
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1063/1.2199446
https://doi.org/10.1063/1.2199446
https://doi.org/10.1103/PhysRevLett.104.226402
https://doi.org/10.1103/PhysRevB.79.195113
https://doi.org/10.1103/PhysRevB.79.195113
https://doi.org/10.1103/PhysRevB.69.195105
http://arXiv.org/abs/0710.2802
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.067002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.067002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.067002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.067002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.067002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.067002
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.067002
https://doi.org/10.1103/PhysRevB.74.125110
https://doi.org/10.1103/PhysRevB.74.125110
https://doi.org/10.1016/j.aop.2006.03.009
https://doi.org/10.1103/PhysRevB.85.035102
https://doi.org/10.1103/PhysRevB.85.035102
https://doi.org/10.1103/PhysRevB.86.241106
https://doi.org/10.1103/PhysRevB.86.241106
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevB.77.184516
https://doi.org/10.1103/PhysRevB.77.184516
https://doi.org/10.1103/PhysRevB.80.064501


[31] E. Gull, M. Ferrero, O. Parcollet, A. Georges, and A. J.
Millis, Momentum space anisotropy and pseudogaps: A
comparative cluster dynamical mean field analysis of the
doping-driven metal-insulator transition in the two dimen-
sional Hubbard model, Phys. Rev. B 82, 155101 (2010).

[32] E. Gull, O. Parcollet, and A. J. Millis, Superconductivity
and the Pseudogap in the Two-Dimensional Hubbard
Model, Phys. Rev. Lett. 110, 216405 (2013).

[33] E. Gull and A. J. Millis, Quasiparticle properties of the
superconducting state of the two-dimensional Hubbard
model, Phys. Rev. B 91, 085116 (2015).

[34] E. H. Lieb and F. Y. Wu, Absence of Mott Transition in an
Exact Solution of the Short-Range, One-BandModel in One
Dimension, Phys. Rev. Lett. 20, 1445 (1968).

[35] P. W. Anderson, The Theory of Superconductivity in the
High-Tc Cuprates (Princeton University Press, Princeton,
1997).

[36] A. Georges and G. Kotliar, Hubbard model in infinite
dimensions, Phys. Rev. B 45, 6479 (1992).

[37] Y. Z. Zhang and M. Imada, Pseudogap and Mott transition
studied by cellular dynamical mean field theory, Phys. Rev.
B 76, 045108 (2007).

[38] H. Park, K. Haule, and G. Kotliar, Cluster Dynamical Mean
Field Theory of the Mott Transition, Phys. Rev. Lett. 101,
186403 (2008).

[39] M. Balzer, B. Kyung, D. Sénéchal, A.-M. S. Tremblay, and
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