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1. Introduction

The physics of transport in electronic systems is a corner-
stone of our technologies and yet the general problem of 
non-equilibrium transport seems far from being completely 
understood. Significant steps in this direction have been taken 
starting with Anderson localization (or absence of diffusion) 
[1]. It is well established that in the absence of interactions the 
energetic mismatch between neighboring sites in a lattice may 
completely prevent transport by localizing all single-particle 
states. In this scenario arbitrary weak disorder localizes one 
and two-dimensional systems, producing ideal insulators. 
Much less is known about the effects of the interplay between 

interaction and disorder. In fact, despite intensive studies over 
decades [2–5], the influence of electron–electron interactions 
on the transport in disordered electronic systems is still a chal-
lenging problem.

More recently it has been theoretically shown that the 
insulating phase survives the inclusion of a small amount of 
interaction in a disordered system although, in this case, one 
can induce transport by increasing the temperature [6, 7].  
This investigation has given rise to the emerging field of 
many-body localization (MBL), which is considered a 
dynamical transition; unlike an equilibrium (conventional) 
phase transition, in a MBL transition the properties of the 
entire set of eigenstates change and one cannot restrict the 
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Abstract
We study the nonequilibrium interplay between disorder and interactions in a closed quantum 
system. We base our analysis on the notion of dynamical state-space localization, calculated 
via the Loschmidt echo. Although real-space and state-space localization are independent 
concepts in general, we show that both perspectives may be directly connected through a 
specific choice of initial states, namely, maximally localized states (ML-states). We show 
numerically that in the noninteracting case the average echo is found to be monotonically 
increasing with increasing disorder; these results are in agreement with an analytical 
evaluation in the single particle case in which the echo is found to be inversely proportional to 
the localization length. We also show that for interacting systems, the length scale under which 
equilibration may occur is upper bounded and such bound is smaller the greater the average 
echo of ML-states. When disorder and interactions, both being localization mechanisms, are 
simultaneously at play the echo features a non-monotonic behaviour indicating a non-trivial 
interplay of the two processes. This interplay induces delocalization of the dynamics which is 
accompanied by delocalization in real-space. This non-monotonic behaviour is also present in 
the effective integrability which we show by evaluating the gap statistics.
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analysis to the ground-state physics. This dynamical locali-
zation has important consequences on time evolution, more 
specifically on the capacity of the system to self-equilibrate, 
that is, to act as a reservoir for its subsystems. Localized 
states may prevent equilibration, since local perturbations do 
not diffuse throughout the system—such systems are called 
non-ergodic [8].

In the last few decades we have witnessed both exper-
imental [9–11] and theoretical [12–14] advances in the 
physics of one-dimensional quantum systems. In particular, 
after Basko’s seminal work [6] many groups have focused 
on the non-equilibrium localization of interacting particles. 
In these works the MBL transition has been studied through 
different approaches, using, for instance, entanglement prop-
erties or eigenstate statistics. Numerical studies have shown 
that the spectral statistics of a one dimensional system crosses 
over from those of orthogonal random matrices in the diffu-
sive regime at weak disorder to Poisson statistics in the local-
ized regime at strong disorder [15]. Concomitantly, dynamical 
features of disordered and interacting systems were observed 
focusing on multi-partite correlations [16] and on the entan-
glement entropy. It was shown that the interplay between 
interactions and disorder has a strong influence on the long-
time behaviour of the entropy [17–21]; later on it has been 
concluded that such signatures are just a characteristic trait 
of interacting systems, since these dynamical tendencies also 
exist in the absence of disorder and inhomogeneities [22].  
An analysis of the spatial behaviour of the entropy (von 
Neumann entropy as a function of partition size) should be 
more appropriate to address localization, since it saturates 
when the partition size reaches the localization length [23]. 
However this is a difficult approach, since the investigation 
has to be applied to large chains. In fact, the definite evidence 
of a MBL trans ition remains elusive despite creative and inno-
vative efforts [17, 24–32] due to technical difficulties, such as 
finite size limitation of numerical calculations.

In this work we study the dynamical state-space locali-
zation of an initial state that is maximally localized in real-
space and evolves in time with an interacting and disordered 
Hamiltonian. In this way we are able to describe the non-
equilibrium localization effects of disorder and interaction 
in a well defined way which is accessible for small chains. 
Furthermore, we propose a direct relation between dynamical 
localization in the state-space and the more standard real-
space localization perspective. We show that when acting 
alone both disorder and interaction progressively and mono-
tonically localize the system. However, when combined, they 
may lead to delocalization.

The paper is organized as follows. Section 2 is dedicated 
to the model. We study a one-dimensional (1D) spinless 
fermion system with nearest-neighbor Coulomb interac-
tion and on-site disorder. The quantity we choose to address 
dynamical state-space localization (the Loschmidt echo) 
is described in section  3, as well as the connection with 
real-space localization. We present our numerical results in 
 section 4. The last section is dedicated to our comments and 
conclusions.

2. Model

The disordered Anderson–Hubbard model is a standard 
Hamiltonian used to describe the competition between kinetic 
energy, electron–electron interaction, and disorder. The fully 
polarized Anderson–Hubbard model, or a disordered spinless 
fermion model, can still describe this competition with less 
computational effort. In the latter, we only retain the nearest-
neighbor Coulomb interaction since a site cannot be doubly 
occupied. The Hamiltonian is then given by

∑= − − + + − −
⎡
⎣⎢

⎤⎦εH
J

c c c c n U n n
2

1/2 1/2 .
i j

i j i j i i i j
,

( ) ( )( )
〈 〉

† †
 

(1)

The first term describes the kinetic energy, with J being the tun-
neling between nearest neighbors; the second describes the local 
energy of the ith site, with εi taken from a uniform distribution 
[−W, W]; finally the last term represents the nearest-neighbor 
Coulomb repulsion, with U being the interaction strength. ci 
and ni are the destruction and number operators acting on site i, 
respectively. Throughout this paper we use J  =  1 as the unit of 
energy. This model can be mapped to the XXZ spin-1/2 chain 
through a Jordan–Wigner transformation [34].

In this work we study small chains with N  =  10, 12, 14, 
16 sites and solve the Hamiltonian by exact diagonalization. 
Although the study of small chains is not ideal to describe 
phase transitions (defined in the thermodynamic limit), it can 
still produce relevant physical insights about the interplay 
between interactions and disorder. Furthermore, small sys-
tems can be realized in chains of trapped ions [33] and cold 
atoms [10] and have been the subject of many recent theor-
etical studies [16, 18, 19, 21, 24].

3. Nonequilibrium Localization

We choose to describe the competition between disorder 
and interactions through a state-space localization perspec-
tive. The dynamical state-space localization can be described 
by the inverse participation ratio (IPR) [26] of the time 
average ensemble. The IPR is calculated through the purity 
of the time-average ensemble, which gives us an estimate 
of the inverse of the effective length or area covered by the 
dynamics:

{ ¯ } ¯ ⟩⟨
→ ∫ρ ρ= = |Ψ Ψ |
∞ T

tIPR tr , lim
1

d ,
T

T

t t
2

0
 (2)

where ⟩|Ψt  represents the dynamically evolving state at a 
time t, starting from an initial state ⟩|Ψ0 . The IPR is bounded 
between unity and 1/dN with d being the site dimension and dN 
the dimension of the state-space. If =IPR 1 the dynamics are 
maximally localized meaning that an initial pure state is unal-
tered throughout the evolution; if /= dIPR 1 N the dynamics 
are maximally delocalized in the sense that the time-average 
ensemble is the identity ensemble in which all states con-
tribute with the same probability.

J. Phys.: Condens. Matter 28 (2016) 195602
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The purity of the average ensemble can also be expressed 
by the time-average of the Loschmidt echo L(t)

¯   ( )
→ ∫= =
∞

L
T

t L tIPR lim
1

d
T

T

0
 (3)

where ( ) ⟨ ⟩=| Ψ | |Ψ |−L t e Ht
0

i
0

2. This relation becomes useful in 
the case where the full diagonalisation or long-time dynamics 
are unreachable (which is the case experimentally [9]) and we 
may use the dynamical behaviour of the echo as a figure of merit. 
Furthermore, the echo has proven to be an important tool in char-
acterizing several aspects of the closed system dynamics [35–38].

Considering a non-degenerate Hamiltonian, the above rela-
tion corresponds to

¯ ⟨ ⟩∑= | |Ψ |L E ,
E

0
4

 (4)

where ⟩|E  represents the Hamiltonian eigenstates. In this way, 
the time averaged echo is related to the fidelity between the 
initial state and the Hamiltonian eigenstates.

In this work we calculate the dynamic state-space localiza-
tion through equation (4). In summary, the dynamics of an ini-
tial state allowed to evolve in time with a given Hamiltonian 
is localized in the state-space when the participation ratio is 
close to unity ( / ¯ ≈L1 1), while it is delocalized if / ¯ ≈L d1 N, 
meaning that the state covers a large portion of the state-space 
through the time evolution.

3.1. Connection between state-space and real-space 
 localization

The equilibrium real-space localization, as introduced by 
Anderson [1], is a single-particle effect in which the wave-
function exhibits exponentially decaying tails. In this way, 
each particle can only be found, with considerable probability, 
inside a finite localization length ξ from a given lattice site. The 
definition of real-space localization in a many-body system is 
more subtle [8] and in general we would refer to a correlation 
length rather than a localization length. Here we relate state-
space localization with real-space localization by investigating 
the participation ratio of the dynamics of a special set of initial 
states, namely half-filled random product states, i.e. states of the 
type ⟩ ⟩|Ψ = ∏ |= ni

N
i0 1  and /∑ =n N 2i i , where ⟩ { ⟩ ⟩}| = | |n 0 , 1i  

are the eigenstates of the number operator of the ‘ith’ site, and 
N is the number of sites in the chain. Note that such states rep-
resent electrons which are maximally localized in real-space, 
with a vanishing correlation length ( →ξ 0), and we will name 
their set { → ⟩}| ξE 0 . We perform an average of L̄ over M initial 
product states and disordered Hamiltonian distributions

〈〈 ¯〉〉 ( ) 〈 ({ }) → 〉 ⩽ε ε ε∫∏ ∑∑= | | |′ξ
′

L
M

p E E
1

d 1,
i

i i
E

M

E
0

4 (5)

where ⟨⟨ ⟩⟩ denotes the total averaging, { }ε  represents the set 
of drawn on-site energies and ( ) ({ })∏ =ε εp Pi i  is the prob-
ability of a disorder configuration.

In the extreme case in which a given product state | ′ξE 0→ ⟩ 
is allowed to evolve in time with a Hamiltonian whose eigen-
states { ⟩}| ξ≈E 0  are strongly localized in real-space (i.e. very 

weakly correlated), it will necessarily have a high projection 
on one of them, i.e. δ| | | ≈′ξ ξ≈ ′E E E E0 0

2
,⟨ → ⟩ . In this way, the 

state almost does not change in time, covering a small por-
tion of the Hilbert space during the time evolution (state-space 
localization), resulting in /⟨⟨ ¯⟩⟩≈L1 1. On the other hand, if the 
eigenstates of H are { ⟩}| ξ�E 1  delocalized in real-space, | ′ξE 0→ ⟩ 
will have a small projection all of them, | | |′ξ ξ ��E E 11 0

2⟨ → ⟩ . 
Therefore, the state covers a large portion of the Hilbert space 
during the dynamics, resulting in a large participation ratio 
/⟨⟨ ¯⟩⟩�L1 1 (dynamical state-space delocalization). In gen-

eral, we expect that, when using random product states (which 
are maximally localized with vanishing correlation length) 
as initial states the dynamical localization becomes closely 
connected to the real-space localization of the Hamiltonian 
eigenstates. Therefore, we expect a functional dependence 
⟨⟨ ¯⟩⟩ ( )ξ∝L f , such that ( )ξf  is a decaying function of ξ.

It is important to emphasize that the direct relation between 
real-space and state-space localization depends on the choice 
of initial state. Indeed, there are cases where the states are 
delocalized in real-space but localized in state-space. The 
simplest example is to consider initial states that are (at least 
approximately) eigenstates of a delocalized Hamiltonian.  
In this case the state would have an extremely long correlation 
length, however, the echo would remain (almost) unaltered 
throughout the evolution.

3.2. Average participation ratio of maximally localized states 
and single particle localization

One example where ( )ξf  can be explicitly obtained is that 
of noninteracting particles in disordered systems at low den-
sity. In this regime we may approximate the problem by the 
single particle analysis which allows for a direct analytical 
treatment of the quantum states. The presence of scattering 
centers in a potential induce bound eigenstates which are 
exponentially decaying around localization centers at X as 

( )⟩ ⟩/∫| = |ξ ξ
ξ−| − |E X x xd e x X1 , with a localization length ξ that 

is proportional to the depth of the potential.
In our analysis we always initiate the system in a maxi-

mally localized state which in the single particle case trans-
lates as ⟩ ( )⟩→| = |′ ′ξ ξx E xlim 0 . Let us now evaluate the echo 
dependence on the localization length for this particular case:

∫ ∫ ξ
∝ | =′ ′ξL

V
x X E X x

1
d d

1

2
,4〈〈 〉〉 〈 ( ) 〉 (6)

showing that the average echo is inversely proportional to the 

localization length and ( )ξ =
ξ

f 1 as we expected from the rea-

soning of the last section. Therefore, if the Hamiltonian has 
very deep effects inducing a vanishing localization length the 
dynamics is localized in state-space. In the other limit when 
the Hamiltonian is almost clean with very large localization 
length the dynamics is highly delocalized. Hence, we establish 
an explicit relation between the state-space dynamical local-
ization and the real-space localization. Certainly, such simple 
functional relation is not necessarily expected for interacting 
particles.

J. Phys.: Condens. Matter 28 (2016) 195602
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3.3. Average participation ratio and equilibration

The previous reasoning can also be seen from the equilibra-
tion perspective that allows for the analysis of a broader class 
of Hamiltonians which may account for interactions. The fact 
that the dynamics of the initial states (which are chosen to 
be localized in real-space) are localized in the Hilbert space 
implies in the breakdown of the ergodic hypothesis; the value 
of a time averaged observable depends on the initial state and 
the system does not equilibrate. The absence of equilibration 
has been used as an indicator of real-space many-body local-
ization in both experimental [9] and theoretical [39] studies.

More specifically, if one splits a system of N sites in two 
parts (S and R) and chooses two different initial product 
states ⟩ ⟩π π| ⊗ |S R  and ˜ ⟩ ⟩π π| ⊗ |S R  (with ⟩π| S  orthogonal to 
˜ ⟩π| S ), equilibration guarantees that this choice becomes 

undetectable, for any practical purpose, if given enough 
time. This means, in particular, that the time average of the 

trace distance ( ˜) ∥ ˜ ∥ρ ρ ρ ρ= −D , S S
1

2 1 of the reduced evolved 

states of S, ( )ρ tS  and ˜ ( )ρ tS , should approach zero as →∞t : 

( ( ) ˜ ( )) →→ ∫ ρ ρ∞ D t t tlim , d 0T T

T
S S

1

0
. On the other hand, the dis-

tance remains large in the absence of equilibration. In the 
appendix, we prove that if /⟨⟨ ⟩⟩ δ< +L1 1 , with δ� 1 related 

to the size NS of the subsystem S as ⩽ δ
δ

−
+

d N
1

S , then

( ( ) ˜ ( )) ⩾
→ ∫ ρ ρ δ−
∞ T

D t t tlim
1

, d 1 6 .
T

T

S S
0

It is thus shown that if the dynamics of the global system 
is localized in state-space then it is guaranteed that large 
enough subsystems composed of NS sites do not equilibrate. 
This means that correlations do not extend over NS sites and 
thus the correlation length should be much smaller than this 
subsystem.

4. Numerical results

We start by evaluating the participation ratio, /⟨⟨ ¯⟩⟩L1 , through 
equation  (5) for the two simplest cases, that is, using a dis-
ordered Hamiltonian in the absence of interaction and also 
an interacting non-disordered Hamiltonian. We perform an 
average oven 104 maximally localized initial states and, in the 
disordered case, for each initial state we randomly select each 
site energy with uniform probability between  −W and W. In 
the absence of interactions the presence of disorder localizes 
the system progressively decreasing its localization length. 
This result is represented in figure 1 by the monotonic decrease 
of the participation ratio as we increase disorder, which means 
the purity of the average ensemble only increases. In this case 
the decrease of the participation ratio follows the reduction of 
transport due to Anderson localization.

Similarly, for a non-disordered Hamiltonian, interaction 
progressively localizes the system. However the strongly 
interacting system is less localized than the strongly dis-
ordered system. The state-space localization analysis seems 
to indicate a partial transport suppression due to interaction. 
This is in agreement with the equilibrium counterpart with a 

non-null conductivity in a system with large interaction but 
finite temperature [40].

The difference between both interaction and disorder routes 
to localization shown in the inset of figure 1 can be understood 
by applying standard time-independent perturbation theory to 
the model Hamiltonian of equation (1). For a specific disorder 
realization, the disordered term of the Hamiltonian is diagonal 
in a basis of random product states and the spectrum of a finite 
system is non-degenerated. Thus, for strong disorder any 
product state tends to an eigenstate of the system. In the limit 
of non-interacting and strongly disordered one-dimensional 
systems all the eigenstates of the Hamiltonian (1) are strongly 
localized; this result leads to / ¯ ≈L1 1.

The electron–electron interaction term of the Hamiltonian 
(1) is diagonal in the same basis. Its eigenstates, however, 
are degenerated in sub-spaces of equal number m of nearest-
neighbor filled sites, which we will refer to as Um subspaces. 
By including the hopping via degenerated perturbation theory 
we break the energy degeneracy of these eigenstates and the 
new eigenstates of the system become superpositions of local-
ized states belonging to the same Um subspace. The dynamics 
of a given initial product state with m nearest-neighbor filled 
sites is restricted to the corresponding Um subspace being, 
therefore, partially localized. That is why, in the strongly 
interacting limit, we still observe some residual dynamics.

The competition between disorder and interactions leads 
to a challenging scenario which can not be described through 
perturbation theory, but the effects can still be observed in the 
participation ratio, as can be seen in figure  2. Even though 
their individual natural effect is to localize the system, the 
combination of disorder and interactions leads to nontrivial 
behaviour. In fact, the introduction of disorder in an inter-
acting system (top panel) or of interactions in a disordered 
system (bottom panel) leads to delocalization. Such interplay 
continues up until the point at which one of the effects starts 

Figure 1. Participation ratio ( /⟨⟨ ¯⟩⟩L1 ) of maximally localized 
states evolving with a non-disordered Hamiltonian as a function of 
interaction U (black circles) and with a non-interacting Hamiltonian 
as a function of disorder strength W (red squares). The inset shows a 
zoom for large interaction/disorder. Results obtained for a system of 
N  =  12 sites through an average over 104 initial states and disorder 
realizations.

J. Phys.: Condens. Matter 28 (2016) 195602
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to dominate, i.e. when either disorder or interaction becomes 
the dominant effect. More specifically, the interplay between 
interaction and disorder produces a tendency to delocaliza-
tion when both U and W are of the same order as the hopping 
amplitude J. These results are imprinted in the non-monotonic 
behaviour of the participation ratio. In the thermodynamic 
limit this behaviour could lead to a reentrant phase diagram 
similarly to the infinite temperature equilibrium diagram out-
lined in [41] and the non-disordered non-equilibrium diagram 
outlined in [42], noting that in the present case it is a genuine 
non-equilibrium effect of the interplay between interactions 
and disorder.

The nonequilibrium interplay between disorder and inter-
actions becomes more pronounced for larger systems. This is 
evident in figure 3 where we show the rescaled inverse echo for 
different system sizes as a function of the interaction strength. 
We scale the echo by the value it assumes when the interaction 
vanishes. In that case when ⟨⟨ ¯( )⟩⟩/⟨⟨ ¯⟩⟩= >L U L0 1 the inter-
play induces delocalization. In the top panel of figure 3 we 
see that the region and magnitude above unity increase with 

the system size. From the bottom panel we confirm that this 
effect becomes stronger for larger systems. We point out that 
the total mutual entropy has also been shown to have a non-
monotonic behaviour [16]. This, once again, hints on the fact 
that the interplay is also manifested in the spacial correlations 
and that, indeed, defined with respect to maximally localized 
states, the average echo is a useful quantifier of localization out 
of equilibrium. We note that all the curves for different N cross 
at the same point and we could argue that such crossing could 
indicate a phase transition in the same spirit that has been pre-
viously done in the literature for other quantities. However, 
we feel that such a claim is unsubstantiated in the sense that 
such chain sizes are too small for extracting information about 
the correlation length in the thermodynamic limit.

Figures 1–3 exhibit results for a subspace of half-filled 
chains (zero magnetization subspace, in the spin scenario); in 
figure 4 we show the inverse echo for different filling sectors, 
analyzing how the results depend on the filling fraction, that is, 
the number of particles over the number of sites. Adding one 
and two particles to a system at half-filling (corresp onding to 
subspaces of magnetization m  =  2 and m  =  4, in spin units, 
respectively) progressively localizes the system, as indicated 
by the reduction of the participation ratio. The non-trivial 

Figure 2. Participation ratio, /⟨⟨ ¯⟩⟩L1 , for (top) disorder strengths W 
as a function of interaction U, and (bottom) different interactions 
U as a function of disorder W. The results were obtained averaging 
over 104 different initial random product states and disorder 
realizations for a chain of N  =  12 sites.

Figure 3. Scaled inverse echo, (⟨⟨ ¯( )⟩⟩/⟨⟨ ¯( )⟩⟩)= −L U L U 0 1 for 
W  =  0.5 (top) as a function of interaction strength and (bottom) as a 
function of the number of sites. Results averaged over 5000 samples 
for N  =  10, 2000 samples for N  =  12, 1000 samples for N  =  14, 
and 500 samples for N  =  16.

J. Phys.: Condens. Matter 28 (2016) 195602



E Mascarenhas et al

6

interplay between interaction and disorder, which leads to a 
non-monotonic behavior of the inverse echo, is still present in 
the sectors we have analyzed, however it becomes less pro-
nounced. In fact, in the limiting case of fully occupied or fully 
empty system (maximal magnetization) disorder and interac-
tions would not play any role in the participation ratio.

Our results should be distinguished from the results in [43], 
in which a local echo is defined based on the magnetization. 
Firstly the non-monotonic behaviour in [43] is already pre-
sent both at zero disorder (and varying interaction) or zero 
interaction (and varying disorder); secondly even though 
local probes are highly desirable experimentally, this one in 
part icular is not a direct measure of localization, although a 
 reasonable indicator in some cases. We also point out that our 
findings for the Loschmidt echo differ significantly from those 
in [44] for several reasons: there, the authors use a class of 
initial states that are local representatives of an energy shell, 

while our choice is not based on energy but rather randomly 
selected from the entire set of non-entangled states. Their 
focus is also on the Heisenberg point while we sweep the 
interaction strength.

As described above, we perform an average over different 
initial random product states of full or empty sites, resulting 
in a half-filled chain (we remember that the model can be 
mapped onto a spin-half XXZ chain, and in the spin scenario 
this set of states is equivalent to random product states of spins 
up and down, with null magnetization). This set is a good 
 representative of real-space localized states in general, which 
are strongly non-entangled. Our choice of initial states is 
essential to the observation of our results and to the assurance 
of our interpretations, as confirmed by the results of figure 5. 
Performing the same analysis described above, but starting 
with a specific local state, one could obtain different results. 
Using a charge density wave state (CDW state, ⟩|101010... ) as 
the initial state, for instance, we observe a monotonic decrease 
of the participation ratio as we increase interaction in a dis-
ordered system (see figure 5). It happens because the CDW 
state, which is the ground state of the strongly interacting 

Figure 4. Inverse echo for W  =  0.5 as a function of interaction 
strength for different magnetization subspaces. Results averaged 
over 1000 samples for N  =  14.

Figure 5. Participation ratio for W  =  1 obtained starting from 
specific half-filled initial product states. The solid black line 
corresponds to the data of figure 2, i.e. ⟨⟨ ¯⟩⟩L  is obtained through an 
average over 104 initial product states and simultaneous disorder 
realizations. In the other curves, we start from the initial states 
specified in the legend and average L̄ over 103 disorder realizations. 
Results for N  =  12.

Figure 6. Typical gap, given by the position of the maximum of the 
gap distribution, as a function of U (top) and W (bottom). The inset in 
the top panel shows the gap distributions for a system with W  =  1 and 
different values of U, while the bottom inset shows the distributions 
for U  =  1 and different disorder strengths. Results for N  =  12 and 
averaged over 5 000 (top) and 20 000 (bottom) disorder realizations.
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clean system, is not a typical localized state. It is contained in 
the U0 (no nearest-neighbor-filled sites) subspace, spanned by 
only 2 of the 924 possible product states in a half-filled chain. 
Figure 5 also shows that starting with a state that is a simple 
site-permutation of the CDW state is enough to recover the 
non-monotonic behaviour.

To complete the analysis, we show that the interplay 
between disorder and interactions is also manifested in the gap 
distribution of the Hamiltonian, ( )∆P , where ∆ = −+E Ei i1  
and {Ei} are the Hamiltonian eigenvalues in ascending order. 
The gap distribution is commonly used as an indicator of 
integrability or chaos. Generically, integrable system exhibits 
Poissonian gap statistics while chaotic systems exhibit 
Wigner–Dyson statistics [45]. Furthermore, we expect local-
ized regimes to resemble integrable system and their statistics 
(since they have local constants of motion) while delocalized 
regimes are expected to resemble non-integrable systems [46]. 
A substantial difference between these two regimes is that the 
maximum of the distribution moves closer to zero in case of 
localization and to positive values in case of delocalization. 
In figure 6 we keep track of the typical gap, ∆typ, given by 
the position of the maximum of the distribution (examples of 

( )∆P  for disordered and interacting systems are given in the 
insets). This figure clearly shows that the gap statistics of a 
clean interacting system and of a disordered non-interacting 
system is always a Poisson-like distribution since they are 
integrable. On the other hand, the inclusion of disorder in 
an interacting system or the inclusion of interaction in a dis-
ordered system, leads to a non-monotonic behaviour of the 
typical gap, indicating that the nontrivial interplay between 
disorder and interactions drives the system to a more delocal-
ized regime when ≈ ≈W U J. ∆typ moves closer to zero as 
we increase disorder or interaction even further, recovering 
the localized regime. This analysis agrees with our previous 
results, that is, the maximum of ∆typ as a function of disorder 
or interaction is established for the same range of parameters 
in which we observe the maximum of the participation ratio 
(figure 2).

5. Conclusion

We have used the time-averaged Loschmidt echo of maxi-
mally localized states to characterize state-space localiza-
tion. We applied this concept to show that for a single particle 
the average echo is inversely proportional to the localization 
length, highlighting an intimate relationship between dynam-
ical state-space localization and real-space localization. We 
have then extended the idea to many-body localization where 
we have derived a bound for subsystem equilibration based on 
this echo. Using this approach, we have shown that in a system 
featuring disorder and repulsive interaction, both localizing 
mechanisms, the interplay between them can actually lead to 
delocalization. This is a direct consequence of the fact that 
each mechanism localizes the dynamics in a different sense 
and, when they are of the same order of the hopping amplitude, 
their competition partially cancels each other’s effect. This 
non-trivial interplay is also imprinted in the gap distribution of 

the Hamiltonian indicating that it also affects the integrability 
of the system. Finally, the interplay is shown to become more 
pronounced with increasing system size, robustly showing at 
least partial disorder-interaction cancellation.
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Appendix. Equilibration analysis

Proposition. Let C( )H ⊗= d N be the state space of a N 
sites quantum system with non-degenerate Hamiltonian H. 

Assume /⟨⟨ ⟩⟩ δ< +L1 1 , with ⟨⟨ ⟩⟩ = ∑πd

1
N  where the sum 

runs over the elements ⟩π|  of some fixed product basis Π, 

( ⟩) ⟨ ⟩π π| = ∑ | | |L EE
4, with the sum running over all eigen-

states ⟩|E  of H, and δ< <0 1. For every subsystem S with NS 

sites satisfying ⩽ δ
δ

−
+

d N
1

S , there exists a pair of orthogonal 

product states ⟩π| S  and ˜ ⟩π| S  on S and a product state ⟩π| R  on the 
remaining system R, such that

( ( ) ˜ ( )) ⩾
→ ∫ ρ ρ δ−
∞ T

D t t tlim
1

, d 1 6 ,
T

T

S S
0

where ( )ρ tS  is the reduced state of S under the evolution of 
the system with initial state ⟩ ⟩π π| ⊗ |S R , ˜ ( )ρ tS  is the reduced 
state of S under the evolution of the system with initial state 

˜ ⟩ ⟩π π| ⊗ |S R , and ( ( ) ˜( )) ∥ ˜ ∥ρ ρ ρ ρ= −D t t,S S S
1

2 1 is the trace dis-

tance. It is thus shown that if the dynamics of the global sys-
tem is localized in state-space then it is guaranteed that large 
enough subsystems composed of NS sites do not equilibrate. 
This means that correlations do not extend over NS sites and 
thus the correlation length should be much smaller.

Proof. Take a subsystem with NS sites satisfying < δ
δ+d

1

1NS
. 

Assume, by contradiction, that for each product vector ⟩π| R  on 
the remaining system R, there is at most one product state 

⟩π| S  such that ⟩ ⟩π π| ⊗ | ∈ΠS R  and ( ⟩ ⟩)π π δ| ⊗ | > −L 1S R . We 
would therefore have at least ( )× −−d d 1N N NS S  elements of Π 
satisfying ( ⟩) ⩽π δ| −L 1 . But then

⟨⟨ ⟩⟩ ( ⟩) [ ( ⟩)

( ⟩)]

( ⟩)⩽

( ⟩)

∑ ∑

∑

π π

π

= | = |

+ |

π π π δ

π π δ

| −

| > −

L
d

L
d

L

L

1 1
N N

L

L

: 1

: 1

 
(A.1)

⩽ [( ) ( ) ]δ− ⋅ − ⋅ + ⋅− −

d
d d d

1
1 1 1

N
N N N N NS S S (A.2)

( )( )δ= − − +
d d

1 1
1 1
N NS S

 (A.3)
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⩽ ( )( )δ
δ
δ

δ
δ

− −
+

+
+

1 1
1 1

 (A.4)

δ
=
+
1

1
, (A.5)

a contradiction.
From the argument above we must have then two orthog-

onal product vectors ⟩π| s  and ˜ ⟩π| s  on the state space of S and a 
vector ⟩π| R  on the space of R such that ( ⟩ ⟩)π π δ| ⊗ | > −L 1S R  
and ( ˜ ⟩ ⟩)π π δ| ⊗ | > −L 1S R .

Let ( )⟩π| t  be the evolved state of an element ⟩π|  of Π. Since 
we can write, for every ⩾t 0

( )〉 ( ) 〉 ( ) ( )〉 ˜( )〉 ˜( ) ˜〉
˜( ) ˜( )〉

π α π β ψ π α π

β ψ

| = | + | | = |

+ |

t t t t t t

t t

and

,

where ( ) ⟨ ( )⟩α π π= |t t , ( )⟩ψ| t  is normalized and orthogonal to 
⟩π|  for all t (so ( ) ( )α β| | +| | =t t 12 2 ), and analogous definitions 

for ˜( )⟩π| t , we have:

( ( ) ˜ ( )) ( ( )⟩⟨ ( ) ˜( )⟩⟨ ˜( ) )ρ ρ π π π π= | | | |D t t D t t t t, Tr , TrS S R R (A.6)

∥ [ ( ) 〉〈 ( ) ( )〉〈 ( ) ( ( ) ( ) 〉〈 ( ) )α π π β ψ ψ α β π ψ= | | | | + | | | | + | | +∗t t t t t t t
1

2
Tr h.c.R

2 2
 

(A.7)
˜( ) ˜〉〈 ˜ ˜( ) ˜( )〉〈 ( )˜ ( ˜( ) ˜( ) ˜〉〈 ˜( ) )∥α π π β ψ ψ α β π ψ−| | | |−| | | |− | | +∗t t t t t t t h.c.2 2

1

 

(A.8)

∥ ⟩⟨ ˜ ⟩⟨ ˜ ( ) ⟩ ˜( ) ˜ ⟩⟨ ˜π π π π β π π β π π= | |−| |−| | | |+| | | |t t
1

2
S S S S S S S S

2 2

 (A.9)

β ψ ψ α β π ψ+ | | | | + | |+∗t t t t t tTr h.c.R
2[ ( ) ( )〉〈 ( ) ( ( ) ( ) 〉〈 ( ) ) (A.10)

β ψ ψ α β π ψ−| | | |− | | +∗t t t t t t h.c. ,2
1

˜( ) ˜( )〉〈 ˜( ) ( ˜( ) ˜( ) ˜〉〈 ˜( ) )]∥ (A.11)

were in the last equality we have taken the partial trace of 
projectors ⟩⟨π π| | and ˜⟩⟨ ˜π π| | and used that ( ) ( )α β| | +| | =t t 12 2  
and ˜( ) ˜( )α β| | +| | =t t 12 2 . Using the reverse triangle inequality 
in the last expression, we have

( ( ) ˜ ( )) ⩾ ∥ ⟩⟨ ˜ ⟩⟨ ˜ ∥ ∥ ( ) ⟩

⟨ ˜( ) ˜ ⟩⟨ ˜

ρ ρ π π π π β π

π β π π

| |−| | − −| | |

|+| | | |

D t t t

t

,
1

2

1

2S S S S S S S

S S S

1
2

2

 
(A.12)

[ ( ) ( )〉〈 ( ) ( ( ) ( ) 〉〈 ( ) )β ψ ψ α β π ψ+ | | | | + | | +∗t t t t t tTr h.c.R
2 

(A.13)

˜( ) ˜( )〉〈 ˜( ) ( ˜( ) ˜( ) ˜〉〈 ˜( ) )]∥β ψ ψ α β π ψ−| | | |− | | +∗t t t t t t h.c.2
1 (A.14)

⩾ ( ) ˜( ) ( )∥ ( ) ˜( )∥ ˜( )β β α β α β−| | −| | − | |− | |t t t t t t1 2 22 2 (A.15)

⩾ ( ) ˜( )β β− | |− | |t t1 3 3 . (A.16)

Now, since the Hamiltonian is non-degenerate, we have the 
well-known relation:

( ) ⟨ ( )⟩
→ →∫ ∫α π π| | = | | |
∞ ∞T

t
T

tlim
1

lim
1

t

T

t

T

0

2

0

2 (A.17)

⟨ ⟩
→ ∫ ∑ π= | | | | |
∞

−

T
Elim

1
e

t

T

E

Et

0

2 i 2
 (A.18)

∫ ∑ π π= | | | | | |′
∞

− −

′

′

T
E Elim

1
e

t

T

E E

E E t

0 ,

2 2 i⟨ ⟩ ⟨ ⟩
→

( )
 (A.19)

⟨ ⟩∑ π= | | |E
E

4
 (A.20)

( ⟩)π= |L , (A.21)

and similar one for πL(∣ ˜〉). Moreover, by the Cauchy–Schwarz 
inequality we have

( ) ⩽ ( )
→ →∫ ∫ ∫β β| | | |
∞ ∞T

t t
T

t t tlim
1

d lim
1

d 1d
T

T

T

T T

0 0

2

0
 (A.22)

( )
→ ∫ β= | |
∞ T

t tlim
1

d
T

T

0

2 (A.23)

(∣ 〉) ⩽π δ= − L1 , (A.24)

and similar inequality for ˜( )β t . Finally, from inequality (A.16), 
we get

( ( ) ˜ ( )) ⩾
→ ∫ ρ ρ δ−
∞

∞

T
D t tlim

1
, 1 6 .

T
S S

0
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