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Abstract. We analyze equilibrium properties of coupled-doped cavities
described by the Jaynes–Cummings–Hubbard Hamiltonian. In particular,
we characterize the entanglement of the system in relation to the
insulating–superfluid phase transition. We point out the existence of a crossover
inside the superfluid phase of the system when the excitations change from
polaritonic to purely photonic. Using an ensemble statistical approach for
small systems and stochastic mean-field theory for large systems, we analyze
static disorder of the characteristic parameters of the system and explore
the ground state-induced statistics. We report on a variety of glassy phases
deriving from the hybrid statistics of the system. On-site strong disorder induces
insulating behavior through two different mechanisms. For disorder in the
light–matter detuning, low-energy cavities dominate the statistics, allowing the
excitations to localize and bunch in such cavities. In the case of disorder in
the light–matter coupling, sites with strong coupling between light and matter
become very significant, which enhances the Mott-like insulating behavior. Inter-
site (hopping) disorder induces fluidity and the dominant sites are strongly
coupled to each other.
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1. Introduction

Quantum phase transitions are a remarkable zero-temperature phenomenon driven by quantum
fluctuations [1]. Such transitions have been studied in many-body quantum systems where each
quantum phase can be unambiguously defined. However, recent results show evidence that
interesting aspects and important traces of the physics of novel quantum phase transitions may
already be observed in the limit of a very few interacting sites [2–6]. This is especially clear
in hybrid light–matter systems, such as coupled electromagnetic cavities doped with two-level
impurities, where a Mott-insulating-to-superfluid crossover has been predicted for as few as
six or seven sites [2]. These systems feature a composite fermion–boson excitation in each site,
hence the term hybrid, and quantities such as the variance in energy for each site have been used
as markers for the transition between different phases [7]. However, entanglement, a unique
quantum correlation with no classical analogue which has been related to fundamental features
of quantum phase transitions [8], may be regarded as a more adequate order parameter [4, 9]. In
this work, we study the system entanglement to show how such quantum correlations relate to
the behaviors the system may present.

One possible Hamiltonian describing doped and coupled cavities is the
Jaynes–Cummings–Hubbard (JCH) model [2, 10], which, in some limiting approxima-
tions, mimics the more typical and simpler Bose–Hubbard one. The similarities between
both models have prompted the use of the latter as a basis for the analysis of quantum phase
transitions in the former for both a large [11] and a very small number of sites [12]. However,
the analogy to this simpler model ignores the internal structure of each site, which prevents
one from exploring the increased complexity of the JCH system. The implementation of
such systems has been proposed in different quantum optical setups such as planar lattices of
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one-mode cavities each containing one quantum dot [13], photonic crystal microcavities [14],
circuit quantum electrodynamics with a finite system approach [15] and in trapped ions [16].
One of the greatest advantages of all these setups is the combination of highly controllable
experimental conditions and the large effective size of each site that allows for the design of
mesoscopic simulators of condensed matter systems.

In many cases, the JCH system is naturally disturbed by noise that usually takes the
system out of equilibrium. However, even in equilibrium, disordered imperfections in the
system preparation may induce transitions that drastically change quantum phases and their
correlations. Disorder may manifest itself in very different and even opposite effects. The
lattice imperfections, which differ from site to site, may suppress quantum coherence, inducing
the spatial localization of quantum states and destroying the system fluidity, which leads to
compressible, though non-fluid, glassy phases [17]. However, disorder may induce fluidity
under certain circumstances [6, 18, 19]. The hybrid nature of the system also leads to interesting
effects under the action of disorder, as we show in the following sections.

In this paper, we show that the entanglement between different constituents of the JCH
system can be used not only to characterize the already known phase transitions (also present in
the Bose–Hubbard model), but also, and more importantly, to identify new behavior involving
the nature, either hybrid or bosonic, induced by the more complex JCH interaction. We address
small and large quantum systems, extremes that present similarities and differences that are
of great interest: while a few sites are experimentally feasible in a controllable way, phase
transitions are better defined in large samples. We also analyze the entanglement and disorder-
induced effects of the JCH Hamiltonian. For the analysis of the small system, we go deeply into
the statistics of the ensembles induced by disorder, since in principle a physical observer could
carry out spectroscopic measurements of the system structure and obtain disordered pure states
(or at least quasi-pure) pertaining to the induced ensembles. For the analysis of the large system,
we resort to stochastic mean-field theory (SMFT), which was recently developed in [19, 20] and
allows us to study on-site statistics. We show how the statistics of the system changes under the
various ways in which disorder may set in and also show the disorder-induced phase transitions.

The analysis of the clean system is developed in section 2 with one subsection for the small
limit and another for the large limit. The disordered small system is addressed in section 3, and
the disordered large system is addressed in section 5 after a brief introduction to SMFT in
section 4. Section 6 concludes the paper.

2. The hybrid system: the Jaynes–Cummings–Hubbard Hamiltonian

The system studied here features a chain of sites, each of which contains composite excitations,
also known as polaritons, created by the interaction of a boson and a fermion. A typical
experimental proposal for these systems is devised in resonant cavities, the bosons being the
photons that occupy the cavity mode and the fermions being two-level electronic transitions of
the on-site dopants, as depicted in figure 1 and described in [2, 21]. The Hamiltonian of these
coupled doped cavities (with two-level impurities) is the so-called JCH model and it is given by

H=

n∑
〈i, j〉

[Si + T(i, j)], (1)
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Figure 1. Coupled cavities doped with two-level systems. The figure shows
one possible realization of this system, in this case in photonic crystals, where
cavities are defects in the periodic structure of the crystal. The two-level systems
can be excitons in quantum dots or electronic levels of dopant atoms, for
example.

with n being the number of sites and Si being the intra-site Jaynes–Cummings interaction
between the dopant and the resonator:

Si = ωia
†
i ai + νiσ

†
i σi + gi(σ

†
i ai + σia

†
i ). (2)

The i th site annihilation operators are ai and σi for the bosonic and fermionic species,
respectively. In equation (1), T(i, j) describes the photon hopping, or tunneling, between nearest
neighboring sites

T(i, j) = −A(i, j)[a
†
i a j + aia

†
j ]. (3)

The coupling strength between the two-level system and the cavity in the i th site is given by gi ,
and the photon tunneling strength between nearest cavities is A(i,i+1). The photon frequency at
the i th site is ωi and νi is the transition frequency of the dopant of the respective site; thus we
define the i th site detuning 1i = νi − ωi .

The polaritons are eigenstates of the intra-site (Jaynes–Cummings) Hamiltonian and are
given by |n+〉 = sin(θn)|g〉|n〉 + cos(θn)|e〉|n − 1〉 and |n−〉 = cos(θn)|g〉|n〉 − sin(θn)|e〉|n − 1〉,
with tan(2θn) = −g

√
n/1. The states |n〉 are photon number states and |g〉 and |e〉 are the

ground and excited states of the dopant inside the cavity. Finally, the number of particles
operator in the i th site is given by Ni = a†

i ai + σ
†
i σi .

2.1. Behavior of small sample systems

Recent works show that the system described in the last section undergoes a Mott–superfluid
phase transition when going from small hopping to large hopping or from negative detuning to
positive detuning [2, 10]. In the first case, the transition is induced because the hopping strength
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circumvents the photon blockage regime (nonlinearity due to the dopant–cavity interaction) and
in the second case the excitations are directly driven from mainly electronic (electrons are not
able to hop) to mainly photonic, hence the fluidity. This phase transition can be witnessed by
single-site properties. For example, when the system is isolated and the average occupation
number per site 〈Ni〉 is one (the same number of excitations and sites), the variance of Ni

for any given site is a good order parameter [2, 3]: in the Mott phase each site has a single
particle and there is no number fluctuation, whereas in the superfluid phase the on-site number
variance is maximum. This analysis begins to fail when one takes into account interactions with
the environment and spatial fluctuations that may not preserve the total number of particles in
the system. For instance, dissipation introduces variances of the occupation number in each site
and var(Ni) may overestimate fluidity. Furthermore, although the measure of var(Ni) hints at
the type of excitation that dominates each phase, it cannot reveal this fundamental property in
detail because it does not fully distinguish between photons, electrons and polaritons.

We proceed to show that the entanglement between different constituents not only
reproduces previous results but actually allows for the identification of a new crossover that
the previous analysis did not reveal.

In order to quantify the entanglement between the various components of the system,
we choose the negativity measure [22], which is very convenient to calculate. It should be
remembered that null negativity does not necessarily imply null entanglement; in fact, null
negativity means null or bound entanglement. However, any non-zero value of negativity
guarantees some form of distillable entanglement in the system that will prove to be enough
for distinguishing the different quantum phases of the system as a whole. Given the quantum
state of any two constituents A and B of the system, their negativity can be found by partially
transposing their reduced density matrix R = ρ

TA
AB and then summing up the moduli of the

negative eigenvalues of R.
We begin with the case of small systems, where the diagonalization of the Hamiltonian is

computable by looking at properties of the lowest energy state |G〉 with the constraint of having
an equal number of excitations and sites H|G〉 = En|G〉. In other words, |G〉 is the lowest-
energy eigenstate of the Hamiltonian having n = 〈

∑n
i Ni〉, with Ni being the number operator at

the i th site. Consider now a cluster of two sites, which is the smallest possible such system. Even
for this very basic unit cell, the entanglement between the sites clearly presents the signatures
of Mott and superfluid phases that were found for much larger systems in previous works. In the
Mott phase (with one polariton per site) there is no entanglement between sites with the Mott
insulating state being |G(MI)〉 = |1−〉|1−〉 (for two sites). In the superfluid phase and when
the excitations become mainly photonic, the sites become entangled, with the superfluid state
for two sites (described in [3]) given by |G(SF)〉 = |g〉|g〉[ 1

√
2
|11〉 −

1
2(|20〉 + |02〉)]. It should

be kept in mind that for the finite system analysis there is no phase transition, only a smoother
crossover, even though the phase transition terminology is commonly adopted. The behavior of
the system (phase-like diagram), quantified by the entanglement between different constituents,
is depicted in figure 2, where we show the entanglement between sites, the in-site entanglement
and the entanglement between atoms.

The site–site entanglement shows the phase crossover as partially presented in [4]. When
the site–site entanglement is negligible the system resembles a Mott insulator and when the
site–site entanglement is non-negligible the system presents superfluid-like behavior. Thus the
site–site entanglement indicates the regimes in which the system is insulating and superfluid
with small and large values of entanglement, respectively (figure 2(a)). In order to quantify the
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Figure 2. Results for a two-site system. (Top-a) Entanglement between the sites.
(Middle-b) In-site entanglement. (Bottom-c) Atom–atom entanglement.

polaritonic behavior we can look at the in-site entanglement that measures how correlated are the
photonic field and the electronic transition in a given cavity (or a site) (figure 2(b)). In the Mott-
like regime (small site–site entanglement) the in-site entanglement is significant, indicating that
the system presents polaritonic behavior. Deep in the superfluid-like regime (large site–site
entanglement) the in-site entanglement is small, indicating a predominant photonic behavior.
However, during the crossover (as a function of either A or 1) entanglement presents a non-
monotonic behavior, with a region where it is maximum. Such a non-monotonic increase,
which is even more pronounced in the atom–atom entanglement (figure 2(c) and [23]), suggests
that as the system size increases and reaches the thermodynamic limit a phase transition
should be verifiable, i.e. since at the point of the phase transition there are fluctuations over
all length scales, more degrees of freedom interact with each other such that entanglement
can exist between more degrees of freedom. Furthermore, the regime in which in-site and
site–site entanglement coexist corresponds to a polaritonic superfluid, rather then just a photonic
superfluid.

2.2. Large sample systems and the polariton–photon crossover

We can also obtain a wider view of the system phase diagram varying the number of polaritons
in the system. In order to do that we can couple the system to a chemical reservoir of polaritonic
particles with chemical potential µ (at zero temperature), such that the system is in equilibrium
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Figure 3. (Top) The mean-field parameter. (Middle) Entanglement between the
sites in the cluster. (Bottom) The in-site entanglement, i.e., the entanglement
between the dopant and the oscillator mode in mean-field theory. All data with
a four-site cluster with the dimension of each oscillator truncated to six photons
and zero detuning (1 = 0).

with this reservoir. The chemical potential can be explicitly included in the system Hamiltonian
H→H− µ

∑
i Ni .

For large (infinite) systems we adopt the mean-field approach, in which we treat a small
cluster of sites interacting with a mean field, i.e., a classical approximation of the rest of the
chain (which we refer to as an environment). This approach gives a factorable approximation of
the non-factorable tunneling (or hopping) term by approximating the operators for their mean
values plus a small fluctuation (in this case a quantum fluctuation) a = 〈a〉 + δa. The mean-field
Hamiltonian for the cluster becomes

HMF =

∑
〈i, j〉(cluster)

[Si + T(i, j)] +
∑

〈i(cluster), j (environment)〉

−A(i, j)[α
∗

j ai + α ja
†
i − |α j |

2], (4)

with 〈a〉 = α being the mean-field order parameter that has to be self-consistently determined by
minimizing the ground-state energy. The phase diagram as a function of the chemical potential
and hopping frequency is shown in figure 3 for large systems.

Varying the chemical reservoir we can see the Mott lobes (each lobe corresponding to
plateaus of different integer numbers of polaritons) in the infinite system (figure 3). The mean-
field parameter is null in the Mott phase and is positive in the superfluid phase. Only in this
case we compute a site purity (one minus the purity more precisely) as the estimate of the
entanglement between such a site and the rest of the chain (in this case, the cluster). Although
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this entanglement is not strictly zero in all of the Mott phase it still gives a fair account of the
phase diagram and the lobe structure. We have considered a four-site cluster, which is a rather
small cluster, even though it already requires considerable computational effort. Larger clusters
would increase the precision of the site–cluster entanglement. The site–cluster entanglement
is maximum in the lobe borders (the middle panel of figure 3), which, again, indicates strong
polaritonic fluidity in the vicinity of the phase transition.

Now, looking at the in-site entanglement (the bottom of figure 3), which can be regarded
as the very essence of the polaritons, we can see the whole picture with the overlay of the
Mott–superfluid and hybrid–boson crossover. The highest in-site entanglement is in the Mott
lobes and the lobe structure can also be defined by this quantity. Outside the lobes fluidity sets
in; however, the in-site entanglement is still very high, indicating that the system has not yet
undergone the hybrid–boson crossover despite having changed from insulating to superfluid.
Farther away from the lobes and deeper into the fluid phase, we finally observe the in-site
entanglement vanishing, indicating that the system finally turns bosonic.

3. Disordered small quantum systems

Every physical system presents imperfections (disorder); that is, the system parameters may
vary from site to site. There are many possible origins of disorder, for instance, imprecisions
in the system manufacturing process, thermal fluctuations and fluctuations induced by other
uncontrollable electromagnetic sources in the system environment. One way to study the effect
of disorder is to describe the parameters of each site as a stochastic variable ξi and the
Hamiltonian becomes dependent on the stochastic parameters H{ξi}. Naturally, the system
ground state becomes dependent on the values assumed by the system parameters |G〉 →

|G({ξi})〉 and there emerges a new state, an average state

ρ =

∫
dp({ξi})|G({ξi})〉〈G({ξi})| (5)

that contains the statistics of the effects induced by the static disorder, with dp({ξi}) being
the distribution measure of the disorder, such that it gives all moments of the site parameters
ξ k

i =
∫
dp({ξi})ξ

k
i . We choose to analyze only uncorrelated disorder such that the global measure

is a product of local measures dp({ξi}) =
∏

i P(ξi) dξi , with Gaussian distributions P(ξi) =

1
√

2πδ
exp{−

(ξi −ξi )
2

2δ2 }. The magnitude of disorder is then given by the distribution width or the
mean square deviation δ.

We can then characterize the average properties of the system given that it presents disorder.
For instance, we can look at the entanglement description of the phase diagram; only now
we average the entanglement over the pure state ensemble generated by the different values
assumed by the system parameters. We remark that the pure state ensemble given in equation (5)
is a physically realizable ensemble [24], since in principle the experimentalist can carry out
spectroscopic measurements and obtain the values assumed by the parameters in that particular
sample system and then prepare the system ground state. We can define the reduced states
ρAB({ξi}) = trE{|G({ξi})〉〈G({ξi})|}, with the trace being performed over the environment of A
and B. For instance, if we are looking at the atom–atom entanglement, then we trace out the
field, so the field would be the environment in this case. Therefore, we can define the average
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Figure 4. The ensemble average entanglement E[ρ] between the two sites under
disorder in the matter–light detuning 1 (more specifically in the light frequency)
on the phase diagram with δ(1) = 10g.

entanglement between any constituents A and B as

E[ρAB] =

∫
dp({ξi})E[ρAB({ξi})], (6)

which is physically realizable since the ensemble of ground states is also physically
realizable [25, 26]. Note that the average entanglement of the ensemble is, in general, different
from the entanglement of the average state with the usual hierarchy E[ρAB]> E[ρAB], with the
average state ρAB =

∫
dp({ξi})ρAB({ξi}).

In what follows, in this section we consider only two sites of the JCH Hamiltonian.

3.1. Disorder in the matter–light detuning

Now we can describe the effects induced by disorder in each of the parameters individually,
detuning 1, hopping A and matter–light coupling g. Let us begin by analyzing disorder only
in the cavity–atom detuning; thus {ξi} = {1i} (see figures 4 and 5). As can be seen in figure 4,
the average entanglement between sites seems to decrease over the entire phase diagram in
comparison with the clean case of figure 2(a).

The decrease of site–site entanglement indicates that the excitations tend to localize
through an Anderson-like mechanism. For instance, starting from the system in the superfluid
phase, when we increase the detuning disorder the distribution of the single-site number
occupation P(〈N1〉) is broadened and then becomes a two-peaked distribution (see the top panel
of figure 5). In the regime in which the distribution P(〈N1〉) presents two peaks the system is
fully localized, such that one of the peaks corresponds to all excitations in cavity one and the
other corresponds to zero excitations in the cavity. This extreme regime of localization can be
regarded as a bosonic bunching: the large disorder in the cavity line width allows for realizations
in which the cavity has a very low frequency such that it is energetically favorable to fit more
than one excitation in one cavity instead of distributing the excitations over the sites. For two
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Figure 5. Probability distributions induced by disorder in the matter–light
detuning. (Top) Renormalized histogram P(〈N1〉) of the site occupation number
as a function of disorder. (Bottom) Renormalized histogram P(E) of the site–site
entanglement as a function of disorder. The light hopping is A = g and the
average detuning 〈1〉 = 5g.

sites and two excitations the state can be approximately given by |2〉|g〉|0〉|g〉 or |0〉|g〉|2〉|g〉

with the atoms in their ground states.
The parameters in figure 5 are such that the system is in the superfluid phase in the clean

limit. In this case, as expected, the distribution of the site–site entanglement P(E[SS]) shows
a peak at the maximum value (the bottom panel of the figure). However, as disorder increases
a second peak emerges close to the minimum value corresponding to localized states. Thus the
ensemble presents both superfluid and insulating states for intermediate values of disorder. The
presence of the two kinds of state can be regarded as a precursor of a glassy phase [5], which
we will show to be true with the large system analysis. Furthermore, as disorder increases even
further the system becomes fully localized and the site–site entanglement distribution becomes
single peaked at very small values of entanglement.

3.2. Disorder in the photon hopping

Disorder in the photon hopping generates a different effect (see figures 6 and 7). Carrying out
the same analysis as for disorder in the detuning, we see that the average site–site entanglement
increases in the region where a Mott phase exists in the clean limit, while it remains practically
unaltered in the superfluid phase. Fluctuations in the hopping may actually induce a glassy fluid
phase [6, 18, 19]; that is, disorder allows realizations in which the hopping is stronger than
the photon blockade and those realizations may prevail. The A-disorder may also suppress the
polaritonic behavior which can be seen as a decrease in the atomic population. We can also
look at the distribution for the total atomic excitation Z =

∑
i σ

†
i σi as a function of disorder

starting from the system at the Mott phase in the clean limit. The distribution P(〈Z〉) is very
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Figure 6. Effects of static disorder in light hopping A on the phase diagram.
The ensemble average entanglement E[ρ] between the two sites. Disorder of
δ(A) = 10g.

Figure 7. Probability distributions induced by disorder in the light hopping.
(Top) Renormalized histogram P(〈Z〉) of the total atomic occupation number as
a function of disorder. (Bottom) Renormalized histogram P(E) of the site–site
entanglement as a function of disorder. The average light hopping is 〈A〉 = 1g
and detuning 1 = −2g.

asymmetric and as disorder increases it concentrates at the extreme values assumed by 〈Z〉. One
of the extremes corresponds to polaritonic superfluidity and the other to photonic superfluidity,
with the latter prevailing in the limit of very large disorder. This can be corroborated by the
entanglement distribution P(E[SS]).
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Figure 8. Probability distributions induced by disorder in the matter–light
coupling g. (Top) Renormalized histogram P(〈N1〉) of the site occupation
number as a function of disorder. (Middle) Renormalized histogram P(E) of
the site–site entanglement as a function of disorder. (Bottom) Renormalized
histogram P(〈Z〉) of the total atomic occupation number as a function of
disorder. The light hopping is A = 1g and detuning 1 = 5g.

3.3. Disorder in the matter–light coupling

Finally, we analyze disorder in the matter light coupling g (see figure 8). A first look at the
g-disordered average entanglement (not shown here since it resembles very closely the
1-disorder case) suggests that disorder in the Jaynes–Cummings coupling also induces
localization; that is, disorder allows a great number of meaningful realizations in which the
sites are almost unentangled and the excitations tend to bunch. However, the g-disorder-induced
distribution of the site occupation number P(〈N1〉) (top panel of figure 8) is very different
from that induced by 1 disorder. In the current case the P(〈N1〉) distribution shows three
peaks, the extreme ones corresponding to bunching similar to the 1-disorder case and a middle
one that corresponds to states in which the excitations are still equally distributed among the
sites. Disorder in the matter–light coupling induces states with Mott-like features in which the
site–site entanglement vanishes (see the middle panel of the figure). In fact, this is the meaning
of the middle peak in P(〈N1〉): some sites undergo a superfluid–insulating transition through a
Mott-like mechanism. Since the distribution of the atomic occupation P(〈Z〉) (bottom panel of
figure 8) is narrowly centered at an appreciable (although not extreme) value we may conclude
that the system nature becomes mainly polaritonic, and thus presenting both Mott states (middle
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peak in P(〈N1〉) and polaritonic bunching (the extreme peaks in P(〈N1〉). This suggests that the
system behaves very similarly to an Anderson–Mott insulator [27].

The presence of superfluid, Mott and Anderson-like states for intermediate disorder in the
coupling g suggests that glassy phases would be induced in larger systems of the JCH type.
In fact, a different situation was analyzed in [28], in which there is disorder in the number
of impurities per cavity. Since the number of atoms fluctuates, the intensity with which light
couples to matter also fluctuates, and it was shown in [28] that such disorder induces glassy
phases. Interestingly, even small versions of the quantum system present evidence for many
diverse phases and behaviors expected only for larger quantum systems, which we discuss in
the next section.

4. Disordered large quantum systems

To address the physics of large disordered quantum systems, we apply a recently developed
technique, namely SMFT [20]. This method has been shown to provide appropriate descriptions
of the effects of disorder without overestimating coherence and fluidity and has already been
successfully applied to the disordered Bose–Hubbard model [20]. The main reason for the
effectiveness of the method is self-consistently determining the probability distribution for the
mean-field parameter P(α) (instead of α itself) through an iterative process.

4.1. Stochastic mean-field theory

Firstly, we describe how to account for any on-site disorder (with constant photon hopping A);
afterwards we describe the special case of hopping disorder. In the mean-field description every
site has a number z of nearest neighbors. The mean-field Hamiltonian for the kth site depends
only on the scaled sum

ηk =

∑
j

A〈k, j〉α j . (7)

The probability distribution for η (we drop the site index for convenience) can be found
from a simple and fundamental relation known as the convolution theorem

Q(η) =

∫
. . .

∫ z∏
i

dαi P(αi)δ

η − A
z∑
j

α j

 , (8)

which reduces to the Fourier transforms ϕ(β) =
∫
dαP(α) eiβα and

Q(η) =
1

2π A

∫
dβ[ϕ(β)]ze−iηβ/A. (9)

The first step in the algorithm is to choose a trial distribution for α (different from a
delta centered at α = 0) and the desired distribution (in our case a Gaussian) for the disordered
parameter ξ (the detuning or matter–light coupling). Then we assume all α j to be independent
of each other and we determine the self-consistent distribution

P(α) =

∫∫
dq(η)dp(ξ)δ(α − 〈a〉), (10)
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such that 〈a〉 = 〈G[ξ, η]|a|G[ξ, η]〉, with dq(η) = dηQ(η). The procedure is iterated until we
observe convergence, that is, until P (i)(α) in the i th step is statistically close to P (i+1)(α).
Finally, the average state of the site is given by the disorder-induced ensemble

ρ =

∫∫
dq(η) dp(ξ)|G[ξ, η]〉〈G[ξ, η]|. (11)

To account for disorder in the photon hopping we must add another step to the procedure.
It is convenient to work with the variable φ = Aα whose probability distribution is given by (we
use a subindex to distinguish the various distributions)

Pφ(φ) =

∫∫
dAdαPA(A)Pα(α)δ(Aα − φ). (12)

Then we can determine Q(η) through the usual Fourier transforms ϕ(β) =
∫
dφPφ(φ) eiβφ,

Q(η) =
1

2π

∫
dβ[ϕ(β)]ze−iηβ (13)

and the procedure follows as for the case of on-site disorder.

5. Disorder-induced transitions

The results presented in this section will allow us to conclude that the asymptotic effects of
disorder (very large disorder) in the thermodynamical limit are very similar to the effects in
small samples of the system. However, there are some significant quantitative differences; for
instance, there are in fact phase transitions induced by disorder in the thermodynamical limit. It
should also be pointed out that our approach is slightly different in this section. From now on,
we work with single-site mean-field theory rather than cluster-mean-field theory, and we follow
this strategy to avoid higher computational demands. This limits the applicability of the method
and quantities such as the site–cluster entanglement are no longer addressable. Nonetheless, we
are able to increase the local effective dimension of the oscillator to 20 states. Another difference
between the approaches for small and large samples is that in the first case we fix the number
of excitations in the system and it does not change as disorder increases. This is not the case
in the present section, and in fact, the total number of excitations may change as a function of
disorder.

Using the SMFT approach we are able to perform an analysis of the thermodynamical
limit. The method allows us to recover the probability distributions (under the single-site mean-
field approximation) for the various quantities we analyze for characterizing the system. The
average mean-field parameter, for instance, can be readily evaluated as 〈α〉 =

∫
αP(α) dα. We

follow the same ordering of the presentation of the results: First, we show the results for the
detuning disorder, then for the hopping disorder and finally for the matter–light coupling. Given
the unlimited nature of the disorder distribution we analyze (Gaussian), it follows that the
insulating phases we present below are of a glassy nature. Such phases have non-vanishing
number variance as opposed to the Mott-insulating phases [19]. Therefore glassy insulators can
be characterized by vanishing superfluidity and non-vanishing compressibility (which can be
related to the number variance). However, we do not show the compressibility of the system,
since the result can be readily anticipated. The compressibility increases in the insulating
regions; thus glassy phases are established.
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Figure 9. Stochastic mean-field results for disorder in the matter–light detuning
with δ(1) = 0.1g and 〈1〉 = 0. (Left) The average mean-field parameter. (Right)
The entanglement of the average state.

5.1. Disorder in the matter–light detuning

As shown in figure 9, the net effect of disorder in the detuning is to induce insulating behavior,
indicated by the destruction of the fluid phase surrounding the Mott lobes; in fact, the lobe
structure disappears for significant amounts of disorder. The in-site entanglement shows that
the system remains in superpositions of light and matter excitations for intermediate values of
disorder. However, as we increase disorder the in-site components are either highly entangled
or unentangled with higher probability. We can see the distributions as functions of disorder
in figure 10. The transition from fluid to insulating is evident in the distribution of the mean-
field parameter. All this corroborates the small system predictions and once again the system is
mainly photonic for strong disorder. Interestingly, in the present limit the distribution of cavity
excitation (P〈N 〉 in figure 10) is a series of delta functions (with different weights) centered at
integer values of the mean occupation, which is in agreement with the insulating and bunched
behavior.

5.2. Disorder in the photon hopping

The effects that hopping disorder produces in the system are the opposite of those produced
by detuning disorder, as is the case for small systems. In the current case, disorder induces a
fluid phase, as we can see in figure 11, and decreases the in-site entanglement, indicating that
the system becomes more photonic in nature. As in other situations analyzed, by looking at the
distributions of the physical quantities as a function of disorder (not shown), we were able to
observe the transition from insulating to fluid behavior as disorder in the hopping parameter
increased.

5.3. Disorder in the matter–light coupling

Finally, the effects of disorder in the light–matter coupling once again resemble those
induced by the detuning disorder. Even though both the detuning and coupling disorders
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Figure 10. Probability distributions as a function of disorder in the matter–light
detuning with A = 10−1.9g, (µ − ωc)/g = −1 and 〈1〉 = 0. Black corresponds
to vanishing probability. (Top left) Distribution for the mean-field parameter,
(top right) for the entanglement of the average state, (bottom left) for the cavity
excitation and (bottom right) for the atomic excitation.

Figure 11. Stochastic mean-field results for disorder in the hopping with
δ(A) = 0.1g and 1 = 0. (Left) The average mean-field parameter. (Right) The
entanglement of the average state.

induce insulating behavior, it should be pointed out that they do it through very different
physical mechanisms.

In the detuning case cavities may be at lower frequencies in many sites, which allows
for more photons to localize (even several photons per cavity). In the coupling case, the
strength of the polaritonic nature may be increased in cavities that are strongly coupled
to their corresponding matter components inducing Mott behavior. And as we can see in

New Journal of Physics 14 (2012) 043033 (http://www.njp.org/)

http://www.njp.org/


17

Figure 12. Probability distributions as a function of disorder in the matter–light
coupling with A = 10−1.9g, (µ − ωc)/g = −1 and 1 = 0. Black corresponds to
vanishing probability. (Top left) Distribution for the mean-field parameter, (top
right) for the entanglement of the average state, (bottom left) for the cavity
excitation and (bottom right) for the atomic excitation.

figure 12 (bottom left) in comparison with figure 10 (bottom left), the distribution for the cavity
population does not present the higher-order peaks, only those corresponding to zero or one
polariton per cavity. This behavior is due to the fact that the sites with strong matter–light
coupling prevent the accumulation of larger numbers of particles per site (Mott mechanism).

Adding the information provided by the entanglement and atomic population distributions,
we have found that a fraction of the sites assume the Mott behavior and the rest are localized
or even empty. Thus, we corroborate the small system analysis that suggests that the system
behaves very similarly to the Anderson–Mott insulator [27]. It is, however, strikingly interesting
that in one case (disorder in the detuning) it is the low-frequency sites that dominate the resulting
statistical behavior and in the other case (disorder in the matter–light coupling) it is the strongly
coupled sites that dominate, even though the distribution of the disorder parameter is Gaussian
and unbiased.

6. Conclusions

We were able to characterize the phase diagram and the Mott–superfluid transition of small
and large samples of the JCH Hamiltonian using entanglement measures between the various
possible partitions of the components of the system. In particular, we showed that these non-
local measures identify more clearly where the transition happens. Furthermore, and more
importantly, we also showed that entanglement measures distinguish which type of excitation
dominates each phase, which in turn allowed us to identify a crossover that is particular to this
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hybrid system and does not have a purely bosonic analogue. This behavior splits the superfluid
regime into two, the first one dominated by polaritons and the second one purely photonic.

For the disordered system, we have shown that the simple statistical treatment of small
systems can be quite instructive and allows us to draw conclusions that can be corroborated
by the large system limit. We have shown that disorder in both the light–matter detuning
and light–matter coupling induce insulating phases; however, they do it through very different
physical mechanisms. The former allows for photonic localization and bunching and the latter
induces Mott behavior in a fraction of the sites that prevents the bunching. Furthermore, the
cavity–cavity coupling disorder induces a glassy fluid phase. The rich in-site structure of the
system leads to these diverse disordered phases with very different statistics and physical
meanings.

A great deal of work remains to be done on the characterization of the JCH system. As
a valuable point we suggest that an appropriate and efficient method should be applied to the
study of the large hopping limit (with and without disorder) in which the mean-field approach
adopted here is limited by the truncation of the state space.

Finally, it is worth mentioning once again the mesoscopic aspect of the systems proposed
to implement the JCH Hamiltonian as well as the increasing ability to manipulate the different
parameters of these systems, sometimes even at an individual level. These properties suggest
that it will be possible to carry out a thorough experimental investigation of the effects of
disorder and its relation to phase transitions and entanglement in many-body physics in the
near future.
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Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39–44

[2] Angelakis D G, Santos M F and Bose S 2007 Phys. Rev. A 76 031805
[3] Irish E K, Ogden C D and Kim M S 2008 Phys. Rev. A 77 033801
[4] Irish E K 2009 Phys. Rev. A 80 043825
[5] Luhmann D-S, Bongs K, Sengstock K and Pfannkuche D 2008 Phys. Rev. A 77 023620
[6] Zhou Q and Das Sarma S 2010 Phys. Rev. A 82 041601
[7] Rossini D, Fazio R and Santoro G 2008 Europhys. Lett. 83 47011
[8] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608–10

Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[9] Brandao F G S L 2005 New J. Phys. 7 254

[10] Greentree A D, Tahan C, Cole J H and Hollenberg L C L 2006 Nature Phys. 2 846
Makin M I, Cole J H, Tahan C, Hollenberg L C L and Greentree A D 2008 Phys. Rev. A 77 053819
Rossini D, Fazio R and Santoro G 2008 Europhys. Lett. 83 47011
Koch J and Le Hur K 2009 Phys. Rev. A 80 023811
Schmidt S and Blatter G 2009 Phys. Rev. Lett. 103 086403
Mering A, Fleischhauer M, Ivanov P A and Singer K 2009 Phys. Rev. A 80 053821
Quach J, Makin M I, Su C-H, Greentree A D and Hollenberg L C L 2009 Phys. Rev. A 80 063838
Schmidt S and Blatter G 2010 Phys. Rev. Lett. 104 216402

New Journal of Physics 14 (2012) 043033 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevA.76.031805
http://dx.doi.org/10.1103/PhysRevA.77.033801
http://dx.doi.org/10.1103/PhysRevA.80.043825
http://dx.doi.org/10.1103/PhysRevA.77.023620
http://dx.doi.org/10.1103/PhysRevA.82.041601
http://dx.doi.org/10.1209/0295-5075/83/47011
http://dx.doi.org/10.1038/416608a
http://dx.doi.org/10.1103/PhysRevLett.90.227902
http://dx.doi.org/10.1088/1367-2630/7/1/254
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1103/PhysRevA.77.053819
http://dx.doi.org/10.1209/0295-5075/83/47011
http://dx.doi.org/10.1103/PhysRevA.80.023811
http://dx.doi.org/10.1103/PhysRevLett.103.086403
http://dx.doi.org/10.1103/PhysRevA.80.053821
http://dx.doi.org/10.1103/PhysRevA.80.063838
http://dx.doi.org/10.1103/PhysRevLett.104.216402
http://www.njp.org/


19

[11] Tomadin A, Giovannetti V, Fazio R, Gerace D, Carusotto I, Tureci H E and Imamoglu A 2010 Phys. Rev. A
81 061801

[12] Ferretti S, Andreani L C, Tureci H E and Gerace D 2010 Phys. Rev. A 82 013841
[13] Grochol M 2009 Phys. Rev. B 79 205306
[14] Na N, Utsumomiya S, Tian L and Yamamoto Y 2008 Phys. Rev. A 77 031803
[15] Schmidt S, Gerace D, Houck A A, Blatter G and Tureci H E 2010 Phys. Rev. B 82 100507
[16] Ivanov P A, Ivanov S S, Vitanov N V, Mering A, Fleischhauer M and Singer K 2009 Phys. Rev. A 80 060301
[17] Fisher M P A et al 1989 Phys. Rev. B 40 546

Sengupta P and Haas S 2007 Phys. Rev. Lett. 99 050403
Altman E, Kafri Y, Polkovnikov A and Refael G 2008 Phys. Rev. Lett. 100 170402

[18] Dang L, Boninsegni M and Pollet L 2009 Phys. Rev. B 79 214529
[19] Bissbort U, Thomale R and Hofstetter W 2010 Phys. Rev. A 81 063643
[20] Bissbort U and Hofstetter W 2009 Europhys. Lett. 86 50007
[21] Knap M, Arrigoni E and von der Linden W 2010 Phys. Rev. B 81 104303

Pippan P, Evertz H G and Hohenadler M 2009 Phys. Rev. A 80 033612
[22] Peres A 1996 Phys. Rev. Lett. 77 1413

Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[23] Huo M X, Ying Li, Song Z and Sun C P 2008 Phys. Rev. A 77 022103
[24] Wiseman H M and Vaccaro J A 2001 Phys. Rev. Lett. 87 240402
[25] Nha H and Carmichael H J 2004 Phys. Rev. Lett. 93 120408
[26] Mascarenhas E, Cavalcanti D, Vedral V and França Santos M F 2011 Phys. Rev. A 83 022311

Vogelsberger S and Spehner D 2010 Phys. Rev. A 82 052327
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