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Abstract. – Temperature-dependent transport of disordered electronic systems is exam-
ined in the presence of strong correlations. In contrast to what is assumed in Fermi-liquid
approaches, finite-temperature behavior in this regime proves largely dominated by inelastic
electron-electron scattering. This conclusion is valid in the strong-coupling limit, where the
disorder, the correlations and the Fermi energy are all comparable, as in many materials near
the metal-insulator transition.

Temperature dependence of transport is well understood in ordinary metals, where it is
dominated by electron-phonon scattering at room temperature. Impurity scattering [1] be-
comes more important close to T = 0 (where phonons are frozen out), resulting in temperature-
independent (residual) resistivity. Weak temperature dependence in this regime reflects
multiple-scattering processes leading to so-called “quantum” corrections, including weak lo-
calization and “interaction” effects [1].

Recent work [2] emphasized that these corrections reflect the interference on Friedel os-
cillations produced by impurities embedded in an electron gas. In this picture, temperature
dependence emerges due to elastic scattering off the screened impurity potential (which is
temperature dependent). The mechanism was argued [2] to apply equally well to both the
ballistic and the diffusive regime. In either case, however, these processes are expected to
dominate only if inelastic scattering plays a sub-dominant role.

Renewed interest in these issues has resulted from recent observations [3] of a surprisingly
large drop of resistivity at low temperatures in silicon MOSFETs. Because this behavior
begins to emerge already at temperatures comparable to the Fermi energy (∼ 10K), estimates
show [3] that it takes place in the ballistic regime. Accordingly, several authors [2, 4–6] have
proposed that this reflects temperature-dependent screening of the random potential. On the
other hand, the phenomenon is believed [3,7] to occur in the strongly correlated regime, where
inelastic electron-electron scattering may be equally important.
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Fig. 1 – Scattering rate τ−1 (∼ resistivity) as a function of temperature. Results are shown for the
disorder strength W equal to the interaction U , as we reduce the Fermi energy EF/U = 2.0, 1.0,
0.67, 0.5, 0.4 (bottom to top curves). Note the large resistivity drop in the DMFT solution (top),
but much weaker temperature dependence within the Hartree-Fock approach (bottom).

In this letter, we address the importance of inelastic processes as a competing mechanism to
temperature-dependent elastic scattering off the screened impurity potential. This is difficult
within Fermi-liquid approaches [1,2], which implicitly assume the sub-dominance of inelastic
processes. A framework where this general question can be answered in a precise and controlled
fashion is provided by Dynamical Mean Field Theory (DMFT) [8], which describes both the
elastic and the inelastic processes on the same footing. Our results demonstrate that: i) In
the regime of strong correlation, where the interaction, disorder, and the Fermi energy are all
comparable, there is a surprisingly large drop of resistivity (up to a factor of ten or more).
ii) Here, Fermi-liquid coherence occurs only at rather low temperatures, while strong inelastic
electron-electron scattering (leading to decoherence) sets in rapidly as the temperature is
raised [9]. In fact, inelastic processes completely dominate the entire temperature regime
where the large resistivity drop is found (0.04 ≤ T/EF ≤ 0.3).

Finite-temperature DMFT for disordered electrons. – We considered a half-filled Hubbard
model in the presence of random site energies, as given by the Hamiltonian

H = −t
∑
〈ij〉σ

c†iσcjσ +
∑
iσ

εiniσ + U
∑

i

ni↑ni↓ . (1)

Here c†iσ (ciσ) creates (destroys) a conduction electron with spin σ on site i, niσ = c†iσciσ is the
particle number operator, t is the hopping amplitude, and U is the on-site repulsion. The ran-
dom site energies εi are assumed to have a uniform distribution of width W . Within DMFT
for disordered electrons [10], a quasiparticle is characterized by a local but site-dependent [11]
self-energy function Σi(ω) = Σ(ω, εi). To calculate these self-energies, the problem is mapped
onto an ensemble of Anderson impurity problems [10] embedded in a self-consistently calcu-
lated conduction bath. In this approach, only quantitative details of the solution depend on
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Fig. 2 – Disorder dependence of the scattering rate for U = 2EF, evaluated for weak (W = 0.5EF;
top) and strong (W = 2EF; bottom) disorder. Insets show the distributions of local quasiparticle
weights Zi.

the details of the electronic band structure; in the following we concentrate on a semi-circular
model density of states. To solve DMFT equations at finite temperature, we mostly used
the iterated perturbation theory (ITP) method of Kajueter and Kotliar [12]. However, we
carefully checked that all the qualitative features that we report also appear when we solve
DMFT equations using a Quantum Monte Carlo impurity solver [8].

Temperature-dependent scattering rate. – Within DMFT [8], the temperature depen-
dence of the resistivity essentially follows that of the total scattering rate, which takes the form
τ−1 = −2 ImΣav(ω = 0), where the “average” self-energy [10] corresponds to the disorder-
averaged local Green’s function G(ω) = 〈Gi(ω)〉εi

= G0[ω −Σav(ω)], and G0(ω) is the “bare”
Green’s function evaluated at U = W = 0. To examine the effect of strong correlations on
transport, we first concentrate on the experimentally relevant regime where the disorder and
the correlations are comparable. We set U = W , and examine the evolution of τ−1(T ) as the
Fermi energy is gradually reduced. Typical results of DMFT calculations are shown in fig. 1
(top). We find that, as soon as the interaction U is comparable to electronic bandwidth B
(at half-filing B = 2EF), the scattering rate displays a dramatic drop (of order ten!) below
temperatures T ∼ 0.3EF, very similar to the experiments [3]. We contrast this result to
that of standard weak-coupling approaches [4–6], where the temperature dependence is much
weaker and occurs over a very broad temperature range set simply by the bare Fermi scale.
To make this comparison more precise, we solve our DMFT equations by using the Hartree-
Fock (HF) approximation [6] where Σi(ω) = U ni; the results are shown in fig. 1 (bottom).
Very weak temperature dependence is found, and one has to go to very high temperature
(T � EF) to get an appreciable rise in resistivity. Note that, while giving much higher resis-
tivity at higher temperatures, the DMFT method also produces appreciably lower resistivity
at T = 0, consistent with the phenomenon of correlation-enhanced screening of the random
potential [13].
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Fig. 3 – DMFT results for W = 2EF showing the total, elastic, and inelastic scattering rates as func-
tions of temperature are compared to predictions of the Hartree-Fock (HF) approximation. Inelastic
scattering dominates in the strongly correlated limit.

Gradual decoherence due to disorder. – What sets the energy scale for the resistivity
drop? To answer this, we contrast results obtained for U = 2EF at weak and strong disorder,
as shown in fig. 2. At weak disorder (W = 0.5EF), the behavior is similar to the clean case [8],
where a dramatic resistivity rise is found above a well-defined “decoherence” temperature T ∗ ≈
0.1ZEF [10], where the quasiparticles become ill-defined (here Z is the quasiparticle weight,
see below). This behavior is characteristic of many strongly correlated systems such as heavy-
fermion compounds, but such an extremely large rise is not seen in two-dimensional electron
gases [3]. On the other hand, our results for the moderately disordered situation (W = 2EF)
show a much more gradual resistivity rise, as seen in fig. 2 and in the 2D experiments. To
understand this behavior, we note that in correlated disordered systems the quasiparticle
weight becomes a strongly site-dependent [10, 11] quantity Zi, which in the DMFT limit is
defined by

Zi =
[
1− ∂

∂ω
ImΣi(ω)

∣∣∣∣
ω→0

]−1

. (2)

The insets in fig. 2 show the distributions of Zi = Z(εi) for the two cases. For U = 2EF and
weak disorder, the Zi’s are narrowly distributed around Z ≈ 0.36 (corresponding to a mass
enhancement m∗/m = Z−1 ≈ 2.8, and a decoherence temperature T ∗/EF ≈ 0.04), giving
rise to a sharply defined decoherence scale. In contrast, for stronger disorder the Zi’s are
distributed over a broad interval 0.37 < Zi < 0.8, corresponding to a broad distribution of
local decoherence scales T ∗

i ≈ 0.1ZiEF. As the temperature is raised in the presence of strong
disorder, more and more sites gradually become incoherent and act as strong scattering centers.
If the distribution P (T ∗

i ) is broad, then at intermediate temperatures T ∗
min < T < T ∗

max we
expect the density of such scattering centers to grow linearly with temperature, resulting in
a roughly linear resistivity in this range. This behavior is indeed observed in our calculation
of the full scattering rate, which for strong disorder shows a roughly linear dependence over
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Fig. 4 – Nonmonotonic temperature dependence of renormalized (screened) site energies vi(T ) (see
the text) in the strongly correlated regime. Results shown correspond to a simple Anderson-impurity
model with U = 3 in a featureless host (EF = 1), using the IPT (top) and QMC (bottom) as the
impurity solver.

an appreciable range. Interestingly, the overall shape of this temperature dependence looks
remarkably similar to the experimental data on silicon MOSFETs [3].

Elastic or inelastic scattering? – The total scattering rate τ−1 which we have calculated
describes the contribution of both the elastic and the inelastic scattering. However, to better
understand which of these two processes dominates, we will separately estimate each of these
contributions, as follows. Both are completely determined by the zero-frequency limit of
the local self-energy function, viz. Σi(T ) = limω→0 Σ(ω, εi). Its real part determines the
renormalized (screened) random potential [13] vi(T ) = εi + ReΣi(T ), while the imaginary
part describes the local inelastic scattering rate τ−1

inelastic(i) = −2 ImΣi(T ) (which is nonzero
only at T > 0). Using our self-consistent procedure, we explicitly calculate both ReΣi(T )
and ImΣi(T ) at a given temperature T , as functions of the local site energy εi. Once these
quantities are known, we can estimate the elastic (inelastic) contribution to the total scattering
rate by simply dropping the imaginary (real) part of εi +Σi(T ), before computing G(ω) from
which τ−1 = −2 ImΣav(ω = 0) is calculated.

In this way we have (for W = 2EF) computed the total, the elastic, and the inelastic scat-
tering rates as functions of temperature, as shown in fig. 3. It is also instructive to compare
our DMFT results to those obtained for the same model using the HF approximation. This
weak-coupling approach is similar to those used by most other theories [2,4–6], which largely
ignore the inelastic scattering. We find that in the weakly interacting limit (U = 0.5EF; top
panel) the elastic scattering dominates, and good agreement is found between DMFT and HF
predictions. However, when strong correlations are present (U = 2EF; bottom panel), the
inelastic scattering proves much larger than the elastic component for all except the lowest
temperatures (elastic and inelastic contributions become comparable around T/EF ∼ 0.04).
These results demonstrate that inelastic scattering dominates over the entire temperature
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Fig. 5 – Inelastic scattering rate for W = U and T/EF = 0.05, as a function of EF/U . The inset
shows the (average) effective mass enhancement m∗/m = 〈Zi〉−1 in the same range of parameters.
Large enhancement of dephasing is found in the same range where the mass enhancement is large,
similarly as in experiments.

range where the large resistivity drop is found, in striking contrast to weak-coupling predic-
tions [2, 4–6]. In this regime, the elastic scattering component has an extremely weak and
even nonmonotonic temperature dependence, and clearly has very little physical content if
considered in the absence of inelastic processes.

To clarify this issue, we have explicitly computed the temperature dependence of the
renormalized site energies vi(T ). In the weakly interacting limit, these quantities are found
to have a modest and monotonic temperature dependence in agreement with HF predictions.
However, in the regime of strong correlations, we find surprising nonmonotonic temperature
dependence where for some values of εi, and at intermediate temperatures, negative screening
is found (vi(T ) < 0 for εi > 0). We have examined this puzzling behavior in great detail, and
have found that this is a very general feature of strongly correlated systems, which depends
only weakly on the specific self-consistency condition used.

To illustrate this, in fig. 4 we present results of such a calculation for a simple Anderson-
impurity model with bare site energy εi and on-site repulsion U , embedded in a featureless
(semicircular) electron bath. To demonstrate that this behavior is not an artifact of our IPT
impurity solver, we present results of both IPT and numerically exact QMC calculations for
the same model, which produce almost identical results.

We emphasize that the energy scale associated with the vi(T )’s is very small in the inter-
mediate temperature range where negative screening emerges. In this regime, the scattering is
completely dominated by inelastic processes, so this puzzling behavior has by itself very little
physical consequence. Nevertheless, these results clearly indicate that theories which ignore
inelastic scattering are very likely to produce unreliable and even physically incorrect results
if used in the incoherent regime where Fermi-liquid theory cannot be applied.

Enhanced dephasing in the strongly correlated regime. – In fig. 3, we showed the inelastic
scattering rate as a function of temperature. We have also computed it as a function of density
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(i.e. EF/U) at T/EF = 0.05 and W = U . As shown in fig. 5, the inelastic scattering rate
becomes appreciable in the same range where the effective mass (m∗/m ∼ 〈Z〉−1; see inset) is
enhanced, and we enter the regime of strong correlations. This prediction awaits experimental
tests on sufficiently homogeneous samples.

In summary, we have presented quantitatively reliable model calculations for correlated
disordered electrons in the strong-coupling limit where the disorder strength, the interactions,
and the Fermi energy are all comparable. Our results demonstrate that inelastic electron-
electron scattering dominates the regimes relevant to many puzzling experimental situations.
We expect large resistivity drops, similar to what we find, to also occur in 3D situations when
correlations are sufficiently large, and diagonal disorder not too strong [14]. In fact, in many 3D
weakly disordered heavy-fermion compounds, even larger resistivity drops are observed below
a coherence temperature. Our DMFT approach, while being able to address the nontrivial
interplay of disorder and strong correlations, is nevertheless too simple to include localization
effects that are important closer to the metal-insulator transition. These can be incorporated
in our framework using recently developed extensions [15] of DMFT, but this problem remains
a fascinating direction for future work.
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and A. Georges, S. Das Sarma, D. Popović for useful discussions. This work was
supported by FAPESP 99/00895-9 (MCOA), 01/00719-8 and CNPq 301222/97-5 (EM), and
NSF grants DMR-9974311 and DMR-0234215 (VD), DMR-9976665 (EA), and DMR-0096462
(GK). VD and GK also thank KITP at UCSB (NSF grant PHY99-07949) where part of this
work was carried out.

REFERENCES

[1] Lee P. A. and Ramakrishnan T. V., Rev. Mod. Phys., 57 (1985) 287.
[2] Zala G. et al., Phys. Rev. B, 64 (2001) 214204.
[3] Abrahams E. et al., Rev. Mod. Phys., 73 (2001) 251.
[4] Das Sarma S. et al., Phys. Rev. Lett., 83 (1999) 164.
[5] Dolgopolov V. T. and Gold A., JETP Lett., 71 (2000) 27.
[6] Herbut I. F., Phys. Rev. B, 63 (2001) 113102.
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[13] Tanasković D. et al., Phys. Rev. Lett., 91 (2003) 066603.
[14] The well-studied MIT in Si:P does not meet the mentioned criteria, since there one is not close

to the clean Mott transition. In addition, Si:P has rather strong off-diagonal disorder that is not
moderated by the screening effects which are important in our calculation.
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