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The Mott-Anderson transition in the disordered charge-transfer model displays several new features in
comparison to what is found in the disordered single-band Hubbard model, as recently demonstrated by
large-scale computational (statistical dynamical mean-field theory) studies. Here we show that a much simpler
typical medium theory approach (TMT-DMFT) to the same model is able to capture most qualitative and
even quantitative aspects of the phase diagram, the emergence of an intermediate electronic Griffiths phase,
and the critical behavior close to the metal-insulator transition. The conceptual and mathematical simplicity
of the TMT-DMFT formulation thus makes it possible to gain useful new insight into the mechanism of the
Mott-Anderson transition in these models.
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I. INTRODUCTION

The physical mechanism behind the metal-insulator tran-
sition (MIT) remains one of the basic science questions that
still lack complete understanding both on the conceptual and
the technical levels. Early work on the subject focused on
examining the stability of the metallic phase with respect to
weak disorder [1–3] within the framework of a quasiparticle
picture and an appropriate generalization [4] of Landau’s
Fermi liquid theory. These approaches, while formally elegant
and appealing, suffer from several conceptual shortcomings
that render them of limited relevance to many real materials.
Essentially, these treatments describe situations where disorder
is viewed as the driving force for the metal-insulator transition
and interactions only modify the details of the critical behavior.
What is implicitly assumed within this picture is that the
“host” Fermi liquid is far from any interaction-induced insta-
bilities, where strong correlation effects may destroy [5] the
very existence of well-defined quasiparticles. Unfortunately,
recent experiments on several model systems, such as two-
dimensional electron systems [6] and doped semiconductors
[7], have provided evidence that these strong correlation effects
may very well be the dominant driving force for electron
localization, and thus should be explicitly included in the
theory.

Both disorder (Anderson) and correlation (Mott) mech-
anisms to localization can be treated on the same foot
by extensions of dynamical mean-field theory (DMFT) [8].
In the so-called statistical DMFT (statDMFT) [9] strong
correlations are considered in a self-consistent DMFT fashion,
while disorder fluctuations are treated by a (numerically)
exact computational scheme. Because it is numerically very
demanding, this method has been utilized only in a handful
of theoretical studies of the Mott-Anderson transition [9–13].
In particular, two of us have recently used it to study the
precise form of quantum criticality of the charge transfer model
[14]. A much simpler approach—the combination between
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typical-medium theory (TMT) [15] and DMFT—provided the
first self-consistent description of the Mott-Anderson transi-
tion, and offered some insight into its critical regime [16,17].
When applied to the Hubbard model, for weak to moderate
disorder TMT-DMFT found a transition closely resembling
the clean Mott point, while only at stronger disorder Anderson
localization modified the critical behavior [16,17]. Here, we
employ TMT-DMFT to solve the charge transfer model,
obtaining results in surprisingly good agreement with those
recently obtained by us [14] within the more shophisticated
statDMFT method.

Besides describing the MIT, in this work we also address
the electronic Griffiths phase with non-Fermi liquid behavior,
which is experimentally observed in heavy fermion systems
[18,19], as well as in doped semiconductors [20]. In these
systems, the susceptibility is seen to diverge in a power-law
fashion in the low temperature limit, not only in the insulating
phase, but also in the metallic side of the MIT [21]. In a
number of systems, it is the disorder that is responsible for
this non-Fermi liquid behavior [5]. Theoretically, this phase is
“naturally” incorporated in the description given by statDMFT
[22]. Within the DMFT framework, it can be addressed by
considering the effective model proposed by the authors of
Ref. [23]. By combining this last model with TMT, we are
able to confirm that for the CT model a Griffiths phase is
observed in the region just preceding the correlation-induced
MIT, as within statDMFT [14].

In the present work, we consider the charge transfer (CT)
model because it can describe the systems of our interest
better than the single-band Hubbard model. This is the case
since the first of these gives a more realistic description of
spatial charge redistribution as the MIT is approached, which
is important because local correlation effects strongly depend
on orbital occupation. In this context, it is interesting to note
that the CT model phase diagram seems to differ from that
of the single-band Hubbard, even in qualitative aspects [14].
Moreover, when both DMFT and TMT-DMFT are applied to
the Hubbard model, the cavity field does not fluctuate, meaning
that important fluctuation effects associated with the Griffiths
phase and the precise nature of quantum criticality are ignored.
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In contrast, when the same method is used to solve the CT
model a degree of fluctuation is retained, according to the
effective model cited above [23], hence even the simplified
theories capture effects such as the Griffiths phase. Another
advantage of considering the CT model is that its standard
formulation uses the U = ∞ constraint for the correlated band,
allowing a simpler large N (slave boson) solution [24], which
is not available for finite U Hubbard models.

As mentioned above, to solve the disordered CT model in
this paper we use the TMT-DMFT method, which allows a
detailed description of the system close to the MIT because
of its conceptual and mathematical simplicity. According to
our current results, as the interaction-induced transition is
approached, a fraction of sites turn into local moment, but
not all of them do it. This is in contrast to the TMT-DMFT
results for the Hubbard model [17] where all sites turn into
local moments close to the Mott transition. The phase diagram
for the CT model thus includes a disordered Mott insulating
phase, which is qualitatively different than the Mott insulator
observed for the Hubbard model. The disorder-induced MIT
is also qualitatively different than for the Hubbard model. For
the CT model most of the sites Anderson-localize, but none
of them turn into a local moment as disorder increases. In the
case of the Hubbard model, we have a two-fluid picture, where
a fraction of the sites go through Anderson localization, while
the rest of them Mott-localize [17].

The paper is organized as follows. In the next section we
define the model we consider and the method we use to
solve it. Section III is devoted to our numerical results. We
present our phase diagram, discuss the disorder (Sec. IIIA)
and the interaction-induced (Sec. IIIB) transitions, with special
emphasis to the behavior of the physical quantities that
characterize the transitions, and finally present results related
to the Griffiths phase (Sec. IIIC). We end by summarizing our
main conclusions.

II. MODEL AND ITS SOLUTION

A. Charge transfer model and TMT-DMFT equations

The CT model is a two band model, where one band
represents conduction electrons and the other corresponds to
localized or f -type electrons, for which the electron-electron
interactions are strong. It has been used to describe various
systems, including oxides [25] and doped semiconductors
[20]; for the doped semiconductors, the disordered version
of the model is the relevant one, which is indeed the problem
we address in this paper.

The CT model description of the Mott transition can be
understood as follows: In the clean case, the insulating phase is
approached as the f -electron energy decreases, which implies
in a smaller number of conduction electrons per site; the
transition itself takes place when this quantity vanishes. A
careful study on the regimes where this model can be used to
describe the Mott transition in the clean case can be found in
Ref. [26], for example.

In the disordered case, the CT model is given by the
disordered Anderson lattice model supplemented by the
condition that the average number of electrons on each
site is equal to 1. The Hamiltonian for the Anderson lattice

model is

H =
∑
ijσ

[(εj − μ)δij − t]c†iσ cjσ + (Ef − μ)
∑
jσ

f
†
jσ fjσ

+V
∑
jσ

(c†jσ fjσ + f
†
jσ cjσ ) + U

∑
j

nfj↑nfj↓, (1)

where c
†
jσ (cjσ ) creates (destroys) a conduction electron with

spin σ on site j , f †
jσ and fjσ are the corresponding creation and

annihilation operators for a localized f electron with spin σ on
site j , nfjσ = f

†
jσ fjσ is the number operator for f electrons,

t is the hopping amplitude to nearest neighbors, Ef is the
f -electron energy, U is the on-site repulsion between f

electrons, V is the hybridization between conduction and f

electrons, and μ is the chemical potential. Throughout this
paper we use the half-bandwidth for conduction electrons as
the unit of energy; the hybridization potential is chosen to be
V = 0.5.

In Eq. (1), disorder is introduced through the on-site ener-
gies εj for conduction electrons, which follow a distribution
P (ε). As we want to be able to address the electronic Griffiths
phase, we must reserve special attention to the disorder
distribution we consider. As we mentioned before, this phase
appears naturally when one treats the disordered correlated
system through statDMFT [22], but this is not necessarily the
case when standard DMFT is considered. In this case, it has
been shown that essentially all the properties of the electronic
Griffiths phase can be described if we “correctly” choose the
model to study and the disorder distribution [23].

According to the authors of Ref. [23], the recipe to
describe the Griffiths phase in a DMFT level is to include in
the calculation cavity fluctuations naturally described within
statDMFT. First, one has to consider a two band model as the
CT model we treat here: In this case the bath seen by each
impurity problem fluctuates, that is, changes from site to site
[see Eq. (4) below]. In addition, the disorder should be present
in the on-site conduction electron energy, which necessarily
follows a Gaussian distribution. This specific form of disorder
generates a distribution of renormalized energies, which is also
Gaussian, as it is the case when statDMFT with any disorder
distribution of bare energies is considered. Following these
findings, in this paper we assume a Gaussian form for P (ε),
with zero mean and standard deviation equal to W , to be able
to describe the Griffiths phase within TMT-DMFT.

To finish the description of the CT model, we add that the
condition that the average number of electrons on each site is
equal to 1 can be enforced by adjusting the chemical potential
and can be written as

〈ncj 〉 + 〈nfj 〉 = 1, (2)

where nfj = nfj↑ + nfj↓ gives the number of f electrons on
site j , ncj = ncj↑ + ncj↓ is the corresponding number operator
for conduction electrons, with ncjσ = c

†
jσ cjσ , and the averages

are taken over the distribution P (ε).
As anticipated in the Introduction, we use a combination

of TMT and DMFT to solve the disordered CT model. Within
this combination [15–17], the lattice problem is mapped onto
an ensemble of single-impurity problems, corresponding
to sites with different values of the local energy εj , each
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being embedded in a typical effective medium which is
self-consistently calculated. In contrast to standard DMFT
[27], TMT-DMFT determines this effective medium by
replacing the spectrum of the environment (“cavity”) for each
site by its typical value, which is determined by the process
of geometric averaging.

To be more specific, within TMT-DMFT the Hamilto-
nian of Eq. (1) is mapped onto an ensemble of single-
impurity problems, each of which is given by the following
action

S(j ) =
∑

σ

∫ β

0
dτ

∫ β

0
dτ ′f †

jσ (τ )[δ(τ − τ ′)(∂τ + Ef − μ).

+�fj (τ − τ ′)]fjσ (τ ′) + U

∫ β

0
dτnfj↑(τ )nfj↓(τ ),

(3)

where the Fourier transform of �fj (τ − τ ′) satisfies

�fj (iω) = V 2

iω + μ − εj − t2G
typ
c (iω)

. (4)

A Bethe lattice of infinite coordination number was considered
when writing the above equation.

G
typ
c (iω) is the typical Green’s function for conduction

electrons, which within TMT-DMFT is given by the Hilbert
transform of ρ

typ
c (ω), the typical value of the local density of

states (LDOS). In the equations, we have

Gtyp
c (iω) =

∫ ∞

−∞
dω′ ρ

typ
c (ω′)

iω − ω′ , (5)

where

ρ typ
c (ω) = exp{〈lnρcj (ω)〉} (6)

and

ρcj (ω) = −π−1 Im Gcj (ω) (7)

is the LDOS.
The local Green’s function for conduction electrons appear-

ing in the above equation satisfies

Gcj (iω) = 1

iω + μ − εj − t2G
typ
c (iω) − �j (iω)

, (8)

where

�j (iω) = V 2

iω + μ − Ef − fj (iω)
, (9)

and fj (iω) is the single-impurity self-energy, which is a
solution of the action given in Eq. (3).

By looking at Eq. (6), for example, one can conclude that
the problem defined by these equations corresponds to a self-
consistent calculation. In other words, within TMT-DMFT the
conduction electron effective medium seen by each impurity
is self-consistently determined.

B. Slave-boson impurity solver

To solve the single-impurity problems of Eq. (3), we
use the slave-boson (SB) technique in the U → ∞ limit
[24,28]. In this case, the impurity Green’s function can be

written as

Gfj (iω) = Zj

iω − εfj − Zj�fj (iω)
(10)

≡ ZjG
QP
fj (iω), (11)

where Zj is the local quasiparticle (QP) weight and εfj is
the renormalized f -electron energy. These two parameters are
obtained by solving the following set of equations

2
∫ ∞

0

dω

π
Re

[
�fj (iω)GQP

fj (iω)
] = Ef − εfj , (12)

Zj + 2
∫ ∞

0

dω

π
Re

[
G

QP
fj (iω)

] = 0. (13)

For more details on the U → ∞ SB treatment we refer the
reader to Ref. [29].

Before finishing the section, it is convenient to note that in
terms of the two SB parameters Eq. (9) can be rewritten as

�j (iω) = ZjV
2

iω − εfj

. (14)

III. NUMERICAL RESULTS

Let us now present and discuss the numerical results we
obtained for the CT model using TMT-DMFT. In this section,
we also compare these results with those obtained by two of us
within the more sophisticated statDMFT [14], which provides
an exact numerical treatment of localization in the absence of
interactions, and reduces to the standard DMFT treatment in
the absence of disorder [9].

Figure 1 presents our phase diagram. As we described
previously [14], starting from a disordered correlated metal,
a transition to a correlated Anderson insulator takes place
as disorder increases; on the other hand, a disordered Mott
insulating phase is observed for large values of the CT
energy. This energy is defined as Ect = −Ef and plays the
role of the interaction energy U in the Hubbard model. By

0 1 2 3 4
Ect

0

2

4

6

8

W 1 2 3
Ect

0

2

4

6

W

statDMFT

Correlated Anderson
insulator

Correlated metal

Griffiths phase
Disordered

Mott insulator

FIG. 1. (Color online) Phase diagram of the disordered CT model
obtained within TMT-DMFT. Ect = −Ef is the CT energy and plays
the role of the Hubbard U . For comparison, the inset reproduces the
results obtained within statDMFT and presented in Ref. [14].
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comparing the results in the main panel of Fig. 1 with those
in the inset, we can see that in the case of the Mott-like
transition TMT-DMFT predicts the phase boundary in very
good agreement with statDMFT. For the Anderson transition,
according to TMT-DMFT a slightly larger amount of disorder
than that observed in statDMFT is necessary to drive the
transition.

In the following, we look at how the order parameter
and other physical quantities behave as the transitions are
approached.

A. Disorder-driven transition

1. Critical behavior of the local density of states

Figure 2 shows the typical LDOS for conduction electrons
at the Fermi energy as the disorder-driven transition is
approached for different values of the CT energy. As expected,
ρ

typ
c (ω = 0) decreases from the clean value as W increases due

to disorder-induced localization effects. The typical LDOS for
conduction electrons corresponds indeed to an order parameter
within TMT-DMFT: Its vanishing defines the critical disorder
at which the MIT takes place. In the present case, for all values
of Ect , ρ

typ
c (ω = 0) is seen to go to zero continuously as the

MIT is approached, in agreement with statDMFT results [14].
A detailed comparison to statDMFT results for Ect = 1.3

can be seen in Fig. 3. In accordance with the phase diagram of
Fig. 1, within TMT-DMFT the transition is seen at a larger W

value than within statDMFT. Although in the present treatment
the bath fluctuates from site to site—note that the bath given
by Eq. (4) does depend on the site j , our results in Fig. 3
may suggest that not all the fluctuations induced by Anderson
localization effects are captured by the simple TMT-DMFT
treatment. Still, the behavior of the typical (and the inverse of
average) LDOS is very similar in both treatments, allowing us
to conclude that TMT-DMFT does give a reasonable picture of
the transition. In addition, as pointed out before, since TMT-
DMFT is numerical and analytically simpler than stat DMFT, it
facilitates the understanding of the physics behind the problem
we are looking at, as we discuss in this paper for the CT model.
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0.5
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1.5

2.0

πρ
cty

p (ω
 =

 0
)

Ect = 0.1
Ect = 0.5
Ect = 0.7
Ect = 1.0
Ect = 1.3
Ect = 1.5

FIG. 2. (Color online) Typical values of the LDOS for conduc-
tion electrons at the Fermi energy as a function of the disorder
strength W for different values of the CT energy Ect obtained within
TMT-DMFT.
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1/average TMT

-5 0 5 10
ε

0

10

20

πρ
ci

W = 2.0
W = 3.5
W = 6.0
W = 7.1

FIG. 3. (Color online) Comparison between TMT-DMFT and
statDMFT: Results are shown for the typical and 1/average values of
the LDOS for conduction electrons at the Fermi energy obtained for
Ect = 1.3 and different values of the disorder strength, W . The inset
shows the typical values of the QP weight Z as a function of W for
both treatments.

In Fig. 4 the behavior of the typical LDOS is compared
to that of the (arithmetic) average LDOS. It is interesting
to note that, as it is the general case for statDMFT results
[9,14] (see also Fig. 3), within TMT-DMFT the inverse of
the average LDOS goes to zero at the same disorder at which
ρ

typ
c (ω = 0) vanishes. Figure 4 also shows the results of the

standard DMFT calculation, where disorder is treated as in
the coherent potential approximation (CPA), being unable to
describe Anderson localization effects.

2. Statistics of local quasiparticle parameters

Let us now look at the properties of the single-impurity
problems into which the lattice Hamiltonian is mapped. The
inset of Fig. 4 shows the LDOS for each single-impurity of the

0 1 2 3 4 5 6 7
W

0.0

0.5

1.0

1.5

2.0

πρ
c,1

/π
ρ c

typical TMT
typical statDMFT 
1/average TMT
1/average statDMFT

0 2 4 6
W

0.0

0.4

0.8

Z TMT
statDMFT

FIG. 4. (Color online) Comparison between TMT-DMFT and
standard DMFT: Results are shown for the typical and average values
of the LDOS for conduction electrons at the Fermi energy obtained for
Ect = 1.3 and different values of the disorder strength W . The inset
shows the TMT-DMFT LDOS corresponding to each single-impurity
problem as a function of the on-site energy ε.
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FIG. 5. (Color online) (a) Quasiparticle weight Z and (b) renor-
malized energy εf as a function of the on-site energy ε as the
transition is approached (increase of W ), for Ect = 1.3. The results
were obtained using TMT-DMFT.

ensemble, which is given by Eq. (7) and from which the TMT-
DMFT results in the main figure are calculated. The conduction
electrons, whose LDOS we are analyzing, see the f electrons
through the function �(iω) [see Eq. (8)], which we can identify
as an effective disorder potential. According to Eq. (14), �(iω)
is written in terms of the two Fermi liquid parameters Z and
εf . To understand the behavior of the LDOS close to the
transition, below we present and analyze the results for these
two parameters.

Figure 5(a) shows the behavior of the QP weight Zj as a
function of the on-site energy εj as disorder increases for Ect =
1.3 (the same parameter of Figs. 3 and 4). For the smallest W

considered, the values of Zj are small (there are even sites
with Zj → 0); as disorder increases the values of Zj increase
since the system tends to have most of the sites with Zj = 1
(we know [9] that a “pure” Anderson insulator has all sites
with Zj = 1). The site with ε = Ef = −Ect is a special one:
it corresponds to nc = nf = 0.5, which implies in Z = 0.5, as
Zj = 1 − nfj within SB. As a consequence of the presence of
this site, close to the transition most of the sites have Zj = 1,
but some of them have 0.5 � Zj < 1. Note that none form
local moments (Zj = 0), a situation completely different than
the one we will analyze in Sec. IIIB2 below.

The typical values of Z corresponding to the results in
Fig. 5(a) are compared to the statDMFT results in the inset of
Fig. 3. In the region where both treatments predict the system
to be metallic, although the typical LDOS is larger within
TMT-DMFT than within statDMFT, the typical values of Z

practically coincide.
The results for the second SB parameter—the renormalized

energy εfj —are shown in Fig. 5(b). This quantity is maximum
for εj = Ef = −Ect and is relatively small for the majority of
the sites, which correspond indeed to the intermediate to large
|εj | sites that have Zj = 1 close to the transition.

But which mechanism of localization dominates the current
MIT? In the case of the CT model, we have two kinds
of electrons, localized or f electrons and conduction or c

electrons. Within the SB method we consider Zj = 1 − nfj

and, for the CT model, 〈ncj 〉 + 〈nfj 〉 = 1. According to the
above, most of the sites have Zj = 1 (and small εfj ) close to
the MIT. nfj = 0 for these sites, corresponding to electrons
occupying c states, which are known to localize as disorder
increases. Indeed, ρcj (ω = 0) ∼ 0 for these sites, as one
can see in the inset of Fig. 4. Thus, as the transition is
approached, most of the sites go through an Anderson type
of localization. In other words, in the present case it is the
Anderson mechanism for localization that is responsible for
driving the system as a whole through the MIT.

If we now compare the results in Fig. 5 for W = 3.5 and
W = 6.0, we see that Zj and εfj coincide in the range of
εj values present for both disorder strengths (the range of εj

is, of course, larger for W = 6.0 than for W = 3.5), although
ρcj (ω = 0) do change in this interval, as can be seen in the inset
of Fig. 4. Note, however, that the rate at which the typical DOS
decrease is smaller in the region where Zj and εfj coincide
than it is the case for smaller W values. By looking at the
different quantities that determine Gcj (ω = 0) [see Eq. (8)],
the results in Fig. 5 suggest that it is the bare disorder (εj ) itself,
rather than the scattering coming from the f electrons through
�j (ω = 0), which dominates the behavior of the LDOS as the
disorder driven transition is approached within TMT-DMFT.

To finish this section, the situation described here can be
compared to that observed within TMT-DMFT for the Hubbard
model [17], where close to the transition the sites have either
Zj = 1 or Zj = 0, corresponding to electrons going through
Anderson or Mott localization, respectively. (Note that the
dependence of the LDOS for conduction electrons on Z is
different in the two models considered.) In the current case,
we do not have sites going through Mott localization (Zj = 0):
according to Fig. 5(a), the majority of the them have Zj = 1,
while a finite fraction has 0.5 � Zj < 1. For the latter nfj �=
0, that is, the occupation of strongly correlated f electrons
is different from zero for these sites. Thus, although we do
not have Mott-localized sites, because of the presence of the
0.5 � Z < 1 sites, the current situation is also different than
that in the noninteracting limit (where all sites have Zj = 1),
and a correlated Anderson insulator is present in the CT model
phase diagram.

After discussing the results for the disorder-induced transi-
tion, in the next section we focus on the Mott-like transition.

B. Interaction-driven transition

1. Critical behavior of the local density of states

Figure 6 shows the typical LDOS for conduction electrons
at the Fermi energy as the Mott-like transition is approached
for intermediate values of disorder. A nonmonotonic behavior
is observed, implying in an initial increase of the system “con-
ductivity” when Ect increases, which suggests that the disorder
potential is screened by the correlation effects considered to
exist between f electrons. This nonmonotonic behavior is in
agreement with the statDMFT results we presented recently
[14]. Indeed, in the current case the screening is stronger than
within statDMFT—see, for example, the detailed comparison
between TMT-DMFT and statDMFT presented in Fig. 7 for
W = 1.5. Although strong, here the screening is not perfect
and ρtyp does not reach the value corresponding to the clean
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FIG. 6. (Color online) Typical values of the LDOS for conduc-
tion electrons at the Fermi energy as a function of the CT energy
Ect for different values of the disorder strength W , obtained within
TMT-DMFT.

limit, as it is the case for the Hubbard model within DMFT
[27] and TMT-DMFT [17].

Probably as a consequence of the strong disorder screening
discussed above, the typical DOS within TMT-DMFT is seen
to present a jump at the transition (see Figs. 6 and 7). This
is in disagreement with statDMFT for the CT model, which
predicts that the order parameter vanishes continuously as the
transition is approached [14]. Note, though, that according
to Fig. 7 a good agreement is observed between the two
calculations concerning the overall behavior of the typical
and inverse of average LDOS, as well as the Ect value at
which the transition takes place (see also Fig. 1). Although the
current results suggest that TMT-DMFT does not completely
describe Anderson localization effects, which were shown to
be responsible for the critical behavior also in the vicinity of
the Mott-like transition [14], we can say that it does give a
reasonable picture of it.
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FIG. 7. (Color online) Comparison between TMT-DMFT and
statDMFT: Results are shown for the typical and 1/average values of
the LDOS for conduction electrons at the Fermi energy obtained for
W = 1.5 and different values of the CT energy, Ect . The inset shows
the typical values of the QP weight Z as a function of Ect for both
treatments.
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FIG. 8. (Color online) Comparison between TMT-DMFT and
standard DMFT: Results are shown for the typical and average values
of the LDOS for conduction electrons at the Fermi energy obtained
for W = 1.5 and different values of the CT energy, Ect . The inset
shows the TMT-DMFT LDOS as a function of the on-site energy ε

corresponding to each single-impurity problem.

To complete the discussion on the LDOS results, in Fig. 8
we compare the typical and average values of the LDOS
obtained within TMT-DMFT to those valid within standard
DMFT for W = 1.5 (the same parameter as Fig. 7). As it is
the case for the disorder-induced transition (see Fig. 4), here
the inverse of the average LDOS within TMT-DMFT is seen to
vanish together with the typical LDOS. Also, standard DMFT
average LDOS remains finite at the critical Ect predicted by
TMT-DMFT.

2. Statistics of local quasiparticle parameters

As we did in the previous subsection, we now look at
the properties of the single-impurity problems, with the goal
of understanding which sites of the ensemble dominate the
behavior of the LDOS in the critical region. Figure 9(a)
shows the QP weight Zj for each single-impurity problem of
the ensemble, for fixed disorder (W = 1.5), as the Mott-like
transition is approached. As we can see, as Ect increases,
the large εj sites start to have Zj = 0; as Ect increases even
further, more sites present Zj = 0, while the region of sites
with Zj �= 0 (0 < Zj < 1 indeed) shrinks to the left of the
figure. Very close to the transition all sites with positive εj , as
well as few with εj � 0, have Zj = 0. Correspondingly, the
typical value of Z decreases as the transition is approached,
in very good agreement with statDMFT, as can be seen in
the inset of Fig. 7. Regarding the renormalized energy, which
is shown in Fig. 9(b), we can see that the sites that form
local moments (Zj = 0) close to the transition are completely
screened (εfj = 0). For the rest of the sites, εfj presents a
nonmonotonic behavior: it is finite for intermediate, negative
values of the bare energy and tends to zero for the smallest εj

considered.
To understand the results described above, let us first

analyze the clean limit. In this case, DMFT maps the lattice
problem onto only one single-impurity problem—that with
ε = 0, which has to satisfy nc + nf = 1, within the CT model.
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FIG. 9. (Color online) (a) Quasiparticle weight Z and (b) renor-
malized energy εf as a function of the on-site energy ε as the transition
is approached (increase of Ect ), for W = 1.5. Results were obtained
using TMT-DMFT.

The Mott transition is approached as Ef = −Ect decreases,
which favors the occupation of the localized f level, implying
in a decrease of the occupation for conduction electrons, nc;
the transition happens when nc = 0. Within the SB method,
Z = 1 − nf , which means that Z → 0 as the transition is
approached. As disorder is turned on, an ensemble of single-
impurity problems has to be solved; close to the MIT transition,
not all sites, but most of them, including those around εj = 0
(the one that remains in the clean limit), have Zj → 0, as can
be seen in Fig. 9(a). These sites go through the Mott mechanism
for localization; as they are the majority in the present case,
we conclude that Mott localization dominates the MIT that
happens as the CT energy increases.

The current situation is different than that observed for
the Hubbard model within TMT-DMFT [17]. In that case all
sites turn to local moments as the transition is approached,
in contrast to the present case where there exist sites with
0 < Zj < 1. Because of the presence of the Zj �= 0 sites, the
insulating phase we observe here corresponds to a disordered
Mott insulator.

C. Griffiths phase

Besides giving a good description of the MIT, TMT-DMFT
is also able to describe the emergence of a Griffiths phase inside
the disordered metallic region. This is possible by considering
a Gaussian distribution of the on-site energy, as suggested in
Ref. [23] and summarized by us in Sec. II.

To study the Griffiths phase, we focus on the behavior of Z

for small disorder. In addition, instead of looking at its behavior
as a function of ε, as we did above, we look at the evolution of
its distribution P (Z). In Fig. 10 we have the results for fixed
CT energy Ect = 1.3. As disorder increases, the distribution
moves to smaller values of Z. More importantly, it develops a
tail that follows a power law of the form

P (Z) ∼ Zα−1, (15)
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FIG. 10. (Color online) Distribution of Z obtained within TMT-
DMFT as disorder increases for Ect = 1.3. The inset highlights the
fact that P (Z = 0) becomes different from zero for intermediate
values of disorder, which gives rise to a Griffiths phase in this range
of parameters.

which is better visualized in Fig. 11. The exponent α is found
by fitting the numerical data to the above equation; the values
obtained in the present case of Ect = 1.3 are shown in the inset
of the figure. As we can see, α is a continuous function of W ,
becoming smaller than 1 for W ∼ 0.3 in the current case. As
a consequence of P (Z) following a power law with α < 1 (in
some range of W ), the system susceptibility and specific heat
divided by the temperature T diverge in the low T limit (see
Ref. [22] for a detailed discussion on this). This characterizes
a Griffiths phase with non-Fermi liquid behavior.

According to the results in Fig. 10, as disorder increases
even further, P (Z) moves to larger values of Z and the low Z

tail disappears. To precisely determine at which disorder the
Griffiths phase terminates for Ect = 1.3, one has to explore it
in more detail, for example, by performing the current analysis
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TMT
DMFT

FIG. 11. (Color online) Distribution of Z and respective fits to
a power-law observed within TMT-DMFT for Ect = 1.3 and three
values of W . The inset presents the power-law exponent α as a
function of disorder, both within TMT-DMFT (as those in the main
panel) and standard DMFT (not shown).

165138-7



OLIVEIRA, AGUIAR, AND DOBROSAVLJEVIĆ PHYSICAL REVIEW B 89, 165138 (2014)
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FIG. 12. (Color online) Distribution of Z obtained within TMT-
DMFT as the CT energy increases, for W = 1.5. The inset presents
the power-law exponent α as a function of the CT energy obtained
within TMT-DMFT (main panel) and standard DMFT (not shown).

as a function of Ect for different, fixed W . This is illustrated
below for one fixed value of W .

Figure 12 shows the distribution of Z (main panel) and
corresponding α (inset of the figure) for W = 1.5. As Ect

increases, P (Z) moves to smaller values of Z. In the present
case, α becomes smaller than 1 and the system enters the
Griffiths phase for Ect ∼ 1.3. Differently than the previous
case, here P (Z) moves to even smaller values of Z, with α

decreasing to zero, as the Mott-like transition is approached.
Note that the Ect we have just found for the onset of the
Griffiths phase for W = 1.5 corresponds to the Ect analyzed
in Figs. 10 and 11; we can thus conclude that for Ect = 1.3 the
Griffiths phase is observed between W ∼ 0.3 and W ∼ 1.5.

The results in these three figures indicate that within TMT-
DMFT the range of W and Ect for which α < 1 corresponds to
the existence of a Griffiths phase in the region just preceding
the Mott transition. This region is signalized in the phase
diagram of Fig. 1 and is in accordance with statDMFT results
for the same model (see Ref. [14] and also the inset of Fig. 1).
A similar behavior has also been observed within statDMFT
for the two-dimensional Hubbard model [10].

To finish, in the insets of Figs. 11 and 12, we compare
the results obtained for α using TMT-DMFT [corresponding
to P (Z) in the respective main panels] and standard DMFT.

A Gaussian distribution of disorder is used in the two
calculations. In both figures, in the range of the parameters
shown, a very good agreement is seen between the two
treatments considered. Note, however, that standard DMFT
agrees well with TMT-DMFT concerning the onset of the
Griffiths phase, but not its extension, as the former does not
give a good prediction for the critical Ect and W values at
which the transitions take place, as previously shown in this
paper.

IV. CONCLUSION

In this paper we solve the disordered charge-transfer model
(CT) by using an extension of dynamical mean-field theory
able to describe Anderson localization effects. In general,
our results compare surprisingly well with those previously
obtained by two of us using the statDMFT treatment [14]. The
current calculation is simpler than the previous one, allowing
us to better characterize the system when the metal-insulator
transition is approached. Our results show, in particular, that
as the interaction-induced transition is approached, a fraction
of sites turn into local moment, but not all of them do it; this
means that the corresponding insulating phase is a disordered
Mott insulator. In the case of the transition due to disorder,
most of the sites Anderson-localize; some of the correlated
sites, though, remain occupied, corresponding to the presence
of a correlated Anderson insulator in the phase diagram of the
CT model.

In addition, according to our current TMT-DMFT results,
the inverse of the arithmetic local density of states (DOS)
is seen to vanish precisely at the disorder or interaction
value at which the typical local DOS goes to zero, which
indeed determines where the transition takes place. Exactly
the same behavior is observed within statDMFT [9,14], but an
explanation for it is yet not known. The fact that the current
treatment, which is analytical and numerically simpler than
statDMFT, does show this behavior opens the possibility of
understanding it, which is left as a direction of work to follow
in the future.
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