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Anderson localization effects near the Mott metal-insulator transition
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The interplay between Mott and Anderson routes to localization in disordered interacting systems gives rise
to different transitions and transport regimes. Here, we investigate the phase diagram at finite temperatures
using dynamical mean-field theory combined with typical medium theory, which is an effective theory of the
Mott-Anderson metal-insulator transition. We mainly focus on the properties of the coexistence region associated
with the Mott phase transition. For weak disorder, the coexistence region is found to be similar to that in the
clean case. However, as we increase disorder, Anderson localization effects are responsible for shrinking the
coexistence region, and at sufficiently strong disorder (approximately equal to twice the bare bandwidth) it
drastically narrows, the critical temperature Tc abruptly goes to zero, and we observe a phase transition in the
absence of a coexistence of the metallic and insulating phases. In this regime, the effects of interaction and
disorder are found to be of comparable importance for charge localization.
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I. INTRODUCTION

The Mott mechanism of localization [1] is an emergent
phenomenon in which a large local Coulomb repulsion
suppresses double occupation, which prevents charge transport
in a half-filled system. Strongly correlated electron materials,
such as transition-metal oxides [2–5] and some organic
salts [6–10], exhibit a Mott metal-insulator transition due to
the effectively strong Coulomb repulsion that exists between
electrons occupying a narrow valence band. Below the critical
temperature Tc, this transition is of first-order and one observes
a region where metal and insulator coexist [4–6,8].

The presence of disorder also leads to localization of
electron wave functions, a phenomenon known as Anderson
localization [11,12]. In this case, the energetic mismatch
between neighboring sites prevents charge transport in the
lattice. These two mechanisms of localization—Mott and
Anderson—combine in nontrivial ways, sometimes reducing,
sometimes enhancing each other’s effects. Recently, the
interplay between interaction and disorder has received much
attention, mainly through three different perspectives. First,
due to the investigation of the many-body localization [13],
a novel paradigm arose for understanding localization in
disordered and interacting quantum systems at nonzero tem-
perature. Second, very recently, models of disordered and
interacting systems have been simulated with cold atoms
in optical lattices [14,15]. Finally, the disorder and the
effective interaction strength can be systematically tuned by
doping [3,5,9,16,17], or even x-ray irradiation [10,18].

Over the past few decades, considerable progress has been
made in the description of strongly correlated materials and
the Mott metal-insulator transition (MIT) through dynamical
mean-field theory (DMFT) [19]. In this method, a lattice
model of interacting electrons is mapped to the Anderson
impurity model with a conduction bath that needs to be
calculated self-consistently. To describe disorder, the simplest
treatment is within the coherent potential approximation
(CPA) [20]. The CPA can be easily combined with the DMFT
[21–28] by considering an ensemble of impurities surrounded

by an average bath, which is the same for each electron.
This approach thus does not describe the spatial fluctuations
associated with the Anderson localization. Near the Anderson
transition, the distribution of the local density of states (DOS)
changes from Gaussian to log-normal [29,30], implying that its
arithmetic average value does not provide a proper description
of the system. The typical medium theory (TMT) [31] provides
a simple method that can effectively describe the Anderson
localization. The central quantity in TMT is the typical
density of states, defined as the geometric average of the local
DOS [32], which plays the role of the order parameter for
the Anderson localization. The TMT method was carefully
tested for the noninteracting system [31,33,34], and it was
successfully applied to the interacting case within the TMT-
DMFT approach [35], elucidating the full nonmagnetic phase
diagram for the disordered half-filled Hubbard model and
the precise nature of the Mott-Anderson critical point [36].
The TMT-DMFT approach also allows for a spin-dependence
analysis of the DOS, which enables one to include the effects
of long-range magnetic order in disordered and interacting
systems [37].

In this paper, we perform a TMT-DMFT calculation at
finite temperatures. We explore the entire nonmagnetic phase
diagram, with a particular focus on the effects of disorder on the
Mott metal-insulator coexistence region. We carefully com-
pare the TMT-DMFT and CPA-DMFT results with the goal
of precisely determining the Anderson localization effects, de-
scribed only within the former method. We find that the TMT-
DMFT coexistence region is at comparatively lower values of
the interaction U , while the critical temperature Tc is higher
than in CPA-DMFT. The width of the coexistence region,
however, quickly decreases with disorder. At disorder strength
W ∼ 2B, where B is the bandwidth in the clean noninteracting
system, TMT-DMFT predicts Tc to abruptly go to zero, as
opposed to the CPA-DMFT solution, where the coexistence
region asymptotically shrinks to a single point as disorder is in-
creased to infinity. In the regime W � 2B, the MIT takes place
at U ≈ W , which causes Anderson and Mott mechanisms to
become equally important for the properties of the system.
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The paper is organized as follows. In Sec. II we briefly
present the TMT-DMFT method for the solution of the
disordered Hubbard model, and the (U,W ) phase diagram
is shown is Sec. III. Sections IV and V show details of the
metal-insulator transition in the presence of weak, moderate,
and strong disorder. Section VI contains conclusions.

II. TMT-DMFT METHOD

We consider the Hubbard model with random site energies,
given by the Hamiltonian

H = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) + U
∑

i

ni↑ni↓ +
∑
iσ

(εi − μ)niσ ,

where c
†
iσ (ciσ ) creates (destroys) an electron with spin σ on

site i, niσ = c
†
iσ ciσ , t is the hopping amplitude for nearest-

neighbor sites, U is the on-site repulsion, and εi is the random
on-site energy, which follows a uniform distribution P (ε) of
width W , centered in εi = 0. We study the half-filled particle-
hole symmetric lattice by setting the chemical potential μ

equal to U/2. In general, transition-metal oxides and organic
salts described by the Hubbard model can exhibit both
antiferromagnetic and paramagnetic Mott insulating phases.
In this work, we focus on the paramagnetic solution, which is
present even at zero temperature in frustrated lattices.

Within TMT-DMFT, the lattice model describing a dis-
ordered correlated system is mapped onto an ensemble of
single-impurity problems, corresponding to sites with different
values of the on-site energy, each being embedded in a
typical effective medium that needs to be calculated self-
consistently. The TMT-DMFT self-consistent procedure can
be summarized as follows [31,36]: By considering an initial
guess for the (typical) bath �(ω) surrounding the impurities,
we solve an ensemble of impurity problems, which give us
local Green’s functions G(ω,εi) from which local spectra
ρ(ω,εi) = − 1

π
ImG(ω,εi) are obtained. The typical DOS is

then calculated by the geometric average of the local spectra,

ρtyp(ω) = exp

[∫
dε P (ε) ln ρ(ω,ε)

]
,

and the typical Green’s function is obtained through the
Hilbert transform, Gtyp(ω) = ∫ ∞

−∞ dω
ρtyp(ω′)
ω−ω′ . For lattices with

semicircular DOS, ρ0(ω) = 4
πB

√
1 − ( 2ω

B
)
2
, in the clean non-

interacting limit (Bethe lattice with infinite coordination
number), the self-consistent loop is closed by calculating
a new bath according to �(ω) = t2Gtyp(ω). To solve the
single-impurity problems, in this work we use the iterative
perturbation theory (IPT) on the real axis [38,39]. In this case,
we do not need analytic continuation. This is an important
advantage of this method since the TMT self-consistency
relation is based on the local DOS.

III. PHASE DIAGRAM

Figure 1 presents the TMT-DMFT phase diagram of the
disordered Hubbard model obtained at a small temperature,
T = 0.008. Here and throughout the paper, we define the
noninteracting bandwidth B = 4t as the unit of energy.
In the phase diagram, the black and pink circles correspond to

FIG. 1. (Color online) (U,W ) phase diagram obtained within
TMT-DMFT for the disordered Hubbard model at T = 0.008. The
description of the different symbols/colors used is given in the text.

the metallic and the insulating spinodal lines of the first-order
Mott phase transition; these two lines delimit the metal-
insulator coexistence region. The green triangles indicate a
transition between a metal and a Mott insulator in the absence
of a well-defined coexistence region (see Sec. V for details),
while the blue stars indicate a transition between a metal
and a correlated Anderson insulator. Finally, the red squares
correspond to a crossover between the two insulators, which
takes place at W ≈ U .

To differentiate the phases and build the phase diagram,
we have analyzed the behavior of the typical DOS at the
Fermi level [ρtyp(0)], the frequency-integrated typical DOS
(N ), and the site occupation as a function of the on-site
energy. As an example, these quantities are presented in
Fig. 2 for the particular case of U = 1.75 and T = 0.008.
For this set of parameters, as disorder W increases, the
system goes from the Mott insulator to the Anderson insulator,
crossing an intermediate metallic phase (see Ref. [40], for
example, for a discussion about the presence of an intermediate
metallic phase when disorder increases). The Mott insulator
is characterized by a gap in the typical DOS [ρtyp(0) = 0]
and a finite frequency-integrated typical-DOS N [see panel
(a)], as well as a single occupation of all sites [see panel (b)].
The metallic phase, on the other hand, features a quasiparticle
peak in the typical DOS, nonzero integrated DOS N , and a
variable site occupation ni . Finally, the correlated Anderson
insulator shows a vanishing typical DOS, indicating that
all the states are localized and as such do not contribute
with spectral weight to the typical DOS [31,35]. For this
reason, the frequency-integrated typical DOS goes to zero
when the system approaches the Anderson insulator, and
thus it can be used as an order parameter that signalizes this
transition. Furthermore, within the TMT-DMFT, the Anderson
insulating phase corresponds to a two-fluid phase [36]: it
consists of empty and doubly occupied sites, characteristic of
noninteracting Anderson insulators, as well as singly occupied
sites, characterizing Mott localized states [see the results for
W = 4 in panel (b)].

We find good agreement between our diagram and others
known in the literature at T = 0 [35,36]. The most relevant
effects of finite but small temperature are over the Mott
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FIG. 2. (Color online) TMT-DMFT results for U = 1.75 and
T = 0.008. According to the phase diagram of Fig. 1, as disorder
W increases, the system goes from the Mott insulating phase to the
metallic phase and finally to the Anderson insulating phase. These
transitions are identified (and the phase diagram is built) by looking
at the behavior of the quantities shown in the two panels of the present
figure: (a) frequency-integrated typical DOS, N , and typical DOS at
the Fermi level, ρtyp(0), as a function of W , and (b) site occupation
per spin as a function of the site energy, normalized by the disorder
distribution width, W . The inset shows an example of the typical DOS
in the metallic phase (red long-dashed line), as well as in the Mott
(black dashed line) and the Anderson (green solid line) insulating
phases.

coexistence region, which spans a smaller range of U in
comparison with the T = 0 case. The real axis IPT impurity
solver makes it possible to solve TMT-DMFT equations for
a broad range of parameters and several temperatures. In the
following, we concentrate on the range of parameters near the
phase transition, and, in particular, near the coexistence region
of metallic and insulating solutions.

IV. MOTT TRANSITION FOR WEAK AND MODERATE
DISORDER W < 2B

In this section, we analyze the coexistence region
for weak and moderate disorder, which corresponds to

FIG. 3. (Color online) Hysteresis curves for the DOS at the Fermi
level obtained by increasing and decreasing U at a fixed temperature
T = 0.01. The curves enclose the coexistence region. The open
squares were obtained within CPA-DMFT, while the filled circles
correspond to TMT-DMFT results.

W < W ∗, W ∗ ≈ 1.7. At this regime, the critical U for the Mott
transition is greater than the disorder strength. Although the
phase transition described within TMT-DMFT is qualitatively
similar to that of CPA-DMFT, some Anderson localization
effects are already observed.

A. Coexistence region

To obtain the coexistence region within CPA-DMFT or
TMT-DMFT for a fixed temperature T < Tc, we start from
a metallic initial bath and increase U to find Uc2, which
corresponds to the interaction value at which ρ(0) goes to
zero, indicating the disappearance of the quasiparticle peak
in the DOS. Alternatively, when starting from an insulator,
by decreasing U we find Uc1, where ρ(0) becomes finite,
indicating the closure of the gap at the Fermi level. This
procedure allows us to obtain hysteresis curves of ρ(0) as
a function of U , which enclose the coexistence region (see
Fig. 3 for examples of these hysteresis curves). For a given
W , we can repeat this procedure for different temperatures
and determine the two spinodal lines, Uc1(T ) and Uc2(T ),
defining the coexistence region. The temperature at which the
two spinodal lines merge gives the critical temperature, Tc,
which corresponds to a second order critical end point.

Figure 4 shows the coexistence region obtained as described
above for the clean case (W = 0) and for a disordered
system (W = 0.8), both within TMT-DMFT and CPA-DMFT.
According to our results, when disorder is added to the system,
the critical U at which the transition occurs increases in com-
parison with the clean case. This happens because the general
effect of disorder is to broaden the bands, as shown in Fig. 5,
when the CPA-DMFT calculation is performed inside both the
metallic and the insulating phases. Another general effect of
disorder seen in the results of Fig. 4 is that the temperature
of the second-order critical point decreases with disorder,
in agreement with previous CPA-DMFT calculations [26].
These general consequences of disorder do not depend on
the inclusion of Anderson localization effects, since they are
observed even within the CPA-DMFT approach.
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FIG. 4. (Color online) Spinodal lines enclosing the coexistence
region for the clean system (W = 0) and the disordered case (W =
0.8) obtained within both TMT-DMFT and CPA-DMFT.

To carefully study the effects of Anderson localization, we
compare the results obtained within TMT-DMFT with those of
CPA-DMFT. As can be seen in Fig. 4 for W = 0.8, the critical
U at which the transition occurs is smaller within TMT-DMFT
than within CPA-DMFT. Moreover, a narrower coexistence
region is observed within the former. To understand these
results, one should consider that the wave-function localization
starts at the band edges and that localized states do not
contribute with spectral weight to the typical DOS. For these
reasons, in the presence of Anderson localization, narrower
bands are observed in comparison with CPA-DMFT results,
both in the metallic and the insulating phase, as can be seen
in Fig. 6. This is the opposite effect to that described in the
previous paragraph regarding the effects of adding disorder
to a clean system. As a consequence, the coexistence region
within TMT-DMFT is seen in between that of a clean system
and that obtained within CPA-DMFT for the same value of
disorder.

From the TMT-DMFT and the CPA-DMFT hysteresis
curves shown in Fig. 3, we see that the Anderson localization
effects over the coexistence region become more important
as the disorder increases. As W approaches W ∗ ≈ 1.7, the
width of the TMT-DMFT coexistence region vanishes, and we
were not able to observe the hysteresis even at the lowest
temperatures T = 0.005 (see Sec. V). In contrast, in the
CPA-DMFT solution [26], the coexistence region with finite
small Tc is observed even for very large W .

FIG. 5. (Color online) Average DOS obtained within CPA-
DMFT for different values of disorder at fixed temperature T = 0.01.
Disorder broadens the bands in both the metallic (left panel, for
U = 1) and the insulating (right panel, for U = 3) phase.

FIG. 6. (Color online) Typical (TMT-DMFT) and average (CPA-
DMFT) values of the DOS as a function of frequency showing that
Anderson localization effects start at the band edges, since both
localized and extended states contribute to the average DOS, while
only extended ones contribute to the typical DOS. The left panel
shows results for U = 1.5, while those in the right panel are for
U = 1.6, both at T = 0.01.

B. Crossover regime and the critical temperature Tc

As seen in Fig. 3, the coexistence region shrinks as disorder
increases, making it difficult to obtain the critical temperature
Tc from the merging of the two spinodal lines. One alternative
is to determine Tc from the results obtained above it, that is,
in the crossover region between metal and insulator. This was
shown to be possible in the clean case, and in the present work
we extend this analysis to the disordered system.

The quantum Widom line (QWL) associated with the Mott
transition is defined in Refs. [41–44] in analogy with the
classical Widom line [45] as the instability (crossover) line
above the critical end point (Uc,Tc). It starts at the critical end
point and goes to higher temperatures (above the coexistence
region) as a continuation of the first-order phase-transition
line. It is associated with the (zero-temperature) quantum
critical point, which is masked by the coexistence region in
the case of the Mott transition. The QWL can be defined from
the free-energy functional FL[G(iωn)], and it can be used
to determine Tc from the behavior at higher temperatures,
as explained (for the clean case) in Refs. [41,42]. With the
objective of applying the QWL analysis to obtain Tc in the
disordered case, here we review this procedure.

The Landau free-energy functional of the Hubbard model
as a functional of G(iωn) is given by

FL[G(iωn)] = −T t2
∑

n

G2(iωn) + Fimp[G(iωn)],

where the first term represents the energy needed to form
the bath around a given site, and the second term describes
the energy of the electron at the impurity level surrounded
by the bath, that is, the free energy of the single-impurity
problem. The DMFT (TMT-DMFT) equations are obtained
by minimizing FL[G(iωn)] with respect to G(iωn).

The curvature λ of the above free-energy functional with
respect to U is finite and minimal along the crossover
line and is zero at the second-order critical point. This curva-
ture can be identified with the convergence rate of the iterative
DMFT calculation [41,42], that is, λ(U,T ) corresponds to the
slope of the convergence rate ln{Im[G(it)(0) − G(it−1)(0)]} as a
function of the step “it” of the iterative calculation. Repeating
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FIG. 7. (Color online) QWL analysis for the disordered system
with W = 0.8 described by TMT-DMFT. See the text for the
explanation of the results in each panel.

the calculation for different values of T , we obtain the curve
λmin = λ(T )|U∗ , where U ∗ is the point at which λ is minimum
for a given T . This line can be extrapolated, to λmin|T =Tc

= 0,
since the curvature of the free-energy functional is zero at the
second-order critical point.

The procedure is illustrated in Fig. 7 for the disordered
system with W = 0.8. For each value of U , we obtain
the free-energy curvature λ from the convergence rate of
the typical Green’s function through the iterative steps, as
presented in (a) for T = 0.025. For a fixed temperature and
different values of U , we obtain the corresponding λ(U )|T
curve. Repeating this procedure for different temperatures, we
obtain the set of curves λ(U )|T presented in Fig. 7(b). The
minima λmin of these curves are shown in panel (c), and we
obtain Tc as the temperature at which λmin = 0. Finally, panel
(d) shows the crossover line obtained from data in panel (b),
Tc obtained through the QWL analysis (gray horizontal line),
and the two spinodal lines. We conclude that the Tc calculated
from the QWL analysis coincides with the Tc obtained from the
merging of the two spinodal lines that define the coexistence
region.

In Fig. 8, we show the QWL and the critical temperatures
obtained from them as we vary the system disorder, both
within TMT-DMFT and CPA-DMFT. For disorder strengths
W � 1.6, we find a nonlinear behavior of the TMT-DMFT
convergence rate as a function of the iteration step; we
were thus unable to use the QWL analysis discussed above
to evaluate Tc for very large disorder. For W < 1.7, both
methods predict that Tc decreases when W increases [see also
the inset in Fig. 8(a)]. The critical temperature Tc is higher
within TMT-DMFT than within CPA-DMFT, although the
coexistence region becomes (very) narrow in the presence of
Anderson localization effects (TMT-DMFT results). However,
Tc always remains finite within CPA-DMFT even for very
large disorder strength [26], whereas we do not observe the
coexistence region for W � 1.7 in TMT-DMFT (see the next
section). Our numerical TMT-DMFT solution indicates that

FIG. 8. (Color online) QWL and coexistence regions obtained
within TMT-DMFT (a) and CPA-DMFT (b) for different values
of disorder (CPA-DMFT coexistence regions for W � 1.2 were
obtained from Ref. [26]). The horizontal lines represent Tc obtained
from the corresponding QWL, calculated as exemplified in Fig. 7 (c).
The inset shows these Tc values as a function of disorder.

Tc abruptly drops to zero as the coexistence region disappears
for W ≈ 1.7.

V. MOTT-ANDERSON TRANSITION FOR STRONG
DISORDER W � 2B

Within the TMT-DMFT calculation, as we increase disor-
der, the value of the critical U becomes closer to the disorder
width W . For U ∼ W ∼ 2B both Mott and Anderson routes
to localization become equally relevant, and it becomes the
most difficult to precisely understand the mechanism of the
MIT. In Fig. 9, we show the results for W = 2.0 at T = 0.01.
The transition is seen to take place at U ≈ 2.09. Moreover, if
we look at the results for the typical DOS at the Fermi level
when U increases, as well as when U decreases [see panel (a)],
we observe no hysteresis, even if we decrease the temperature
down to T = 0.005, in contrast to the results shown in Fig. 3.
Since ρtyp(0) becomes zero, the system certainly goes through
a MIT—but to what type of insulator does the system go?

To answer this question, we first look at the frequency-
integrated typical DOS N , which can be considered an order
parameter in the case of the Anderson transition, as discussed
in the beginning of the paper. As can be seen in Fig. 9(a),
N becomes very small but is still finite when ρtyp(0) → 0,
suggesting that the transition is not of the Anderson type. The
nature of the transition can finally be confirmed by analyzing
the occupation number per spin ni as a function of the site
energy close to the transition, which can be seen in panel
(b). As U increases toward the MIT, all sites become singly
occupied, which is a characteristic of the Mott insulator.
Although of the Mott type, the Hubbard subbands are strongly
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FIG. 9. (Color online) Results obtained within TMT-DMFT for
W = 2.0 at T = 0.01. Panel (a) presents the typical DOS at the Fermi
level obtained by increasing U (black circles) and decreasing U (red
stars); no coexistence region is observed. In the same panel, we can
also see the frequency-integrated typical DOS N as a function of
U . The inset shows the typical DOS as a function of frequency for
U = 2.08 (black solid line) and U = 2.10 (red dashed line). Finally,
panel (b) presents the occupation number per spin as a function of
the site energy as the transition is approached.

reduced for this value of W , as can be seen in the DOS
presented in the inset, which is consistent with our expectation
that both Mott and Anderson routes to localization are relevant
in this regime of U ≈ W .

Interestingly, our analysis of Fig. 9 suggests that for
W = 2.0 there exists a transition between a metal and a
Mott insulator in the absence of a coexistence region. Indeed,
according to the phase diagram (Fig. 1), the same behavior is
observed in a small range around U ≈ W ≈ 2. According to
Figs. 3 and 8, TMT-DMFT predicts that the coexistence region
will become (very) narrow when the system is in the U < W

regime and disorder increases. When the system enters the
U ∼ W regime, the two spinodal lines seem to merge and no
coexistence is observed, suggesting that Tc abruptly goes to
zero due to the Anderson localization effects. Our results are in
general agreement with the T = 0 phase diagram of Ref. [35]
while presenting a much more detailed analysis of the MIT
with the vanishing coexistence region.

For W � 2.3, one can find a direct crossover between
the two insulators, Mott and correlated Anderson, without

an intermediate metallic phase; this crossover is represented
by red squares in our diagram of Fig. 1. To distinguish
between the two insulators, we have looked at the occupation
number as a function of site energy, as exemplified in Fig. 2.
Our results show that when W < U , all the sites are singly
occupied, characterizing a Mott insulator; when W > U , on
the other hand, there are sites with energy larger than U/2,
which are empty, sites with energy smaller than −U/2, which
have double occupancy, and also sites occupied with one
electron, characterizing the two-fluid behavior of the correlated
Anderson insulator. According to these results, as might have
been expected from the two-fluid picture of the Mott-Anderson
insulator [36], the crossover between the two insulators is seen
to take place at W ≈ U .

VI. CONCLUSIONS

In this work, we studied Mott and Anderson routes to
localization by using a combination of dynamical mean-field
theory (DMFT) and typical medium theory (TMT) to solve
the disordered Hubbard model. According to our TMT-DMFT
results, Anderson localization has important effects near
the Mott transition, especially on the coexistence region of
metallic and insulating phases that exists below a critical
temperature Tc. In the presence of small and moderate disorder
W , the TMT-DMFT transition is qualitatively similar to that
in the CPA-DMFT case (which does not describe localization
due to disorder), and the main precursors of Anderson
localization are seen in the narrowing of the coexistence
region in comparison with CPA-DMFT. As the disorder
increases further, for W � 2B (where B is the bandwidth for
U = W = 0), the transition occurs at U ≈ W and our results
indicate that Anderson and Mott routes to localization become
equally important. The critical temperature Tc abruptly goes
to zero for W = W ∗ ≈ 1.7B. For 1.7B < W ∼ U < 2.3B,
the typical DOS at the metal-insulator transition is strongly
reduced, but the states are nearly half-filled irrespective of
the on-site energy, indicating dominantly Mott character of
the MIT, although no coexistence region is observed. For even
larger disorder, W > 2.3, there is a crossover between the Mott
and the correlated Anderson insulator.

The observation of a Mott transition without a coexistence
region suggests that the nature of the transition has changed
from first to second order as disorder increases. For the clean
system, it has been shown [41] that at T just above Tc the re-
sistivity as a function of temperature shows a scaling behavior
that is compatible with an assumption of quantum criticality.
In other words, despite the presence of a coexistence region
between the metallic and the Mott insulating phases at small
temperatures, at intermediate temperatures the system seems to
be controlled by a hidden quantum critical point. Very recently,
an experimental work on κ-organics confirmed the presence of
this quantum critical regime at intermediate temperatures [44].
In this respect, it will be very important to compare the
TMT-DMFT phase diagram and charge transport with the
experiments on disordered correlated systems. Preliminary
results [46] on introducing disorder by x-ray irradiation show
that Uc indeed increases with disorder while Tc also decreases
and seems to vanish at some finite disorder.
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