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The physics of the metal-insulator coexistence region near the nonzero temperature Mott transition is
investigated in presence of weak disorder. We demonstrate that disorder reduces the temperature extent and the
general size of the coexistence region, consistent with recent experiments on several Mott systems. We also
discuss the qualitative scenario for the disorder-modified Mott transition, and present simple scaling arguments
that reveal the similarities to, and the differences from, the clean limit.
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I. INTRODUCTION AND MOTIVATION

The physics of the metal-insulator transition has contin-
ued to attract considerable interest in recent years. Substan-
tial progress has been achieved in understanding the behav-
ior near the interaction-driven transition, where dynamical
mean field theorysDMFTd sRef. 1d has been very successful
in explaining the behavior of several classes of materials
ranging from transition metal oxides such as V2O3 to organic
Mott systems. This approach has been especially useful in
describing the nonzero temperature behavior in the paramag-
netic coexistence region between the metal and the insulator.
In this regime, the two phases compete, and the resulting
behavior emerges as a compromise between the energy gain
to form coherent quasiparticles, and the larger entropy inher-
ent to the incoherent insulating solution. There is not actual
two-phase coexistencesas in conventional first-order thermo-
dynamic phase transitionsd in this region. Rather, it is a re-
gion of parameters in which two local minima of the free
energy coexist.

So far, most theoretical work has concentrated on clean
systems, although several experimental studies indicate that
effects of disorder are particularly important precisely in this
coexistence regime. Measurements performed in compounds
such as NiSSe mixtures2–4 andk-organics5,6 indicate that the
presence of disorder pushes down the critical temperature
end point of the metal and insulator coexistence region. In
particular, experiments performed on a NiS2 compound,
which has much weaker disorder, show that the Mott transi-
tion occurs at 150 K,2 with an external applied pressure of 3
GPa, while in the substituted NiS2−xSex compound it is seen
only below 100 K.4 It is important to notice that applying an
external pressure to these compounds is equivalent to substi-
tuting S by Se, which might suggest that the results above
would be in conflict. A speculation was made that the reduc-
tion in the transition temperature would be due to the local
randomness introduced with Se substitution.3

We address the theoretical issues from the perspective of
the Hubbard model. It is nota priori obvious what should be
the effect of disorder on the size and the temperature range
of the coexistence region. On the one hand, disorder tends to
broaden the Hubbard bands and thus larger interaction is
needed to open a Mott Hubbard gap. This may lead to a

larger overall energy scale, which could stabilize the coex-
istence region. On the other hand, disorder generally leads to
spatial fluctuations in all local quantities, an effect that could
smear or decrease the jump at any first order phase transition,
and thus reduce the coexistence energy scale. These consid-
erations indicate that careful theoretical work is called for,
which can address the interplay of interactions and disorder
near the Mott metal-insulator transition.

A formalism that describes the effects of disorder within a
DMFT approach was outlined some time ago,7 but a very
limited number of calculations were explicitly carried out
within this framework. More recently, the approach was re-
examined to investigate strong correlation effects on disorder
screening,8 and the related temperature dependence of trans-
port in the metallic phase.9 These results shed light on sev-
eral puzzling phenomena observed in experiments on two
dimensional electron systems, but did not provide a descrip-
tion of the physics relevant to the coexistence region at non-
zero temperature.

In this paper, we examine the phase diagram for the Mott
transition in the presence of moderate disorder at nonzero
temperature within the DMFT approach.7 We present results
describing the evolution of the coexistence region, showing
that disorder generally reduces its size, in agreement with
experiments. Our results give a physical picture that de-
scribes the gradual destruction of quasiparticles as the Mott
insulator is approached, and establish the qualitative modifi-
cation of the critical behavior resulting from the presence of
disorder.

Our findings are valid in the regime of strong correlations
but weak to moderate disorder, where Anderson localization
effects, which are neglected in our theory, can be safely ig-
nored. The latter have been included in earlier zero tempera-
ture DMFT-based strong correlation calculations.10,11 In par-
ticular, we mention that our lowest-temperature results are
consistent with theT=0 result at weak disorder of Byczuket
al.,11 but give the temperature dependence of the metal-
insulator coexistence region.

II. NONZERO TEMPERATURE DMFT FOR
DISORDERED ELECTRONS

We consider a half-filled Hubbard model in the presence
of random site energies, as given by the Hamiltonian
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is the hopping amplitude, andU is the on-site repulsion. The
random site energies«i are assumed to have a uniform dis-
tribution of width W.

Within DMFT for disordered electrons,7 a quasiparticle is
characterized by a local but site-dependent12 self-energy
functionSisvd=Ssv ,«id. To calculate these self-energies, the
problem is mapped onto anensembleof Anderson impurity
problems7 embedded in a self-consistently calculated con-
duction bath. In this approach, only quantitative details of the
solution depend on the details of the electronic band struc-
ture; in the following, we concentrate on a semicircular
model density of states. In this particular case, the hybridiza-
tion function is given by

Dsvd = t2Ḡsvd s2d

and the average local Green’s function,Ḡsvd, is obtained by
imposing the following self-consistent condition

Ḡsvd =K 1

v − «i − Dsvd − SisvdL , s3d

where k…l indicates the arithmetic average over the distri-
bution of «i.

To solve the single-impurity problems at non-zero tem-
perature for different site energies, we mostly used the iter-
ated perturbation theorysIPTd method of Kajueter and
Kotliar.13,14However, to check the accuracy of the results, in
several instances we also used the numerically exact quan-
tum Monte Carlo method as an impurity solver, and gener-
ally found good qualitative and even quantitative agreement,
supporting the validity of our IPT predictions in the relevant
parameter ranges. Throughout the paper, we express all en-
ergies in units of the bandwidth.

III. PHASE DIAGRAM

We first examine the evolution of the coexistence region
as disorder is introduced. Within this region, both metallic
and insulating solutions are found, depending on the initial
guess used in the iterative scheme for solving the self-
consistency condition. Typical results are presented in Fig. 1,
showing the phase diagram obtained within DMFT-IPT at
nonzero temperature, for varying levels of disorderW. For
each level of disorderfshown in panelsadg or temperature
fshown in panelsbdg, the firstsfrom leftd of the two lines, the
so-calledUc1, indicates the stability boundarysi.e., the spin-
odald of the insulating solution. Conversely, the second of the
two lines, identified asUc2, represents the boundary of the
metallic solution. The coexistence region is found between
these two lines, i.e., forUc1,U,Uc2. Our results are in
good quantitative agreement with previous results obtained
in theT=0 limit in presence of disorder,8 and also with non-
zero temperature results in absence of disorder.1 As the dis-
order increases, the metal–insulator transition generally

moves to largerU. Physically, this reflects the fact that dis-
order broadens the bands and smears the gap, making it
harder for the Mott–Hubbard gap to open, so that a largerU
is necessary for the transition. At the same time, the
temperature-dependent coexistence region is found to shrink
fFig. 1sadg, persisting only below a critical end-point tem-
peratureTcsWd. At any given temperature, the principal ef-
fects of introducing disorderfFig. 1sbdg are as follows:s1d
Both theUc1 and Uc2 lines move toward larger interaction
potential; ands2d the lines become closer to each other as
disorder increases. In fact, they both approach theW=U line
asW→`.

Having obtained these results in quantitative detail, we
would like to understand the physical origin of this behavior.
In the following, we present simple analytical arguments re-
lating the nonzero temperature aspects of the coexistence re-
gion to the evolution of its ground state properties. Our strat-
egy is motivated by the following observations:sad The
shape of the nonzero temperature coexistence regionfFig.
1sadg remainsvery similarat different values of disorder; and
sbd its size, both in terms of temperature and in terms ofU
range, shrinks as disorder increases. This suggests that the

FIG. 1. sColor onlined Phase diagram for the disordered Hub-
bard model at nonzero temperature.sad sU ,Td diagram for different
disorder strengths.sbd sU ,Wd diagram at different temperatures.Uc1

and Uc2 lines are indicated in one of the plots, but similar defini-
tions apply to the other results as well.
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physical mechanism for the destruction of the coexistence
region as the temperature increases is similar to that of the
clean limit, where it is governed by decoherence processes
due to inelastic electron-electron scattering. Therefore, we
begin our analysis by concentrating on the clean limit, where
we show how simple estimates for the critical end-point tem-
peratureTc can be obtained.

IV. COEXISTENCE REGION IN THE CLEAN LIMIT

The coexistence region at nonzero temperature is delim-
ited by the two spinodal linesUc1sTd andUc2sTd; the critical
end-point temperatureTc is reached when these two bound-
aries intersect. To estimateTc using theT=0 properties of the
model, we need to understand the temperature dependence of
each of these lines.

A. Insulating spinodal

The insulating spinodalUc1sTd essentially corresponds to
the closing of the gap separating the two Hubbard bands in
the Mott insulator. Its temperature dependence should thus
reflect that of the Hubbard bands. In contrast to the corre-
lated metallic state close to the Mott transition, the insulating
solution is not characterized by a small energy scale in the
coexistence region. Accordingly, it is not expected to have
strong temperature dependence; its weak temperature depen-
dence reflects activated processes across the Mott–Hubbard
gap. Such activations only lead tosexponentiallyd weak
rounding/broadening of the Hubbard bands, which should
very slowly reduceUc1sTd as temperature increases. Such
behavior is indeed clearly seen in our results. This tempera-
ture dependence is, however, much weaker than that charac-
terizing Uc2sTd. For purposes of roughly estimatingTc, to
leading order we can ignore this weak temperature depen-
dence, so that

Uc1sTd < Uc1sT = 0d. s4d

B. Metallic spinodal

In the vicinity of the Mott transition, the metallic solution
is characterized by a low-energy scale corresponding to the
coherence temperatureT* of a low-temperature Fermi
liquid.1 Above T* , the heavy quasiparticles are destroyed,
and the metallic solution becomes unstable. To estimate
Uc2sTd, we need to determine how this coherence tempera-
ture varies as the transition is approached. From detailed
studies of the clean1 and disordered9 Hubbard models within
DMFT, it is known that this coherence temperature can be
estimated as

T* < ATFZ, s5d

whereTF is the Fermi temperature,A is a constant of order
one, andZ is the quasiparticlesQPd weight defined as

Z = FU1 −
]

]v
Im SsvdU

v→0
G−1

. s6d

The behavior ofZ is well known in the clean limit,1 where it
decreases linearly asU increases toward the metallic spin-
odal, viz.

Z = CfUc2s0d − Ug. s7d

From numerical studies,1 the proportionality constant
C<0.45. Therefore, the coherence temperature can be writ-
ten as

T*sUd = ACTFfUc2s0d − Ug. s8d

We can now estimate the temperature dependence of
Uc2sTd as that value of the interaction needed to set
T*sUd=T, i.e.,

T = ACTFfUc2s0d − Uc2sTdg.

In other words,

Uc2sTd < Uc2s0d − BT, s9d

where B=1/ACTF. From our numerical resultsfsee Fig.
1sadg, we find B<22, giving A<0.2, in reasonable
agreement15 with estimates9 from the literature.

Using these expressions forUc1sTd andUc2sTd, we arrive
at the estimate for the critical end-point temperature

Tc < fUc2s0d − Uc1s0dg/B, s10d

which agrees within 10% with our numerical resultsssee
Fig. 7d.

V. CRITICAL BEHAVIOR IN PRESENCE OF DISORDER

Encouraged by the success of our analytical description of
the coexistence regime in the clean limit, we now turn our
attention to the effects of disorder. As in the clean limit, we
would like to relate the finite temperature properties to the
critical behavior of the quasiparticles atT=0. To do this, we
therefore concentrate on describing the critical behavior in
presence of disorder.

The principal new feature introduced by disorder within
the DMFT scheme is the spatial variation of the spectral
function, risvd. This is shown in Fig. 2 at all energy scales:
On the left we have the average spectral function, and on the
right the relative deviation of its distribution, in the metallic
phase. For each value of the interaction potential, the distri-
bution of risvd presents a large dip atv<0 and becomes
broader as the frequency increases. This comes from the fact
that at small frequencies the system is in the Fermi liquid
regime. At finite temperature, we observe the reminiscence
of the perfect disorder screening seen atT=0 close to the
Mott transition.8 For large frequencies, the quasiparticle re-
gime is no more valid and the appropriate description is in
terms of Hubbard bands, resulting in an increase of the fluc-
tuation inrisvd.

In the disordered case, the self-energy functionSisvd pre-
sents site-to-site fluctuations, which lead to the spatial varia-
tions of the spectral function discussed above. The QP
weightsZi =Zs«id now depend on the local site energy«i. To
properly describe the approach to the Mott transition, we
therefore must follow the evolution of the entire function
Zs«id as the transition is approached.16

A. Behavior of local QP weights

Given the self-consistent solution of our ensemble of im-
purity models, we calculate the local QP weights as
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Zi = FU1 −
]

]v
Im SisvdU

v→0
G−1

. s11d

Typical results are shown in Fig. 3sad, where we plot
Zi =Zs«id at T=0.005, for disorder strengthW=1, as the me-
tallic spinodal is approached by increasing the interactionU
toward Uc2<1.9. We first observe that for smallU, away
from the transition, the QP weightsZi have strong«i depen-
dence, with the smallestZi at «i =0. Physically, this reflects
the tendency for correlation effectsssuppression ofZd to be
the strongest on sites which are locally close to half-filling
ssingly occupiedd. Nonzero site energies favor the local oc-
cupation departing from half-filling, thus reducing the corre-
lation effect, and increasingZi.

As U increases, all theZi’s decrease, as in the clean case.
But how does this affect the distribution of QP weights
Zi =Zs«id? At first glance, it seems that the«i dependence
becomes weaker, but a closer look reveals this not to be the
case. As we shall now demonstrate, all theZi’s decrease lin-
early near the transition, i.e., they assume the form

ZsU,«id = Ks«idfUc2 − Ug, s12d

where only the prefactorKs«id depends on«i. If, to leading
order, these prefactors remain independent of the distance to
the spinodal, then the entire family of curvesZsU ,«id can all
be collapsed on a single scaling function. To verify this hy-
pothesis, we define reduced QP weights

Z*s«id = ZsU,«id/ZsU,0d. s13d

If our scaling ansatz is valid, then theZ*s«id should approach
a nonzero limit asU→Uc2, i.e., they should all collapse onto
a single scaling function. As shown in Fig. 3sbd, this behav-
ior is observed only forU sufficiently close toUc2 fnote that
the data forU=0.8 sfurther from the transitiond show devia-
tions from leading scalingg. This is precisely what we expect,
since such simple scaling behavior typically occurs only

within a critical region close to the metallic spinodal.

B. Distribution P„Zi… of local QP weights

Equivalently, we can characterize the QP weights by their
probability distribution functionPsZid. Typical results for
PsZid are shown in the inset of Fig. 4. As theZi decrease near
the transition, the distribution functionPsZid changes its
form and narrows down. However, if our scaling hypothesis
is valid, then theshapeof this distribution should approach a
“fixed-point” form very close to the transition. More pre-
cisely, we expect the distribution for reduced QP weights
PsZi

*d to collapse to a single scaling function close toUc2.
Results confirming precisely such behavior are presented in
Fig. 4.

An interesting question relates to the precise form of the
fixed-point distribution functionPsZi

*d, and how it may de-

FIG. 2. sColor onlined sad Average spectral function andsbd
relative deviation of the distribution ofrisvd, Dr / krl, as a function
of frequency for different values of the interaction potential.Dr is
the standard deviation of the distribution ofrisvd, which is given by
Îoisrisvd−krisvdld2/ sN−1d, whereN is the number of local site
energies considered. Other parameters used wereT=0.05 and
W=1.0.

FIG. 3. sColor onlined sad Quasiparticle weight as a function of
the on-site energy for different values of the interaction potential as
the

Uc2

line is approached, for disorder strengthW=1.0. The symbols are
the numerical data, while the lines correspond to the fitting to a
function with even exponents in«. sbd Fitted results forZ divided
by Z0 sthe quasiparticle weight for«=0d as a function of«, showing
that close to theUc2 the curves for differentU scale. These results
were obtained at a low but finite temperatureT=0.005.
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pend on disorder. In the clean limit, obviously, it reduces to
dsZi

* −1d indicating that spatial fluctuations are suppressed.
As the disorder increases,PsZi

*d becomes very broadsas
shown in Fig. 5d, reflecting large site-to-site fluctuations in
the local QP weights. This behavior may be regarded as a
precursor of electronic Griffiths phases,17 which emerge for
stronger disorder, as found withinstatDMFT approaches.10

In essential contrast to the clean limit, the approach to the
Mott transition in the presence of disorder thus needs to be
characterized by the entireprobability distribution function
of QP parameters. At first glance, this may appear to require
a description considerably more complex than in the absence
of disorder. However, we have demonstrated that in the criti-
cal region the distributions approach a fixed point form, al-
lowing for “single parameter scaling,” in close analogy to the
clean Mott transition. This finding immediately suggests that
our arguments describing the finite temperature coexistence
behavior in the clean limit may successfully be extended to

the disordered case as well, allowing for a complete qualita-
tive description, which we discuss in the following section.

VI. COEXISTENCE REGION IN PRESENCE
OF DISORDER

Within the DMFT formulation, the disorder is not ex-
pected to qualitatively affect the temperature dependence of
the insulating spinodal, since the forms of the Hubbard bands
remain qualitatively similar to that in the clean limit. The
principal effect of disorder in the Mott insulating phase is to
simply broaden the Hubbard bands, which retain well-
defined ssharpd band edges due to the coherent potential
approximation-like treatment of randomness in the DMFT
limit. Indeed, our quantitative resultsfsee Fig. 1sadg confirm
that Uc1sTd<Uc1s0d retains very weak temperature depen-
dence, as in the clean case. The only modification is that
Uc1s0d rapidly grows as disorder is increased, reflecting the
disorder-induced broadening of the Hubbard bands.

The metallic solution is again found to be unstable above
a certain coherence temperatureT*sW,Ud, which defines the
locus of the metallic spinodalUc2sTd. An added subtlety is
that different sites start to decohere at different temperatures,
an effect that earlier work9 found responsible for a nearly
linear temperature dependence of the resistivity in the disor-
dered metallic phase. Nevertheless, sufficiently close to the
Mott transitionswithin the coexistence regiond, a sharply de-
fined temperature scaleT*sW,Ud emerges where the metallic
solution suddenly disappears and where the qualitative form
of the spectrum changes onall sites. This temperature scale
defines the locus of the metallic spinodal, corresponding to
the equation

T = T*sW,Uc2d. s14d

At first glance, it is anything but obvious howT*sW,Ud
should be estimated. As in the clean case, the reduction of
this temperature scale as the transition is approached must
reflect the behavior of the local QP weightsZi, and presum-
ably depend on the precise form of the distribution function
PsZid. As we have seen, however, all the local QP weight
scale in a similar fashion in the critical regime, which sug-
gests that a reasonable estimate may be obtained simply from
their average value

kZil =E d«iPs«idZi . s15d

At least for sufficiently weak disorder, we may expect that
fcf. Eq. s5dg

T*sW,Ud < ATFkZil, s16d

whereA<0.2 as in the clean case. Using the fact that allZi’s
decrease linearly near the transition, we expect

kZil = CsWdfUc2s0d − Ug. s17d

To confirm this, we explicitly calculatedkZil as a function of
U for different levels of disorder; the results are shown in

FIG. 4. sColor onlined Distribution of quasiparticle weight for
different values of the interaction potential. The main plot shows
how the curves collapse when we look atZ/Z0. The inset shows the
results forZ itself. Other parameters as in Fig. 3.

FIG. 5. sColor onlined Distribution of Z/Z0 for sad smaller
sW=0.5d and sbd larger sW=1.5d disorder than the one in Fig. 4.
Other parameters used wasT=0.005.
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Fig. 6. We conclude thatCsWd<Cs0d<0.45. These results
suggest that the metallic spinodal should take the form,

Uc2sW,Td < Uc2sW,0d − BsWdT, s18d

whereBsWd<Bs0d=22. Our nonzero temperature results for
Uc2sW,Td fsee Fig. 1sadg fully confirm these expectations.
Based on these results, we finally obtain the desired expres-
sion for TcsWd of the form

TcsWd < fUc2sW,0d − Uc1sW,0dg/Bs0d. s19d

To test the proposed procedure, we have used the values for
Uc1sWd andUc2sWd at the lowest temperature of our calcu-
lation sT=0.005d to estimateTcsWd. As we can see from Fig.
7, our analytical estimates are found to be in excellent agree-
ment with results of explicit nonzero temperature calcula-
tions. The decrease ofTcsWd with disorder thus directly re-
flects the “shrinking” of the coexistence region at low
temperature, which in its turn reflects the decrease of the
energy difference between the metallic and the insulating
solution.

VII. CONCLUSIONS

In this paper, we have used a DMFT approach to examine
the effects of disorder on the critical behavior near the Mott
metal-insulator transition, with special emphasis on nonzero
temperature properties associated with the two spinodal lines
Uc1 and Uc2. By using a combination of numerical results
and analytical arguments, we have demonstrated that simple
scaling behavior emerges, providing a complete description
of the critical regime.

In contrast to the clean case, the presence of disorder
requires one to examine the entire distribution of local spec-
tral functions,risvd, describing how the local spectra varies
with position in the sample. This can be probed with scan-
ning tunneling microscopy. Notice that the distribution func-
tion describing the site dependence ofrisvd will depend on
the frequency of observation: It will be broader at higher
energiesfas seen in Fig. 2sbdg, where a real space picture is

appropriate to describe the Hubbard bands, and narrower at
low frequencies, where a quasiparticle description ink space
is appropriate. This is a manifestation of frequency depen-
dence of the disorder screening discussed in an earlier paper
by some of us.8

In the metallic regime, at low temperatures, the spectral
function can be parametrized in terms of the distribution of
QP parameters, which displays simple scaling properties.
This allowed us to characterize the behavior nearUc2 using a
single parameter scaling procedure. The approach toUc2 thus
retains a character qualitatively independent of the level of
disorder, where the vanishing of quasiparticle weight signals
the transmutation of itinerant electrons into localized mag-
netic moments.

Within the examined DMFT formulation, the region be-
tween the two spinodal linesUc1 andUc2, although reduced
in size and extent, cannot be completely eliminated no matter
how large the disorder. Of course, these predictions are ap-
plicable only for weak enough disorder where Anderson lo-
calization effects can be ignored. Extensions of DMFT that
incorporate Anderson localization mechanisms at zero tem-
perature are available,10,11 but applying these approaches to
examine the nonzero temperature behavior near Mott–
Anderson transitions remains an interesting research direc-
tion. The behavior at the first-order transition line and the
actual nucleation of either the metallic or insulating phase,
betweenUc1 andUc2, are also strongly modified by disorder,
and this as well is left for future study.
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FIG. 6. sColor onlined Average quasiparticle weight as a func-
tion of the interaction potential for different values of disorder.

FIG. 7. sColor onlined Temperature at which theUc1 and Uc2

lines merge in thesU ,Td phase diagram as a function of disorder.
The plot shows both the results obtained directly from the numeri-
cal data as well as those calculated from the linear fitting to the
Uc2sTd line. In the latter,Tc was calculated using the values ofUc1

at T=0.005, except forW=0 where the result atT=0.0075 was
used.
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