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Effects of disorder on the non-zero temperature Mott transition
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The physics of the metal-insulator coexistence region near the nonzero temperature Mott transition is
investigated in presence of weak disorder. We demonstrate that disorder reduces the temperature extent and the
general size of the coexistence region, consistent with recent experiments on several Mott systems. We also
discuss the qualitative scenario for the disorder-modified Mott transition, and present simple scaling arguments
that reveal the similarities to, and the differences from, the clean limit.
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I. INTRODUCTION AND MOTIVATION larger overall energy scale, which could stabilize the coex-
The physics of the metal-insulator transition has contindstence region. On the other hand, disorder generally leads to

ued to attract considerable interest in recent years. SubstafPatial fluctuations in all local quantities, an effect that could
tial progress has been achieved in understanding the beha¥1€2r Or decrease the jump at any first order phase transition,
ior near the interaction-driven transition, where dynamica/®"d thus reduce the coexistence energy scale. These consid-
mean field theoryDMFT) (Ref. 1) has been very successful erations indicate that careful theorgtlcal wprk is callgd for,

in explaining the behavior of several classes of material%:éﬁthsr&ggdr;eéz It?nesilr;;%?I?r)allnosfitlir:)trfracuons and disorder
:\?23'23 ;trgnT ;ra.lprﬁg'%r;)gﬁgr? ﬂgcsesbzécnh ;ﬁéé?a(l)l;gig;ul '(E A formalism that describes the effects of disorder within a

. S )MFT approach was outlined some time dgbut a very
despnbmg_the nonzero temperature behavior in the parama mited number of calculations were explicitly carried out

. ; "Qbithin this framework. More recently, the approach was re-
In this regime, the two phases compete, and the resulting, »mineq 1o investigate strong correlation effects on disorder
behavior emerges as a compromise between the energy galBreening and the related temperature dependence of trans-
to form coherent quasiparticles, and the larger entropy inhefsort in the metallic phastThese results shed light on sev-
ent to the mcoherent ms_ulatlng sol_ut|on. _There is not actuagrad puzzling phenomena observed in experiments on two
two-phase coexistencas in conventional first-order thermo- dimensional electron systems, but did not provide a descrip-
dynamic phase transitionn this region. Rather, it is a re- tion of the physics relevant to the coexistence region at non-
gion of parameters in which two local minima of the free zero temperature.
energy coexist. In this paper, we examine the phase diagram for the Mott
So far, most theoretical work has concentrated on cleatransition in the presence of moderate disorder at nonzero
systems, although several experimental studies indicate th&gmperature within the DMFT approaéWe present results
effects of disorder are particularly important precisely in thisdescribing the evolution of the coexistence region, showing
coexistence regime. Measurements performed in compoundBat disorder generally reduces its size, in agreement with
such as NiSSe mixturés and k-organic$ indicate that the experiments. Our results give a physical picture that de-
presence of disorder pushes down the critical temperaturgcribes the gradual destruction of quasiparticles as the Mott
end point of the metal and insulator coexistence region. Irinsulator is approached, and establish the qualitative modifi-
particular, experiments performed on a KiSompound, cation of the critical behavior resulting from the presence of
which has much weaker disorder, show that the Mott transidisorder.
tion occurs at 150 K,with an external applied pressure of 3  Our findings are valid in the regime of strong correlations
GPa, while in the substituted NiSSe, compound it is seen but weak to moderate disorder, where Anderson localization
only below 100 K? It is important to notice that applying an effects, which are neglected in our theory, can be safely ig-
external pressure to these compounds is equivalent to substiored. The latter have been included in earlier zero tempera-
tuting S by Se, which might suggest that the results abovéure DMFT-based strong correlation calculatidfs! In par-
would be in conflict. A speculation was made that the reducticular, we mention that our lowest-temperature results are
tion in the transition temperature would be due to the locakconsistent with th@ =0 result at weak disorder of Byczuit
randomness introduced with Se substitution. al.'* but give the temperature dependence of the metal-
We address the theoretical issues from the perspective dfisulator coexistence region.
the Hubbard model. It is na priori obvious what should be
the effect of disorder on the size and the temperature range Il. NONZERO TEMPERATURE DMFT FOR
of the coexistence region. On the one hand, disorder tends to DISORDERED ELECTRONS
broaden the Hubbard bands and thus larger interaction is We consider a half-filled Hubbard model in the presence
needed to open a Mott Hubbard gap. This may lead to &f random site energies, as given by the Hamiltonian
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characterized by a local but site-dependérself-energy I VA K Ua
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function;(w)=2(w, &;). To calculate these self-energies, the \ v \ I\ @
problem is mapped onto aansembleof Anderson impurity - ‘\ ‘\ IR\ s i
problemg embedded in a self-consistently calculated con- ! \\‘ \.] \y . L .
duction bath. In this approach, only quantitative details of the 0.005 55 1.50 2.00 2.50 3.00

solution depend on the details of the electronic band struc- u
ture; in the following, we concentrate on a semicircular 34

model density of states. In this particular case, the hybridiza- R T 1 S J S
tion function is given by 55k T=0005  ; T T=001 | T=002 ]
_ ’ /
Aw) = t°G(w) (2 i T T ®)
_ 20 y -/ T + -
and the average local Green’s functi@(w), is obtained by L ¢ ;’ + 4 ;
imposing the following self-consistent condition = 1.5) /; 4 // 4 4
4
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where(...) indicates the arithmetic average over the distri- 5} ,I ,I 4 I/ ,I + -
bution of &;. L 1] 4 4 ,,”
To solve the single-impurity problems at non-zero tem- [ | N T | T A |

perature for different site energies, we mostly used the iter- 45 2-0U 30 1.0 1-5U 20 12 1-3U 14

ated perturbation theoryIPT) method of Kajueter and

Kotliar."***However, to check the accuracy of the results, in  FiG. 1. (Color onling Phase diagram for the disordered Hub-
several instances we also used the numerically exact quaBard model at nonzero temperatu@. (U, T) diagram for different
tum Monte Carlo method as an impurity solver, and generdisorder strengthgb) (U, W) diagram at different temperatures,;
ally found good qualitative and even quantitative agreementand U, lines are indicated in one of the plots, but similar defini-
supporting the validity of our IPT predictions in the relevanttions apply to the other results as well.

parameter ranges. Throughout the paper, we express all en-

ergies in units of the bandwidth. moves to largetJ. Physically, this reflects the fact that dis-
order broadens the bands and smears the gap, making it
IIl. PHASE DIAGRAM harder for the Mott—Hubbard gap to open, so that a lakgjer

is necessary for the transition. At the same time, the

We first examine the evolution of the coexistence regiontemperature-dependent coexistence region is found to shrink
as disorder is introduced. Within this region, both metallic[Fig. 1(a)], persisting only below a critical end-point tem-
and insulating solutions are found, depending on the initiaperatureT(W). At any given temperature, the principal ef-
guess used in the iterative scheme for solving the selffects of introducing disordefiFig. 1(b)] are as follows:(1)
consistency condition. Typical results are presented in Fig. 1Both the U,; and U, lines move toward larger interaction
showing the phase diagram obtained within DMFT-IPT atpotential; and(2) the lines become closer to each other as
nonzero temperature, for varying levels of disortlér For  disorder increases. In fact, they both approachvivel line
each level of disordefshown in panela)] or temperature asW-— .
[shown in pane(b)], the first(from left) of the two lines, the Having obtained these results in quantitative detail, we
so-calledU,, indicates the stability boundary.e., the spin-  would like to understand the physical origin of this behavior.
oda) of the insulating solution. Conversely, the second of theln the following, we present simple analytical arguments re-
two lines, identified adJ,, represents the boundary of the lating the nonzero temperature aspects of the coexistence re-
metallic solution. The coexistence region is found betweeryion to the evolution of its ground state properties. Our strat-
these two lines, i.e., fold,, <U<Ug,. Our results are in egy is motivated by the following observation&) The
good quantitative agreement with previous results obtaineghape of the nonzero temperature coexistence reldian
in the T=0 limit in presence of disordérand also with non-  1(a)] remainsvery similarat different values of disorder; and
zero temperature results in absence of disorder.the dis-  (b) its size, both in terms of temperature and in termdJof
order increases, the metal-insulator transition generallyange, shrinks as disorder increases. This suggests that the
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physical mechanism for the destruction of the coexistence Z=C[U(0) - U]. (7)
region as the temperature increases is similar to that of the ) . . .
clean limit, where it is governed by decoherence processds’™®m numerical studie$, the proportionality constant
due to inelastic electron-electron scattering. Therefore, w& = 0-45. Therefore, the coherence temperature can be writ-
begin our analysis by concentrating on the clean limit, wherd€" as

we show how simple estimates for the critical end-point tem- T'(U)=ACT:[U(0) - U]. (8)

peratureT, can be obtained. .
We can now estimate the temperature dependence of

IV. COEXISTENCE REGION IN THE CLEAN LIMIT U(T) as that value of the interaction needed to set

The coexistence region at nonzero temperature is delimT (U)=T. le.,
ited by the two spinodal line,(T) andU¢(T); the critical T=ACT[U(0) = U(T].
end-point temperaturé; is reached when these two bound-
aries intersect. To estimalg using theT=0 properties of the
model, we need to understand the temperature dependence of Ux(T) = U(0) - BT, (9
each of these lines.

In other words,

where B=1/ACT:. From our numerical resultgsee Fig.
A. Insulating spinodal 1(a)], we find B=22, giving A=0.2, in reasonable

. . . . agreemenif with estimate%from the literature.
The insulating spinoddl (T) essentially corresponds to : . .
. . . Using these expressions foi;(T) andU(T), we arrive
the closing of the gap separating the two Hubbard bands in . I :

. at the estimate for the critical end-point temperature
the Mott insulator. Its temperature dependence should thus
reflect that of the Hubbard bands. In contrast to the corre- T.=[U(0) - U4(0)]/B, (10
Iated_ me.talllc state close'to the Mott transition, the msul_atlnqNhich agrees within 10% with our numerical resultee
solution is not characterized by a small energy scale in th ig. 7
coexistence region. Accordingly, it is not expected to have 9. 0.
strong temperature dependence; its weak temperature depens cRITICAL BEHAVIOR IN PRESENCE OF DISORDER
dence reflects activated processes across the Mott—Hubbard

gap. Such activations only lead t@xponentially weak Encouraged by the success of our analytical description of

rounding/broadening of the Hubbard bands, which shouldn® coexistence regime In _the clean "T"'L we now turn our
attention to the effects of disorder. As in the clean limit, we

very slowly reducel(T) as temperature increases. SUChwould like to relate the finite temperature properties to the
havior is in learl n in our results. This tempera- ... . . . )
behavior is indeed clearly see our results S temperg ritical behavior of the quasiparticles Bt 0. To do this, we

ture dependence is, however, much weaker than that charat erefor ncentrate on describing the critical behavior in
terizing Ux(T). For purposes of roughly estimating, to erelore concentrate on desc g the critical behavio
presence of disorder.

ije:r?égg S(())rtzre]z;twe can ignore this weak temperature depe The principal new feature introduced by disorder within
' the DMFT scheme is the spatial variation of the spectral

Uc(T) = U (T=0). (4)  function, pj(w). This is shown in Fig. 2 at all energy scales:
On the left we have the average spectral function, and on the
B. Metallic spinodal right the relative deviation of its distribution, in the metallic

_ » . . phase. For each value of the interaction potential, the distri-
In the vicinity of the Mott transition, the metallic solution ) ion of pi(w) presents a large dip ab~0 and becomes

IS ﬁharacterltzed by etl Icg_ly-enfergy Iscalte correstpondlgg to_thﬁroader as the frequency increases. This comes from the fact
lqo %rizn:s eT_Pe{ﬁ urh of a low ?rr;pera ur% term'dthat at small frequencies the system is in the Fermi liquid
lquid. ove |, the heavy quasiparlicies are destroye regime. At finite temperature, we observe the reminiscence

Bt the perfect disorder screening seenTatO close to the

UeaT), we need to deter.njlne.how this coherence tempgr ott transition® For large frequencies, the quasiparticle re-
ture_van?shas Ithéenatrans]tlon |se%pproached. Frcl)m _dﬁ,ta'le ime is no more valid and the appropriate description is in
studies of the clearand disorderetHubbard models within 1o of Hubbard bands, resulting in an increase of the fluc-

DMFT, it is known that this coherence temperature can beEuation in py()
().

estimated as In the disordered case, the self-energy funcligfw) pre-

T =AT:Z, (5) sents site-to-site fluctuations, which lead to the spatial varia-
. . ) tions of the spectral function discussed above. The QP
whereTg is the Ferml.temperature‘\ is a constant of order weightsZ=Z(s;) now depend on the local site energy To
one, andZ is the quasiparticléQP) weight defined as properly describe the approach to the Mott transition, we
-1 therefore must follow the evolution of the entire function
J (6)  Z(s) as the transition is approach&.

z:{ 1—%Im2(w)

The behavior o is well known in the clean limit,where it A. Behavior of local QP weights
decreases linearly dd increases toward the metallic spin-  Given the self-consistent solution of our ensemble of im-

odal, viz. purity models, we calculate the local QP weights as
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FIG. 2. (Color online (a) Average spectral function antb)
relative deviation of the distribution ¢f (w), Ap/{p), as a function 225 1

T T T T T T
of frequency for different values of the interaction potentigp. is 5\ J
the standard deviation of the distributionmfw), which is given by \\ - gf (l)g (b) /1
VZi(pi(@)~(pi()))21(N-1), whereN is the number of local site 201 U-14 [1/'
energies considered. Other parameters used Wer8.05 and -\ —=-U=1.6 [/ 7
W=1.0. 175 /
(=
Zi:{ 1-—Im3i(w) } . (11 1.50
Jw w—0

Typical results are shown in Fig.(8, where we plot 1.25

Z;=Z(¢;) at T=0.005, for disorder strengW=1, as the me-
tallic spinodal is approached by increasing the interaction
toward U,,~1.9. We first observe that for small, away L0027 02 0.0 0.2 04

from the transition, the QP weigh¥% have strong:; depen- €

dence, with the smallest; at &=0. Physically, this reflects FIG. 3. (Color online (a) Quasiparticle weight as a function of

the tendency for qurelaﬂqn effectsuppression oZ) to b?_ the on-site energy for different values of the interaction potential as
the strongest on sites which are locally close to half-filling,q

(singly occupiegl Nonzero site energies favor the local oc- Ug
. . arye . C
cupation departing from half-filling, thus reducing the corre-jiqe is approached, for disorder strengtt=1.0. The symbols are

lation effect, and IncreaSI@i. _ the numerical data, while the lines correspond to the fitting to a
As U increases, all thé&’s decrease, as in the clean case.fynction with even exponents is. (b) Fitted results forZ divided

But how does this affect the distribution of QP weights by 7, (the quasiparticle weight far=0) as a function o, showing
Zi=Z(&)? At first glance, it seems that the dependence that close to theJ,, the curves for different scale. These results
becomes weaker, but a closer look reveals this not to be thgere obtained at a low but finite temperatire0.005.

case. As we shall now demonstrate, all #ys decrease lin-
early near the transition, i.e., they assume the form

Z(U,&;) = K(gj)[Ue, - U], (12

where only the prefactok(s;) depends or;. If, to leading B. Distribution P(Z;) of local QP weights
order, these prefactors remain independent of the distance to Equivalently, we can characterize the QP weights by their
the spinodal, then the entire family of cungdJ, ;) can all  probability distribution functionP(Z;). Typical results for
be collapsed on a single scaling function. To verify this hy-p(z,) are shown in the inset of Fig. 4. As tHedecrease near
pothesis, we define reduced QP weights the transition, the distribution functio(Z,) changes its
*oN form and narrows down. However, if our scaling hypothesis

Z (&) = 2(U,2)/2(U,0). (13 is valid, then theshapeof this distribution should approach a
If our scaling ansatz is valid, then t#&(e;) should approach *“fixed-point” form very close to the transition. More pre-
a nonzero limit at) — U, i.e., they should all collapse onto cisely, we expect the distribution for reduced QP weights
a single scaling function. As shown in Fig(t3, this behav- P(Z) to collapse to a single scaling function closeUg,.
ior is observed only fotJ sufficiently close tdJ, [note that  Results confirming precisely such behavior are presented in
the data folU=0.8 (further from the transitionshow devia-  Fig. 4.
tions from leading scaling This is precisely what we expect, An interesting question relates to the precise form of the
since such simple scaling behavior typically occurs onlyfixed-point distribution functiorP(Zi*), and how it may de-

within a critical region close to the metallic spinodal.
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20 T T T T the disordered case as well, allowing for a complete qualita-
— U-12 s '_| l tive description, which we discuss in the following section.
- U=14 [l
b3 —Z Uz Sl VI. COEXISTENCE REGION IN PRESENCE
A R OF DISORDER
sclo Within the DMFT formulation, the disorder is not ex-
& pected to qualitatively affect the temperature dependence of
the insulating spinodal, since the forms of the Hubbard bands
05 remain qualitatively similar to that in the clean limit. The
principal effect of disorder in the Mott insulating phase is to
simply broaden the Hubbard bands, which retain well-
defined (sharp band edges due to the coherent potential
043 12 14 16 13 70  approximation-like treatment of randomness in the DMFT

Z/z, limit. Indeed, our quantitative resulfsee Fig. 1a)] confirm
) o o _ that U (T) = U (0) retains very weak temperature depen-

_ FIG. 4. (Color onllne_ Dlstrlputlon of q_ua3|part|cle_we|ght for dence, as in the clean case. The only modification is that
different values of the interaction potential. Thg main plot showsucl(o) rapidly grows as disorder is increased, reflecting the
I:g’s\ﬁlizef:g\i’gzl‘]fogﬂz ;v;zrrlnvgggo:za{ifoﬁgh%mset shows the  jisorder-induced broadening of the Hubbard bands.

: e The metallic solution is again found to be unstable above
a certain coherence temperatdréW,U), which defines the
pend on disorder. In the clean limit, obviously, it reduces tolocus of the metallic spinoddl,(T). An added subtlety is
5(2:—1) indicating that spatial fluctuations are suppressedthat different sites start to decohere at different temperatures,
As the disorder increaseﬁz(zf) becomes very broadas an effect that earlier woPkfound responsible for a nearly
shown in Fig. 5, reflecting large site-to-site fluctuations in linear temperature dependence of the resistivity in the disor-
the local QP weights. This behavior may be regarded as €dered metallic phase. Nevertheless, sufficiently close to the
precursor of electronic Griffiths phasEswhich emerge for Mot transition(within the coexistence regiona sharply de-
stronger disorder, as found withstaDMFT approache&? fined temperature scale (W, U) emerges where the metallic
In essential contrast to the clean limit, the approach to theolution suddenly disappears and where the qualitative form
Mott transition in the presence of disorder thus needs to bef the spectrum changes @i sites. This temperature scale
characterized by the entirgrobability distribution function defines the locus of the metallic spinodal, corresponding to
of QP parameters. At first glance, this may appear to requiréhe equation
a description considerably more complex than in the absence )
of disorder. However, we have demonstrated that in the criti- T=T(W,Uc). (14)
cal region the distributions approach a fixed point form, al-

i X 5 i At first glance, it is anything but obvious hoW (W, U)
lowing for “single parameter scaling,” in close analogy to the

should be estimated. As in the clean case, the reduction of
his temperature scale as the transition is approached must
Yeflect the behavior of the local QP weigfits and presum-
tQably depend on the precise form of the distribution function
P(Z). As we have seen, however, all the local QP weight
scale in a similar fashion in the critical regime, which sug-

behavior in the clean limit may successfully be extended

W

-

-
-

-
-
w

L) L] I L) I L) L]
E E gests that a reasonable estimate may be obtained simply from
- a o g: {:g i o 8: }:‘g 4 their average value
. —=U=14 —=U=138
ok :l U=1.6 U=20 )
! (Zi) = | d&iP(&)Z,. (15
> i
SF O
& ! At least for sufficiently weak disorder, we may expect that
L i [cf. Eq.(5)]
1
i T(W,U) = ATHZ), (16)
B 1
@ i whereA=0.2 as in the clean case. Using the fact thaZgdl
op—+—————1— decrease linearly near the transition, we expect
Z/Z
0

(Z;) = C(W)[U,(0) - U]. (17)
FIG. 5. (Color online Distribution of Z/Z, for (a) smaller
(W=0.5 and (b) larger (W=1.5 disorder than the one in Fig. 4. To confirm this, we explicitly calculate¥;) as a function of
Other parameters used was 0.005. U for different levels of disorder; the results are shown in
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FIG. 7. (Color onling Temperature at which thel,; and U,
lines merge in théU,T) phase diagram as a function of disorder.
The plot shows both the results obtained directly from the numeri-
cal data as well as those calculated from the linear fitting to the
U(T) line. In the latter,T, was calculated using the valuesdf;
at T=0.005, except folW=0 where the result aT=0.0075 was
used.

FIG. 6. (Color onling Average quasiparticle weight as a func-
tion of the interaction potential for different values of disorder.

Fig. 6. We conclude thaE(W) = C(0)~=0.45. These results
suggest that the metallic spinodal should take the form,

UCZ(W! T) = UCZ(W! O) - B(VV)T! (18)

whereB(W) =~ B(0)=22. Our nonzero temperature results for appropriate to describe the Hubbard bands, and narrower at
U(W,T) [see Fig. 1a)] fully confirm these expectations. low frequencies, where a quasiparticle descriptiok apace
Based on these results, we finally obtain the desired express appropriate. This is a manifestation of frequency depen-
sion for To(W) of the form dence of the disorder screening discussed in an earlier paper
by some of us$.

Te(W) = [Uea(W, 0) = Uy (W, 0)1/B(0). (19 In the metallic regime, at low temperatures, the spectral
To test the proposed procedure, we have used the values fBfnction can be parametrized in terms of the distribution of
Ug(W) and U(W) at the lowest temperature of our calcu- QP parameters, which displays simple scaling properties.
lation (T=0.005 to estimateT(W). As we can see from Fig. This allowed us to characterize the behavior ridarusing a
7, our analytical estimates are found to be in excellent agree3Ndle parameter scaling procedure. The approathidhus
ment with results of explicit nonzero temperature calcula/€@ins & character qualitatively independent of the level of
tions. The decrease aL(W) with disorder thus directly re- disorder, where the vanishing of quasiparticle weight signals
flects the “shrinking” of the coexistence region at low the_transmutatlon of itinerant electrons into localized mag-
temperature, which in its turn reflects the decrease of thgetic moments.

energy difference between the metallic and the insulatin% Within the exa'mined PMFT formulation, the region be-
solution. ween the two spinodal lined,; andU,, although reduced

in size and extent, cannot be completely eliminated no matter
how large the disorder. Of course, these predictions are ap-
plicable only for weak enough disorder where Anderson lo-
calization effects can be ignored. Extensions of DMFT that

In this paper, we have used a DMFT approach to examinécorporate Anderson localization mechanisms at zero tem-
the effects of disorder on the critical behavior near the Mottperature are availablé;** but applying these approaches to
metal-insulator transition, with special emphasis on nonzere@xamine the nonzero temperature behavior near Mott—
temperature properties associated with the two spinodal line&nderson transitions remains an interesting research direc-
U, and Ug,. By using a combination of numerical results tion. The behavior at the first-order transition line and the
and analytical arguments, we have demonstrated that simp#&sctual nucleation of either the metallic or insulating phase,
scaling behavior emerges, providing a complete descriptiohetweenJ; andU,,, are also strongly modified by disorder,
of the critical regime. and this as well is left for future study.

In contrast to the clean case, the presence of disorder
requires one to examine the entire distribution of local spec-
tral functions,p;(w), describing how the local spectra varies
with position in the sample. This can be probed with scan-
ning tunneling microscopy. Notice that the distribution func-  The authors thank A. Georges and D. Tanaskdéwi use-
tion describing the site dependencepgfw) will depend on  ful discussions. This work was supported by NSF Grant Nos.
the frequency of observation: It will be broader at higherDMR-9974311 and DMR-02342153V. D.) and DMR-
energiedas seen in Fig. (®)], where a real space picture is 0096462(G. K.).
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