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Molecular Vibrations, Infrared,

and Raman Activity

In this chapter we review molecular vibrations and present the use of
group theory to identify the symmetry and degeneracy of the normal
modes. Selection rules for infrared and Raman activity are also dis-
cussed and are illustrated for a variety of molecules selected for pedagogic
purposes.

8.1 Molecular Vibrations: Background

In this section we briefly indicate how group theory helps to simplify
the solution of the dynamical matrix for molecular vibrations to ob-
tain the symmetries and degeneracies of the normal modes and their
characteristic displacements more quickly and directly. A molecule hav-
ing its atoms at their equilibrium sites is in an energy minimum. If the
atoms are displaced from their equilibrium positions, a restoring force
will be exerted which will tend to bring the atoms back to equilibrium.
If the displacement is small, the restoring forces and molecular motion
will be harmonic. The harmonic nature of the force implies that the
system can be in a quantum mechanical eigenstate, or normal mode of
vibration.

Suppose that a molecule contains N atoms (depending on whether
a net charge can be assigned to a specific atomic site) and suppose
further that the potential function describing the forces, such as bond
bending and bond stretching forces, can be expressed in terms of the
3N coordinates for the N atoms, as V (R1, . . . ,RN ). We are particu-
larly interested in V (R1, . . . ,RN ) about its equilibrium coordinates at
R◦

1, . . . ,R
◦
N , and we expand V about these equilibrium coordinates, uti-

lizing the fact that a minimum in energy implies the vanishing of the
first derivative of the potential. We can then conveniently take our
zero of energy at the potential minimum and obtain a Hamiltonian for
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molecular vibrations in terms of the small displacements from equilib-
rium:

H =
∑

k

1
2
mk ξ̇

2
k

︸ ︷︷ ︸
kinetic energy

+
∑
k,�

1
2
∂2V

∂ξk∂ξ�
ξkξ�

︸ ︷︷ ︸
potential energy

, (8.1)

where mk denotes the mass of the kth ion, ξk denotes its displacement
coordinate, and the potential energy depends on the second derivative
of V (R1, . . . ,RN). The Hamiltonian in (8.1) gives rise to a (3N × 3N)
secular equation. The roots of this secular equation are the eigen-
frequencies ω2

K and the eigenvectors denote the normal modes of the sys-
tem.

The usual procedure for finding the normal modes involves two transfor-
mations, the first being used to eliminate the mass term in the kinetic energy:

qk =
√
mk ξk , (8.2)

and a second transformation is used to express qk in terms of the normal mode
coordinates QK :

qk =
∑
K

akKQK , (8.3)

where akK denotes the amplitude of each normal mode QK that is contained
in qk.

Thus, by a proper choice of the akK amplitudes, we can use (8.2) and (8.3)
to reduce the potential energy V to a sum of squares of the form ω2

KQ
2
K/2.

These transformations yield for the potential function in (8.1):

V =
1
2

∑
k, �
K,L

(
∂2V

∂qk∂q�

)
akKa�LQKQL =

1
2

∑
K

ω2
KQ

2
K , (8.4)

where the coefficients akK are chosen to form a unitary matrix satisfying (8.4).
Thus we obtain the relations a†Kk = a−1

Kk = akK if the matrix elements of akK

are real. The akK coefficients are thus chosen to solve the eigenvalue problem
defined in (8.4). To achieve the diagonalization of the Vk� matrix implied by
(8.4) we must solve the secular equation

∑
k,�

a−1
Kk

(
∂2V

∂qk∂q�

)
a�L = ω2

KδKL . (8.5)

Solution of the secular equation (8.5) yields the eigenvalues or normal mode
frequencies ω2

K and the eigenfunctions or normal mode amplitudes akK for
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Table 8.1. Correspondence between important quantities in the electronic problem
(see Sect. 7.1) and the molecular vibration problem

quantity electronic molecular vibration

matrix element Hk�
∂2V

∂qk∂q�
= Vk�

eigenvalue En ω2
K

eigenfunctiona ψn(r) akK

For the molecular vibration problem, it is the normal mode amplitude akK which
describes the physical nature of the small amplitude vibrations and is analogous
to the wave function ψn(r) for the electronic problem. The eigenvalues and eigen-
functions are found by diagonalizing Hk� (electronic problem) or Vk� (vibrational
problem)

K = 1, . . . , 3N . From the form of the secular equation we can immediately
see the correspondence between the electronic problem and the molecular
vibration problem shown in Table 8.1.

The transformation defined by (8.2)–(8.5) leads to a simpler form for the
Hamiltonian

H =
∑
K

P 2
K/2mK + ω2

KQ
2
K/2 , (8.6)

which is a sum of harmonic oscillators, where Q2
K is the normal coordinate.

The Hamiltonian in (8.6) can become quite complicated, but group theory
can greatly simplify the required work by finding the normal modes that
directly put H into block diagonal form. As an example, one can compare
the analytical solution for the “oscillator formed by three equal masses at
the corners of an equilateral triangle”, as developed by Nussbaum [56], with
the group theory analysis of this same pedagogic molecule to be developed in
Problem 8.1.

8.2 Application of Group Theory
to Molecular Vibrations

In an actual solution to a molecular vibration problem, group theory helps
us to diagonalize the Vk� matrix, to classify the normal modes and to find
out which modes are coupled when electromagnetic radiation interacts with
the molecule, either through electric dipole transitions (infrared activity) or
in inelastic light scattering (the Raman effect). We discuss all of these issues
in this chapter.

We make use of the symmetry of the molecule by noting that the molecule
remains invariant under a symmetry operation of the group of the Schrödinger
equation. Therefore, application of a symmetry operation P̂R to an eigenfunc-
tion of a normal mode fK just produces a linear combination of other normal
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modes of the same frequency ωK . That is, fK forms a basis for a representation
for the symmetry operators P̂R of the molecule

P̂Rf
(i,α)
K =

∑
K′

D(i)(R)K′Kf
(i,α)
K′ , (8.7)

where D(i)(R)K′K denotes the matrix elements of the matrix representation
for symmetry operator R, and i denotes the irreducible representation which
labels both the matrix and the basis function (normal mode coordinate in
this case) and α denotes the partner of the basis function in representation
i. Since the basis functions for different irreducible representations do not
couple to each other, group theory helps to bring the normal mode matrix Vk�

into block diagonal form, with each eigenvalue and its corresponding normal
mode labeled by an appropriate irreducible representation. This is similar
in concept to the solution of the electronic eigenvalue problem discussed in
Chap. 7, except that for the vibrational problem every atom (or ion) in the
molecule has three degrees of freedom, and a vector must be assigned to
each atomic site. Thus the molecular vibration problem is analogous to the
electronic problem for p-functions, where the p-functions also transform as
a vector.

Therefore, to find the normal modes for the vibration problem, we carry
out the following steps:

(a) Identify the symmetry operations that define the point group G of the
molecule in its equilibrium configuration.

(b) Find the characters for the equivalence representation, Γequivalence = Γ a.s.

(a.s. stands for atom site). These characters represent the number of
atoms that are invariant under the symmetry operations of the group.
Since Γ a.s. is, in general, a reducible representation of the group G, we
must decompose Γ a.s. into its irreducible representations.

(c) We next use the concept that a molecular vibration involves the transfor-
mation properties of a vector. In group theoretical terms, this means that
the molecular vibrations are found by taking the direct product of Γ a.s.

with the irreducible representations for a radial vector [such as (x, y, z)].
The representation for the molecular vibrations Γmol.vib. are thus found
according to the relation

Γmol.vib. = (Γ a.s. ⊗ Γvec)− Γtrans − Γrot , (8.8)

where Γtrans and Γrot denote the representations for the simple transla-
tions and rotations of the molecule about its center of mass. The charac-
ters found from (8.8), in general, correspond to a reducible representation
of group G. We therefore express Γmol.vib. in terms of the irreducible rep-
resentations of group G to obtain the normal modes. Each eigen-mode is
labeled by one of these irreducible representations, and the degeneracy
of each eigen-frequency is the dimensionality of the corresponding irre-
ducible representation. The characters for Γtrans are found by identifying
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the irreducible representations of the group G corresponding to the ba-
sis functions (x, y, z) for the radial vector r. The characters for Γrot are
found by identifying the irreducible representations corresponding to the
basis functions (Rx, Ry, Rz) for the axial vector (e.g., angular momen-
tum which for example corresponds to r × p). Since the radial vector r
(x, y, z) and the axial vector r× p denoted symbolically by (Rx, Ry, Rz)
transform differently under the symmetry operations of group G, every
standard point group character table (see Appendix A) normally lists
the irreducible representations for the six basis functions for (x, y, z) and
(Rx, Ry, Rz).

(d) From the characters for the irreducible representations for the molecular
vibrations, we find the normal modes, as discussed in the next section.
The normal modes for a molecule as defined by (8.8) are constrained to
contain only internal degrees of freedom, and no translations or rotations
of the full molecule. Furthermore, the normal modes must be orthogonal
to each other.

(e) We use the techniques for selection rules (see Sect. 6.6 in Chap. 6) to find
out whether or not each of the normal modes is infrared active (can be
excited by electromagnetic radiation, see Sect. 8.6) or Raman-active (see
Sect. 8.7).

It is important to recall that Γvec(R) is obtained by summing the irreducible
representations to which the x, y, and z basis functions belong. If (x, y, z)
are the partners of a three-dimensional irreducible representation T , then
Γvec(R) = Γ T (R). If, instead, x, y, and z belong to the same one-dimensional
irreducible representation A, then Γvec(R) = 3ΓA(R). If the x, y, and z basis
functions are not given in the character table, Γvec(R) can be found directly
from the trace of the matrix representation for each rotation R. All the point
group operations are rotations or combination of rotations with inversion. For
proper rotations, χvec(R) = 1 + 2 cos θ, so that the trace for the rotation
matrix can be always be found directly from⎛

⎜⎝
cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎞
⎟⎠ . (8.9)

Improper rotations consist of a rotation followed by a reflection in a horizon-
tal plane resulting in the character −1 + 2 cos θ where the +1 for the proper
rotation goes into −1 for an improper rotation, since z goes into −z upon
reflection. Table 8.2 shows characters for Γvec for several selected point group
operations. For C5, we need to consider cos 72◦ = 0.30901 . . . and the corre-
sponding character becomes χvec(C5) = 1.61803 . . ..

To illustrate the procedure for finding molecular vibrations, we consider
in the next sections the molecular vibrations of several different molecules
to illustrate the methods discussed above and to provide more practice in
using the various point groups. However, before going to specific molecules,
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Table 8.2. Characters χvec for the vector for selected point group operations

E C2 C3 C4 C6 i σ S6 S4 S3

3 −1 0 1 2 −3 1 0 −1 −2

we present the general procedure used to find the eigenvectors for the normal
modes associated with a specific irreducible representation of a group.

8.3 Finding the Vibrational Normal Modes

In searching for the vectors which describe the normal mode displacements,
we identify the point group of the molecule, thus providing us with the sym-
metry operations and the character table. Therefore, to find the normal mode
eigenvector associated with an irreducible representation, we apply the pro-
jection operator algebra (see Chap. 4) to a chosen elementary motion of the
atoms in the molecule (see (4.38))

P̂ (Γn) =
�n
h

∑
R

χ(Γn)(R)∗P̂R . (8.10)

This operation, however, projects out a function transforming as Γn but not
a specific partner of Γn. While this is not a problem in dealing with 1D
irreducible representations, for the case of multidimensional irreducible rep-
resentations, physical insights are usually needed for finding physically mean-
ingful partners of Γn quickly. The projection operators can also be used to
check if the normal modes that are found are a combination of partners
or not, and to find the other partners orthogonal to the first partner (see
Chap. 4). Furthermore, a given set of partners is not unique, but the part-
ners can be transformed among each other to get another orthonormal set.
As an example, we can find the eigenfunction (normal mode) for a tetra-
hedral molecule (e.g., CH4, point group Td) belonging, for example, to the
totally symmetric A1 irreducible representation. Since the four H atoms in
CH4 are equivalent (can be brought one into another by any of the sym-
metry operations of the group), the initial mode displacements of the atoms
(denoted by ψ0) can be chosen so that only one of the H atoms and the C
atom are moving in an arbitrary direction, as shown in Fig. 8.1a. The iden-
tity operator applied to ψ0 keeps it unchanged. The operation (E + C2)ψ0

gives the result shown in Fig. 8.1b, where the chosen axis for C2 is dis-
played. By applying the complete set P̂ (A1)ψ0 and summing up all the vec-
tors, we find the A1 mode, as shown in Fig. 8.1c, where the C atom does not
move.

Through this example, we show how physical insight helps to find the
eigenvectors. The mode in Fig. 8.1c is the stretching of the C–H bonds (the
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(a) (b) (c)

C2

Fig. 8.1. Schematic for obtaining the totally symmetric normal mode of a tetrahe-
dral (Td point group) molecule. (a) The initial chosen arbitrary motion ψ0 of two
nonequivalent atoms; (b) the result of applying the operations E and C2 on ψ0; and
(c) the normal mode displacements for the A1 symmetry mode of CH4 obtained
from the projection operator P̂ (A1)ψ0 after summing up all the vectors

so-called breathing mode) that keeps the tetrahedral symmetry unchanged,
as it should, since it belongs to the totally symmetric A1 irreducible repre-
sentation. Therefore, this normal mode could be visualized without doing
any of the procedures shown in Fig. 8.1a,b. In other cases, the final nor-
mal mode vector may not be so obvious, but still the use of physical in-
sights are useful. For example, for finding the normal modes belonging to
other irreducible representations of the tetrahedron, it is interesting to start
with atomic motions that are not the ones found for the A1 eigenvector, so
that you increase the likelihood of finding displacements that may be or-
thogonal to the partners belonging to the normal modes that you already
have. More about the normal modes of the tetrahedron will be discussed in
Sect. 8.8.3.

Finding the normal vibrational modes is not a difficult procedure, but
it gets more and more complicated as the number of atoms in the molecule
increases. For dealing with a large molecule composed of N atoms, we can
calculate

QΓn = P̂ (Γn) ⊗ ζ . (8.11)

Here ζ is a vector of dimensions 3N with the coordinates of an arbitrary initial
motion of the atoms, and P̂ (Γn) is a 3N × 3N matrix having all the atomic
coordinates for the N atoms in their equilibrium positions, and describing the
symmetry operations of the molecule. The QΓn is another 3N -dimensional
vector giving the normal mode belonging to Γn, or a combination of normal
modes if Γn is not a one-dimensional irreducible representation. In this way
the partners can be found by using a less arbitrary initial vector ζ.

In the next sections we start to illustrate the procedure for finding molec-
ular vibrations for specific and simple molecules. In doing so, we can better
illustrate the physical insights for finding the normal modes, rather than using
the formal procedure discussed above. We start by considering the molecular
vibrations of an isolated H2O molecule to illustrate finding the normal modes.
Then we introduce additional theoretical issues associated with the observa-
tion of combination modes as well as infrared active and Raman active modes
before returning to additional examples of molecular vibrations, for which we
also include a discussion of their infrared and Raman activity.
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8.4 Molecular Vibrations in H2O

We start by considering the vibrations of an isolated H2O molecule. This
molecule is chosen because it is a simple molecule, has two different chem-
ical species and involves a point group C2v(2mm) (Table A.5) we have not
discussed previously. The four symmetry operations for the H2O molecule
(see Fig. 8.2) include E the identity operation, a 180◦ rotation C2 around the
z-axis, a reflection plane σv in the plane of molecule and a σ′v reflection per-
pendicular to the plane of the molecule. The σv plane is a vertical reflection
plane since the xz plane contains the highest symmetry axis C2. The reflection
plane σv′ which goes through C2 is ⊥ to the plane of the molecule. In labeling
the axes, the plane of the H2O molecule is denoted by xz, with the x-axis
parallel to a line going through the two hydrogens, and the perpendicular
y-axis goes through the oxygen atom. The appropriate point group for the
H2O molecule is the group C2v and the character table is given in Table 8.3
and Table A.5.

Next we find Γ a.s.. For H2O we have to consider the transformation of
three atoms under the symmetry operations of the group. In writing down
Γ a.s., we recall that for each site that is invariant under a symmetry operation,

Fig. 8.2. Normal modes for the H2O molecule with three vibrational degrees of
freedom. (a) The breathing mode with symmetry A1, which changes only bond
lengths. (b) The symmetric stretch mode of H2O with A1 symmetry, which changes
bond angles. (c) The antisymmetric stretch mode with B1 symmetry
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a contribution of +1 is made to the character of that operation; otherwise the
contribution is zero. Thus, we obtain for the characters for χa.s.(H2O) for all
three atoms in the H2O molecule as given in Table 8.4.

From the character table for group C2v(2mm) we see that the radial or
polar vector transforms as

Γvec = A1 +B1 +B2 ,

where z, x, y, respectively, transform as A1, B1 and B2. Likewise the irre-
ducible representations for the rotations Γrot. are A2 +B1+B2, corresponding
to the rotationsRz, Ry, andRx, respectively. We then calculate the irreducible
representations Γmol.vib. contained in the molecular vibrations:

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtranslations − Γrot

= (2A1+B1)⊗ (A1+B1+B2)− (A1+B1+B2)− (A2+B1+B2)

= [3A1 + 3B1 + 2B2 +A2]− (A1 +B1 +B2)− (A2 +B1 +B2)

Γmol.vib. = 2A1 +B1 . (8.12)

The three modes in Γmol.vib. are all one-dimensional irreducible represen-
tations and therefore have nondegenerate or distinct vibrational frequen-
cies.

We must now find the normal modes corresponding to each eigen-
frequency. It is easy to use physical insights in such a simple symmetry.
The two normal modes with A1 symmetry must leave the symmetry undis-
turbed and this can be accomplished by the stretching of bonds and flexing
of bond angles. These modes are the breathing and symmetric stretch modes
(see Fig. 8.2). All molecules have a “breathing” mode which leaves the sym-
metry unchanged. To get the eigenvectors for the breathing mode of the
H2O molecule, assume that one of the hydrogen atoms is displaced in some
way. With A1 symmetry, this implies (under operation C2) that the other H

Table 8.3. Character Table for Group C2v(2mm)

C2v(2mm) E C2 σv σ′v

x2, y2, z2 z A1 1 1 1 1
xy Rz A2 1 1 −1 −1
xz Ry , x B1 1 −1 1 −1
yz Rx, y B2 1 −1 −1 1

Table 8.4. Characters for the Atomic Site Transformation for H2O

E C2 σv σ′v
Γ a.s.(H2O) 3 1 3 1 ⇒ 2A1 +B1
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atom must be correspondingly displaced (see Fig. 8.2(a)). To prevent trans-
lations and rotations of the molecule, O must be displaced as shown in
Fig. 8.2(a). (The actual vibration amplitude for each atom is constrained to
avoid translation and rotation of the molecule.)

The same arguments can be applied to obtain the A1 symmetric stretch
mode shown in Fig. 8.2(b). Application of the symmetry operations of group
C2v(2mm) (Table A.5) confirms that this mode has A1 symmetry. The H atom
motion is taken so that the two A1 modes are orthogonal. Since the breathing
mode and symmetric stretch mode have the same symmetry they can mix (or
couple to each other) and for this reason the directions of the H atom motion
for each of the modes in Fig. 8.2(a), (b) are not uniquely specified.

To obtain the normal mode for B1 symmetry, we observe that the character
for the C2 operation is −1, so that the two hydrogen atoms must move in
opposite directions relative to the O atom. Likewise, the motion of the O atom
must be odd under C2. These arguments determine the normalB1 mode shown
in Fig. 8.2(c).

As mentioned above, all molecules have a breathing mode which transforms
as A1 and preserves the molecular symmetry. As a practical matter in checking
whether or not the calculated normal modes are proper normal modes, it is
useful to verify that the normal mode motion does not involve motion of the
center of mass or rotation about the center of mass, and that all normal modes
are orthogonal to each other.

8.5 Overtones and Combination Modes

In addition to the first-order molecular vibrations discussed above, harmon-
ics (or multiples of the fundamental mode frequency such as 2ω, 3ω, etc.)
and combination modes (which refer to the sum and differences of the mode
frequencies, such as ω1 ± ω2) are observed. The observation of these modes
usually involves a perturbation to excite these modes, but this perturba-
tion will also perturb their frequencies somewhat. We consider in this sec-
tion the group theory of harmonics and combination modes in the limit of
small perturbations so that the perturbation to the mode frequencies is min-
imal.

Since the two phonon state is a product of the normal modes, the mode
frequency for the lowest overtone mode (or second harmonic) is at ∼ 2ωΓi

and the symmetry of the harmonic is given by the direct product Γi ⊗Γi and
the irreducible representations combined therein. Similarly, the combination
modes are at frequencies � (ωΓi +ωΓj ) in the limit of a very weak perturbation
and have symmetries given by Γi ⊗ Γj . In Sect. 8.8.3 where we consider the
overtones (harmonics) and combination modes of the methane molecule, we
can see which modes are activated in the infrared and Raman spectra for a real
molecule and we can see the frequency shifts produced by the perturbation
exciting these higher order molecular vibrations. Some of these modes for the
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Table 8.5. Observed vibrational frequencies for the methane moleculea

assignment symmetry mode frequency (cm−1)

ν1(A1) A1 fundamental 2914.2

ν2(E) E fundamental 1526

ν3(T2) T2 fundamental 3020.3

ν4(T2) T2 fundamental 1306.2

2ν2 A1 + A2 +E overtoneb 3067.0

2ν3 (A1 + E) + T1 + T2 overtoneb 6006

3ν3 (A1 + T1) + 2T2 overtonec 9047

2ν4 (A1 + E) + T1 + T2 overtoneb 2600

ν4 − ν3 (A1 + E) + T1 + T2 combination 1720

ν2 + ν4 T1 + T2 combination 2823

aHerzberg, “Infrared and Raman Spectra of Polyatomic Molecules”, “Molecu-
lar Spectra and Molecular Structure II”, 1949, “Van Nostrand Reinhold”, “New
York” [40]
bFor overtones, only the symmetric combinations of basis functions are Raman al-
lowed
cFor 3ν3 the symmetric combinations correspond to the angular momentum states
L = 1 which transforms as T2 and L = 3 which transforms as A1 + T1 + T2

methane molecule CH4 are given in Table 8.5 and are further discussed in
Sect. 8.8.3.

8.6 Infrared Activity

If electromagnetic radiation is incident on a molecule in its ground state, then
the radiation will excite those vibrational modes which give rise to a dipole
moment. In the ground state, the molecule is in a zero phonon state and there-
fore has A1 symmetry. We can use group theory to decide whether or not an
electromagnetic transition will occur, i.e., if a given excited mode can be con-
nected by the electromagnetic wave to the ground state A1 (or more generally
to the initial state of a highly excited molecule). The perturbation Hamilto-
nian for the interaction of the molecule with the electromagnetic (infrared)
interaction is

H′
infrared = −E · u , (8.13)

where E is the incident oscillating electric field and u is the induced dipole
moment arising from atomic displacements. In this interaction, u transforms
like a vector. To find out whether the incident photon will excite a particular
vibrational mode, we must examine the selection rules for the process. This
means that we must see whether or not the matrix element for the excita-
tion (ψf |u|ψi) vanishes, where ψf denotes the normal mode which we are
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trying to excite and u is the vector giving the transformation properties of
H′

infrared, while ψi denotes the initial state of the molecule, which for most
cases is the ground state. The ground state has no vibrations and is repre-
sented by the totally symmetric state A1 of the unperturbed molecule, while
H′

infrared transforms like a vector, since the applied field is external to the
molecule.

To determine whether or not a molecule is infrared active, we use the usual
methods for finding out whether or not a matrix element vanishes. That is,
we ask whether the direct product Γvec⊗Γi contains the representation Γf ; if
(Γvec⊗Γi) does not contain Γf , or equivalently if Γf⊗Γvec⊗Γi does not contain
A1, then the matrix element ≡ 0. Since molecular vibrations are typically
excited at infrared frequencies, we say that a molecule is infrared active if
any molecular vibrations can be excited by the absorption of electromagnetic
radiation. The particular modes that are excited are called infrared-active
modes. Correspondingly, the modes that cannot be optically excited are called
infrared inactive. Considering infrared excitation from the vibrational ground
state (no phonon), we write Γvec⊗A1 = Γvec. The infrared active modes thus
transform as the irreducible representations for the basis vector x, y, and z
(usually given in the character tables), and the specific basis vector indicates
the polarization of the light needed to excite that specific mode.

As applied to the H2O molecule (see Sect. 8.4) we have the following iden-
tification of terms in the electromagnetic matrix element. Suppose that the
initial state has A1 symmetry for the unexcited molecule and that the vector u
transforms as

u → A1 +B1 +B2

corresponding to the transformation properties of z, x, y, respectively. The
case of the H2O molecule shows that the components of the vector may trans-
form according to different irreducible representations of the point group for
the molecule. Thus, we obtain for the direct product between the vector and
the initial state:

(A1 +B1 +B2)⊗ (A1) = A1 +B1 +B2 (8.14)

showing the irreducible representations that are infrared active.
Therefore the two A1 modes and the B1 mode of water are all infrared-

active. Each of the three vibrations corresponds to an oscillating dipole mo-
ment. As far as polarization selection rules are concerned, we can excite either
of the two A1 modes with an optical electric field in the z-direction, the twofold
axis of the molecule. To excite the B1 mode, the optical electric field must
be along the x-direction, the direction of a line connecting the two hydro-
gen atoms. An electric field in the y direction (perpendicular to the plane
of the molecule) does not excite any vibrational modes. Since all vibrational
modes of the water molecule can be excited by an arbitrarily directed E
field, all the vibrational modes of the water molecule are infrared-active. It
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is not always the case that all vibrational modes of a molecule are infrared-
active. It can also happen that for some molecules only a few of the modes
are infrared-active. This situation occurs in molecules having a great deal of
symmetry.

To observe infrared activity in the second-order infrared spectra, we re-
quire that the combination of two vibrational modes be infrared-active. From
a group theoretical standpoint, the symmetry of the combination mode aris-
ing from constituent modes of symmetries Γi and Γj is given by the direct
product Γi ⊗ Γj . Since groups containing inversion symmetry have only odd
parity infrared-active modes, such symmetry groups have no overtones in the
second-order infrared spectrum.

8.7 Raman Effect

In the Raman effect the inelastically scattered light from a system is detected.
The induced dipole moment is

u =
↔
α ·Ei cosωt , (8.15)

where
↔
α is the Raman polarizability tensor, a second rank symmetric tensor.

Because the inelastic scattering of the incident light Ei can excite molecular
vibrations, the polarizability tensor has frequency dependent contributions at
the molecular vibration frequencies ωv

↔
α=

↔
α0 +Δ

↔
α cosωvt , (8.16)

so that

u =
(↔
α0 +Δ

↔
α cosωvt

)
·Ei cosωt (8.17)

=
↔
α0 ·Ei cosωt+

Δ
↔
α

2
[cos(ω − ωv)t+ cos(ω + ωv)t] ·Ei ,

where the first term in (8.16 and 8.17) is the Rayleigh component at incident
frequency ω, the second term is the Stokes component at frequency (ω−ωv),
and the third term is the anti-Stokes component at frequency (ω + ωv). In
observing the first-order Raman effect,1 the scattered light is examined for
the presence of Stokes components at frequencies (ω−ωv) and of anti-Stokes
components at frequencies (ω+ωv). Not all normal modes of the molecule will
yield scattered light at (ω±ωv), although if the Stokes component is excited,
symmetry requires the anti-Stokes component to be present also, though its
intensity may be small.

1The first-order Raman process is the interaction of light with one vibrational
mode. The second-, third-, . . .nth-order Raman effect is related to combination or
overtones involving two, three, . . .nth vibrational modes.
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To find whether or not a vibrational mode is Raman active, we ask whether
or not the matrix element for the Raman perturbation vanishes. The Raman
perturbation is of the −u ·E form and using (8.15), H′

Raman is written as

H′
Raman = −Δ

↔
α

2
EiEs cos(ω ± ωv)t . (8.18)

The transformation properties ofH′
Raman are those of a second rank symmetric

tensor Δαij (where i, j = x, y, z). The vectors Ei and Es for the incident
and scattered light are external to the molecular system and it is only the
symmetry of the polarizability tensor Δαij that pertains to the molecule. To
find out whether a particular normal mode is Raman-active we need only
consider the matrix element:

(ψf |H′
Raman|ψi) , (8.19)

where ψf is the final state corresponding to a normal mode we are trying
to excite, H′

Raman is the Raman perturbation which has the transformation
properties of a symmetric second rank tensor, and ψi is the initial state gen-
erally taken as the ground state which has the full symmetry of the group
of Schrödinger’s equation. A vibrational mode is Raman active if the direct
product (Γi⊗ΓH′Raman , where H′

Raman transforms as a second rank symmetric
tensor) contains the irreducible representation for the final state Γf . This is
the basic selection rule for Raman activity. The group theory associated with
tensors is discussed in more detail in Chap. 18.

Since the Raman process is a second-order process, it involves an interme-
diate state. The process involves an electron–photon interaction to produce
an excited state where an electron–phonon scattering event occurs creating
(Stokes process) or absorbing (anti-Stokes process) a phonon, and finally the
scattered photon is emitted in an electron–photon interaction. In terms of
the spectroscopy of molecular systems with inversion symmetry, the Raman
effect is especially important because it is a complementary technique to in-
frared spectroscopy. Since the infrared excitation is a first-order process and
the dipole operator transforms as a vector, selection rules for a vector in-
teraction couple states with opposite parity. On the other hand, the Raman
process, being a symmetric second-order process, is characterized by an in-
teraction H′

Raman which transforms as a tensor that is even under inversion
and therefore couples an initial and final state of similar parity. Thus for
molecules with inversion symmetry infrared spectroscopy probes molecular
vibrations with odd parity, while Raman spectroscopy probes modes with
even parity.

If the molecule does not have inversion symmetry, some vibrational modes
are both Raman and infrared active, and others can be neither Raman nor
infrared-active. The latter symmetry modes are called silent modes.

The use of polarized light plays a major role in the assignment of ex-
perimentally observed Raman lines to specific Raman-active modes. In Ra-
man experiments with polarized light, it is customary to use the notation:
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ki(EiEs)ks to denote the incident propagation direction ki, the incident and
scattered polarization directions (EiEs) and the scattered propagation direc-
tion ks. From (8.18) we see that the Raman tensor H′

Raman depends on both
Ei and Es and on the change in the polarizability tensor Δ

↔
α , where Ei and

Es are, respectively, the incident and the scattered electric fields. It is custom-
ary to designate the scattered light as having diagonal Raman components
(Ei ‖ Es), or off-diagonal Raman components (Ei⊥Es).

To find the selection rules for the Raman effect, we observe that the po-
larizability Δ

↔
α in (8.15) is a second rank symmetric tensor (see Chap. 18)

and has the same transformation properties as a general quadratic form (e.g.,
x2, y2, z2, xy, yz, zx). The transformation properties of these basis functions
are usually found in the table of characters for the point groups, indicating
the irreducible representations to which the Raman-active vibrational modes
belong. The polarization selection rules for specific modes according to their
incident and scattered polarization is also obtained from the basis functions.
We note here that the symmetric off-diagonal components correspond to com-
binations (xy + yx)/2 and the corresponding terms for yz and zx. The anti-
symmetric terms for a second rank tensor correspond to (xy − yx)/2 and its
partners, which transform as the axial vectors (Rx, Ry, Rz), and are so listed
in the character tables. In a second-order Raman spectrum, a combination
mode or overtone will be observable if Γi⊗Γj contains irreducible representa-
tions that are themselves Raman-active, since the H′

Raman matrix element in
this case will couple a no-phonon ground state to a combination mode excited
state (see (8.19)). Since x2 +y2 +z2 transforms as the identity transformation
and the direct product Γi⊗Γi always contains the identity representation, all
second harmonics at 2ωi are Raman-active modes. Thus, some silent modes
that cannot be found in the first-order spectrum can thus be observed in the
second-order spectrum.

In the following subsections we discuss molecular vibrations for specific
molecules, and in so doing, we will also include comments about the infrared
and the Raman activity of these molecules.

8.8 Vibrations for Specific Molecules

In this section we consider molecular vibrations for specific molecules, start-
ing with linear molecules in Sect. 8.8.1 and then going to more complex
multiatomic molecules. We also discuss the infrared (Sect. 8.6) and Raman
(Sect. 8.7) activity of the normal modes for each of the molecules that are
considered.

8.8.1 The Linear Molecules

The procedure for dealing with the molecular vibrations of linear molecules
such as CO or H2 is special and is slightly different from what has been de-
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scribed in Sect. 8.2. We now present a method for handling the linear molecules
and give some examples. For a linear molecule, the irreducible representations
for the rotations just involves the rotationsRx andRy, assuming the molecular
axis to be along ẑ. Thus for the linear molecule, only two degrees of freedom
are removed by Γrot, since rotations along the axis of the molecule correspond
to the identity operation, considering the atoms as homogeneous balls with-
out any internal degrees of freedom. First we consider the heterogeneous CO
linear molecule (group C∞v in Table A.33) followed by the homogeneous H2

linear molecule (group D∞h in Table A.34). With these simple molecules, we
illustrate both molecular vibrations of linear molecules and the use of the
semi-infinite point groups C∞v and D∞v in this context.

The appropriate symmetry group for CO is C∞v (see Sect. 7.4.2). The
symmetry operations 2Cφ denote rotations about the ẑ axis in clockwise and
counter-clockwise senses by an arbitrary angle φ. Thus Cφ is a class with
an ∞ number of symmetry operations. The symmetry plane σv is a vertical
plane through the molecular axis at an angle φ with respect to an arbitrary
direction denoted by φ = 0. Since the 2Cφ and σv classes are of infinite order,
the number of irreducible representations is also infinite.

The first step in finding Γmol.vib. for a linear molecule is to compute
Γ a.s.. For the CO molecule shown in Fig. 8.3, the equivalence transfor-
mation yields Γ a.s. (see Table 8.6), from which we find the irreducible
representations for the molecular vibrations of CO, remembering that
Γrot only contains rotations in the xy plane normal to the rotation axis
of the molecule, and therefore Γrot transform as E1 while Γvec transform
as A1 + E1:

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtrans − Γrot ,

Γmol.vib. = (2A1)⊗ (A1 + E1)− (A1 + E1)− E1 = A1 .

Fig. 8.3. CO molecule only has an A1 breathing mode. The lighter mass of the C
atom results in a larger displacement to maintain the center of mass

Table 8.6. Characters for the Atomic Site Transformation for the CO molecule

E 2Cφ σv

Γ a.s. 2 2 2 ⇒ 2A1
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The A1 mode is the breathing mode for the CO molecule (see Fig. 8.3).
Since the C and the O atoms are distinct, this molecule has a dipole mo-
ment along the z direction so that CO is infrared active. From the char-
acter table for C∞v we see that the components of the Raman tensor
(x2 + y2) and z2 transform as A1, so we conclude that CO is also Raman
active.

If we now consider the O2 molecule (see Fig. 8.4), we have a homo-nuclear
molecule following the symmetry group D∞h (see Character Table A.34).
Here the displacements are now fully symmetric unlike the situation for the
CO molecule where the center of mass of the molecule must be conserved so
that the lighter atom has a larger vibrational amplitude. In the case of the O2

molecule the characters for Γ a.s. are listed in Table 8.7. Thus the irreducible
representations for the molecular vibrations of O2 become:

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtrans − Γrot

Γmol.vib. = (A1g +A2u)⊗ (A2u + E1u)− (A2u + E1u)− E1g (8.20)
= A1g ,

where Γrot = E1g for the rotations Rx, Ry. Because of the inversion symmetry
of the O2 molecule, all the normal modes have either even (gerade) or odd
(ungerade) symmetries. Thus for O2 the breathing mode (see Fig. 8.4) has
A1g symmetry and is infrared-inactive. From simple physical considerations
the breathing mode for O2 has no oscillating dipole moment nor can a dipole
moment be induced. Hence O2 does not couple to an electromagnetic field
through an electric dipole interaction, in agreement with our group theoreti-
cal result, so O2 is not infrared active. The A1g mode of the O2 molecule is
however Raman active, as is also the CO molecular vibrational mode men-
tioned above.

Fig. 8.4. The O2 molecule only has an A1g breathing mode with symmetric dis-
placements of the atoms in the normal mode vibration

Table 8.7. Characters for the Atomic Site Transformation for the O2 molecule

E 2Cφ C′2 i 2iCφ iC′2

Γ a.s. 2 2 0 0 0 2 ⇒ A1g + A2u



164 8 Molecular Vibrations, Infrared, and Raman Activity

Table 8.8. Characters for the Atomic Site Transformation for the CO2 molecule

E 2Cφ C′2 i 2iCφ iC′2

Γ a.s. 3 3 1 1 1 3

Fig. 8.5. The three vibrational normal modes of CO2: (a) the breathing mode with
A1g symmetry, (b) the antisymmetric stretch mode with A2u symmetry, and (c) the
doubly degenerate E1u mode where the mode displacements for the two partners
are orthogonal (i.e., ‖ and ⊥ to the page)

The CO2 molecule is chosen for discussion to show the various types of
modes that can be expected for linear molecules involving three or more atoms.
Below we consider another molecule (C2H2) described by the same symmetry
group D∞h but having slightly more complexity.

For the case of CO2 (see Fig. 8.5), we again have a linear molecule with
D∞h symmetry and now Γ a.s. corresponds to a three-dimensional representa-
tion (see Table 8.8), so that Γ a.s. = 2A1g +A2u.

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtrans − Γrot

Γmol.vib. = (2A1g +A2u)⊗ (A2u + E1u)− (A2u + E1u)− E1g (8.21)

= A1g + A2u + E1u .

The normal modes for CO2 are easily found with the help of the character
table, and are shown in Fig. 8.5. The A1g mode is the breathing mode, the
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Fig. 8.6. Schematic diagram of the normal modes of the linear C2H2 molecule: (a)
two breathing modes of A1g symmetry, (b) an antisymmetric stretch mode of A2u

symmetry, and (c) and (d) two doubly-degenerate bending modes of E1g and E1u

symmetries

A2u mode is the antisymmetric stretch mode and the E1u mode is a doubly
degenerate bending mode where the displacements of the carbon and the two
oxygens are normal to the molecular axis for each partner of the E1u bending
mode. Of these modes only the A1g mode is Raman active. In this case, the A2u

and E1u modes are infrared-active while the symmetric A1g mode is infrared-
inactive as can be seen from the character table for D∞h (Table A.34).

For the case of the linear C2H2 molecule, H–C≡C–H, also following group
D∞h symmetry, we obtain

Γ a.s. = 2A1g + 2A2u (8.22)

using the result for O2. Thus Γmol.vib. for the C2H2 molecule becomes

Γmol.vib. = (2A1g + 2A2u)⊗ (A2u + E1u)− (A2u + E1u)− E1g

Γmol.vib. = 2A1g +A2u + E1u + E1g .

The five normal modes for the molecular vibrations of C2H2 are shown in
Fig. 8.6, again illustrating the breathing, antisymmetric stretch and bending
modes corresponding to five different vibrational frequencies. These concepts
can of course be generalized to give normal modes for more complex linear
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molecules. For the C2H2 molecule, the two A1g modes correspond to basis
functions (z2 and x2+y2) while the E1g modes correspond to the (zx, zy) basis
functions. These two different symmetry modes can be distinguished using
optical polarization experiments whereby the A1g modes will be observable
when the incident and scattered light are polarized parallel to each other, but
the E1g mode will be observed when the polarization of the incident beam
is along the molecular axis but the scattered beam is perpendicular to the
molecular axis.

In Problem 8.3 it is shown that Γmol.vib. and the normal modes of the
C2H2 linear molecule can be easily found by considering the C2H2 molecule
as being composed of two C–H blocks or of the two hydrogen atoms and
the two carbon atoms as two other blocks, each with internal degrees of
freedom vibrating against each other. Such considerations help in provid-
ing intuition about obtaining the internal vibrational modes of complex
molecules.

We now illustrate how symmetry is used to assist in the solution of molec-
ular vibration problems for several 3D molecules of pedagogic interest.

8.8.2 Vibrations of the NH3 Molecule

The NH3 molecule is one of two molecules selected for illustrating normal
mode properties of three-dimensional molecular vibrations. To illustrate some
features of degenerate normal modes, let us consider the NH3 molecule (see
Fig. 8.7). The hydrogen atoms in NH3 are at the corners of an equilateral
triangle and the nitrogen atom is either above or below the center of the
triangle. If the molecule were planar, it would haveD3h symmetry, but because
the N atom is not coplanar with the three hydrogen atoms, the appropriate
symmetry group is C3v (see Table A.10). We note that Γ a.s. for the three
hydrogen atoms at the corners of a triangle transforms as A1 + E and we
further note that Γ a.s. for the nitrogen atom transforms as A1 under all the
symmetry operations of the group. The results are written in Table 8.9 first
for all four atoms. We can also consider the three hydrogen atoms separately
and build up Γmol.vib. from the N atom plus the three hydrogen LCAOs as
two building blocks (see Problem 8.1).

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtrans − Γrot

Γmol.vib. = (2A1 + E)⊗ (A1 + E)− (A1 + E)− (A2 + E)

= 2A1 + 2E . (8.23)

Table 8.9. Characters for the Atomic Site Transformation for the NH3 molecule

E 2C3 3σv

Γ a.s.
total 4 1 2 ⇒ 2A1 +E

Γ a.s.
H 3 0 1 ⇒ A1 + E
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• One mode of the NH3 molecule with A1 symmetry is the breathing mode,
where the nitrogen atom is at rest and the equilateral triangle expands
and contracts (see Fig. 8.7(a)).

• For the A1 out-of-plane breathing mode, the H atoms move in the +z direc-
tion while the N atom moves in the −z direction, such that no translation
of the center of mass occurs (see Fig. 8.7(b)).

• One of the E modes is a doubly-degenerate in-plane mode. One eigenvector
is made from the linear combination of hydrogen atom motions (H1 +
ωH2 + ω2H3) where the motion of each H atom bears a phase relation
of ω = e2πi/3 relative to the next H atom. The second eigenvector is

(a) (b)

(c)

Fig. 8.7. Normal modes for the NH3 molecule: (a) the in-plane breathing mode, (b)
the out-of-plane (z-axis) breathing mode for which + and − refer to above and below
the plane, respectively, and (c) the two partners of the in-plane mode of E symmetry
which are complex conjugates of each other. The phase factor ω is exp(2π/3). There
is also another doubly-degenerate E mode for z-axis (out-of-plane) motion that is
not shown
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H1 + ω2H2 + ωH3 which is orthogonal to the first. The nitrogen atom
moves in the xy plane in such a way as to prevent translation of the center
of mass and rotation of the molecule (see Fig. 8.7(c)).

• For the second doubly degenerate E mode, the hydrogen atoms move in the
out-of-plane direction with a phase difference between adjacent hydrogen
atoms. For one partner, the three hydrogen atoms have phase factors of 1,
ω and ω2 while the second partner has motions with phases for its three
hydrogen atoms that are the complex conjugates of the phases of the first
partner ω = e2πi/3 for one partner and ω2 = e4πi/3 for the other partner.
The nitrogen atom again moves in such a way as to prevent translations
or rotations of the molecule (not shown in Fig. 8.7(c)).

The molecular vibrations for the NH3 molecule illustrate the concept of phase
relations between the motions of various atoms in executing a normal mode.
Though it should be emphasized that in the case of degenerate modes, the nor-
mal mode (basis function) picture is not unique, and therefore linear combina-
tions of modes of the same symmetry are also possible. Since the normal modes
for the NH3 molecules have A1 and E symmetries and since Γvec = A1 + E,
all the vibrational modes for NH3 are infrared-active, with one of the two
A1 modes excited by polarization E ‖ ẑ, the other being excited by polar-
ization E⊥ẑ. The same is true for the two E modes. The connection of the
normal modes of NH3 to the normal modes of three atoms at the vertices
of a triangle is considered in Problem 8.1. For the case of the NH3 molecule
which has C3v symmetry, the two Raman-active modes with A1 symmetries
have normal mode displacements x2 + y2 and z2 and the two modes with
E symmetries have normal mode displacements (x2 − y2, xy) and (xz, yz),
so that all the normal modes for the NH3 molecule (2A1 + 2E) are Raman-
active. Polarization selection rules imply that the A1 modes are diagonal (i.e.,
scattering occurs when the incident and scattered polarizations are parallel
Ei ‖ Es), while the E modes are off-diagonal (i.e., scattering occurs when
Ei ⊥ Es).

8.8.3 Vibrations of the CH4 Molecule

The CH4 molecule is chosen to illustrate the vibrational modes of a five atom
molecule with high symmetry and to give more practice with the Td point
group symmetry (Table A.32) because of the importance of this point group
symmetry to semiconductor physics.

The equivalence transformation for the four hydrogen atoms of the CH4

molecule yields Γ a.s.
4H = A1 + T2 (see Sect. 7.5.2) while for the carbon atom

Γ a.s.
C = A1 since the carbon atom is at the center of the regular tetrahedron.

Thus for the whole CH4 molecule with Td symmetry we have Γ a.s. = 2A1 + T2.
In Td symmetry, the radial vector transforms as T2 while the angular momen-
tum (or axial vector for rotations) transforms as T1. We thus get the following
result for Γmol.vib. for the CH4 molecule.
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For the symmetry types in the molecular vibrations Γmol.vib. (see Fig. 8.8):

Γmol.vib. = Γ a.s. ⊗ Γvec − Γtrans − Γrot

Γmol.vib. = [(2A1 + T2)⊗ (T2)]− T2︸︷︷︸
translations

−
rot︷︸︸︷
T1

= 2T2 + (T1 + T2 + E +A1)− T2 − T1

= A1 + E + 2T2 .

For many molecules of interest, the normal modes are given in [40]. We give in
Fig. 8.8 the normal modes adapted from this reference. For the CH4 molecule
only the modes with T2 symmetry are infrared active. The modes with A1, E,
and T2 symmetries are Raman active, where (xy, yz, zx) transforms as T2 and

Fig. 8.8. Normal vibrations of a tetrahedral CH4 molecule [40]. The three twofold
axes (dot-dash lines) are chosen as the x-, y-, and z-axes. The exact directions of
the H atom displacements depend on the nature of the C–H bond strength and the
masses of H and C. Although CH4 and CCl4 have, of course, the same symmetry
modes, the H and Cl atom displacement directions will differ. This issue was also
discussed in Sect. 8.4 for the modes of H2O (see Fig. 8.2)
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the basis functions x2 − y2, and 3z2− r2 transform as E, while r2 transforms
as A1 (see Table A.32).

We now give an example of harmonics and combination modes that
can be observed in the second-order Raman and infrared spectra in terms
of the CH4 molecule. In Table 8.5 the frequencies of the four fundamen-
tal modes in the Raman spectra are given along with some of the over-
tones and combination modes. The symmetries of the overtones (harmon-
ics) and combination modes are found by taking the direct product Γi ⊗ Γj

between these modes. We see that the mode frequencies can deviate sig-
nificantly from ωi ± ωj and the reason for this is that the perturbation
which excites the harmonics and combination modes also perturbs the har-
monic oscillator potential for the molecule with some combination mode fre-
quencies being increased and others being decreased. We note that the T2

modes are observed in the first-order infrared spectrum for CH4. Some of
the direct products of importance in interpreting the second-order spectra
are

E ⊗ E = A1 +A2 + E

and

T2 ⊗ T2 = A1 + E + T1 + T2 .

8.9 Rotational Energy Levels

In practice all molecules have rotational levels (labeled by quantum num-
ber j). In the approximation that we can discuss the rotational motion as dis-
tinct from the vibrational motion, the rotational motion of molecules should
be much lower in frequency than the vibrational motion, and of course very
much lower in frequency than the electronic motion. Typical rotational ener-
gies are of the order of ∼ 1 meV and occur at far-infrared frequencies. The
vibrational modes are observed in the mid-IR range, typically in the range
20–200meV.

In Sect. 8.9.1 we discuss rotational energy levels of a molecule in terms
of the rigid rotator as a simple example. Then in Sect. 8.9.2 we state
the Wigner–Eckart theorem which gives in succinct form the selection
rules for IR and Raman activity for rotational energy levels. Finally in
Sect. 8.9.3 we introduce the coupling between the vibrational and rotational
levels, giving some examples of rotational energy levels for a few simple
molecules.

8.9.1 The Rigid Rotator

To illustrate molecular vibrations, we consider the simple case of the rigid
rotator neglecting the effect of the molecular vibrations. The Hamiltonian for
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Fig. 8.9. (a) Rotational levels of a diatomic molecule. (b) Energy separation
between sequential rotational levels. (c) The rotational absorption spectrum for
gaseous HCl

rotational motion is written as

Hrot =
J2

x

2Ix
+
J2

y

2Iy
+
J2

z

2Iz
, (8.24)

where Ix, Iy, Iz are the principal moments of inertia and Jx, Jy, Jz are the
angular momentum operators. The coordinates x, y, z are chosen so that the
z axis is along the main symmetry axis of the molecule. If we have a diatomic
molecule, one principal moment of inertia vanishes Iz = 0, while the other
two become equal Ix = Iy. In this case the Hamiltonian is simply

Hrot =
J2

2I
, (8.25)

and has eigenvalues

Ej = �
2j(j + 1)/2I .

Unlike the vibrational energy levels which are all equally spaced with a level
separation �ωv, the rotational energy levels are unequally spaced:

Ej+1 − Ej = C[(j + 1)(j + 2)− j(j + 1)] = 2C(j + 1) (8.26)

with C = �
2/2I and the level spacing depends on the quantum number j

(see Fig. 8.9(a)). If the molecule contains a permanent electric dipole mo-
ment, then it is possible to excite the molecule into higher rotational en-
ergy states by electric dipole transitions. The selection rules for transitions
between rotational energy levels follow from the Wigner–Eckart theorem
(Sect. 8.9.2).

According to this theorem, for light polarized along the principal axis of
rotation of the HCl molecule, the selection rule for electric dipole transitions
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is Δj = 0 while for light polarized in the plane ⊥ to this axis, the selection
rule is Δj = ±1. If there is no vibrational–rotational interaction, Δj = 0 does
not give rise to optical absorption.

Thus, the first rotational transition will require a photon energy 2C, the
second 4C, the third 6C, etc. This pattern is indicated in Fig. 8.9(a) for the HCl
molecule and in Fig. 8.9(b) we see that (Ej + 1 − Ej) increases proportional
to (j1) with a constant coefficient of 2C. The actual spectrum for HCl is
shown in Fig 8.9(c). It is clear that diatomic molecules like H2 have a center
of inversion and hence no permanent dipole moment. Thus, molecules of this
type do not exhibit any pure rotational infrared spectra. On the other hand,
heterogeneous diatomic molecules like CO and HCl can exhibit rotational
infrared spectra.

8.9.2 Wigner–Eckart Theorem

The Wigner–Eckart theorem, based on the full rotation group, gives the se-
lection rules for transitions between rotational levels observed for molecules
in IR and Raman spectroscopy and their polarization effects.

For proof of the Wigner–Eckart theorem, see Tinkham, p. 131–132 [70].
This theorem deals with the matrix elements of a tensor Tω

μ where ω is
the rank of the tensor and μ is a component index, to be discussed fur-
ther below. The theorem is discussed for angular momentum states which
correspond (through the group of Schrödinger’s equation) to the full rotation
group.

The full rotation group has only odd-dimensional representations:

One-dimensional � = 0 s-states
Three-dimensional � = 1 p-states

Five-dimensional � = 2 d-states .

Thus, a scalar (� = 0) corresponds to a tensor with ω = 0 and μ = 0. A vector
corresponds to a tensor with ω = 1, � = 1, and μ = ±1, 0, which denote the
three m� values for � = 1. A general second rank tensor can be considered as
the direct product

Γ �=1 ⊗ Γ �=1 = Γ �=0 + Γ �=1 + Γ �=2 (8.27)

having dimensions 3 × 3 = 1 + 3 + 5 = 9. Thus the second rank tensor
will have a part which transforms as ω = 0 and μ = 0, another part which
transforms as ω = 1, μ = ±1, 0 and a third part which transforms as ω = 2,
μ = ±2, 1, 0, thereby accounting for all nine components of the second rank
tensor. The parts that transform as ω = 0 and ω = 2 constitute the symmetric
components and correspond to the Raman tensor. The parts that transform
as ω = 1 constitute the antisymmetric components of a second rank tensor
and correspond to the angular momentum components.
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Because of the form of the Wigner–Eckart Theorem given by(
N ′j′m′ ∣∣Tω

μ

∣∣Nj) = Ajωj′
mμ δm′,m+μ (Nj′||Tω||Nj) , (8.28)

the selection rules for a tensor operator Tω
μ between states having full rota-

tional symmetry can be obtained quickly. Here j′ lies in the range

|j − ω| ≤ j′ ≤ (j + ω) , (8.29)

which is related to the properties of the addition of angular momentum vec-
tors. In (8.28), N and N ′ are principal quantum numbers, j and j′ are quan-
tum numbers for the total angular momentum, while m and m′ are quantum
numbers for the z component of the angular momentum. The coefficients Ajωj′

mμ

are called Wigner coefficients [2] and are tabulated in group theory texts (see
for example, Tinkham) [70]. The reduced matrix element (Nj′||Tω||Nj) in
(8.28) is independent of μ,m, and m′ and can therefore be found for the
simplest case μ = m′ = m = 0. This generality makes the Wigner–Eckart
theorem so powerful. The selection rules on both j and m are obtained by
rewriting the restrictions implied by (8.28) and (8.29), yielding

|Δj| = |j − j′| ≤ ω

|Δm| = |m′ −m| = μ ≤ ω . (8.30)

We now write down some special cases of (8.30).
For electric dipole transitions, we have ω = 1 and the selection rules

Δj = 0,±1

Δm = 0 for E ‖ ẑ
Δm = ±1 for E ⊥ ẑ , (8.31)

where E ‖ ẑ refers to linear polarization along the quantization axis and
E ⊥ ẑ refers to circular polarization about the quantization axis.

For Raman transitions (where H′
Raman transforms as a second rank sym-

metric tensor), we have either ω = 0 or ω = 2 and the corresponding selection
rules

ω = 0 : Δj = 0 , Δm = 0 ,

ω = 2 : Δj = 0,±1,±2 , Δm = 0,±1,±2 . (8.32)

In specific geometries, not all of these transitions are possible.
In applying the Wigner–Eckart theorem to the rotational selection rules for

a linear diatomic molecule, we know that the dipole moment must be along the
molecular z-axis, so that only μ = 0 applies. In this case the Wigner–Eckart
Theorem gives the selection rules

Δj = 0,±1 ; Δm = 0 for I.R. activity

Δj = 0,±2 ; Δm = 0 for Raman activity . (8.33)
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8.9.3 Vibrational–Rotational Interaction

Since the nuclei of a molecule are actually in vibrational motion, there is
consequently an interaction between the vibrational and rotational motions.
These interactions become important when the energy of a rotational energy
level becomes comparable to a vibrational energy level. Let us illustrate this
coupling in terms of a diatomic molecule, where we write for the Hamilto-
nian

H =
p2

2μ
+

J2

2μR2
+ a2ξ

2 + a3ξ
3 , (8.34)

in which the first term is the kinetic energy (and μ is the reduced mass of the
molecule). The second term denotes the rotational energy of the molecule,
while a2ξ

2 is the harmonic restoring force for the vibrational energy, and
a3ξ

3 is an anharmonic restoring term arising in the vibrational problem. The
distance between the nuclei is now modified by the vibrational displacements
from equilibrium

R−Req

Req
= ξ where R = Req(1 + ξ) . (8.35)

We therefore write

1
R2

=
1

R2
eq(1 + ξ)2

=
1
R2

eq

[
1− 2ξ + 3ξ2 + · · · ] (8.36)

so that we can express the Hamiltonian in terms of an unperturbed term H0

and a perturbation term H′:

H = H0 +H′ , (8.37)

where

H0 =
p2

2μ
+BeqJ

2 + a2ξ
2 (8.38)

and
Beq =

1
2μR2

eq

. (8.39)

The first term in (8.38) denotes the kinetic energy and the second term defines
the rotational energy when the molecule is in its equilibrium configuration,
while the third term denotes the vibrational potential energy for the harmonic
restoring forces. Thus H0 gives the energies for the vibrational and rotational
motion in the limit where the vibrational and rotational motions are decou-
pled. For the H0 limit the selection rules are the same as if the vibrations
and rotations occurred independently. The perturbation Hamiltonian then
becomes

H′ = a3ξ
3 − 2BeqξJ

2 + 3Beqξ
2J2 , (8.40)
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where the first term is an anharmonic term that gives rise to overtones and
combination modes in the vibrational spectrum. The second and third terms
in (8.40) are associated with coupling between rotational and vibrational levels
and give corrections to the rotational levels. The term in ξJ2 makes a con-
tribution in second-order perturbation theory, while the term in ξ2J2 makes
a contribution in first-order perturbation theory which is proportional to(

n+
1
2

)
�ωvj(j + 1) .

Thus, the application of perturbation theory results in energy levels for the
vibrational–rotational problem:

En,j = �ωv

(
n+

1
2

)
︸ ︷︷ ︸
pure vibrational

+ A1j(j + 1)︸ ︷︷ ︸
pure rotational

+A2 �ωv

(
n+

1
2

)
j(j + 1) + · · ·

︸ ︷︷ ︸
interaction terms

(8.41)

in which A1 and A2 are constants. For the diatomic molecule A1 = (�/2I) in
accordance with (8.25). From a group theoretical point of view, the interac-
tion terms modify the selection rules and new features in the IR and Raman
spectra can be seen. In general, the symmetry of an interacting vibrational
and rotational level is given by the direct product Γvib ⊗ Γrot.

In making rotational transitions on absorption between different vibra-
tional levels, we not only can have Δj = 1 (the R-branch) but we also can
have Δj = −1 (the P-branch). This is illustrated in the vibrational–rotational
spectrum shown in Fig. 8.10 for the HCl molecule. We note here that the
spectral lines in the R-branch (upshifted in frequency) are not symmetrically
spaced with respect to the down-shifted P-branch. The Q-branch (Δj = 0)
occurs very close to the central frequency ν0, and would in fact be coincident
with ν0 if the moment of inertia would be independent of the vibrational state.
Study of the Q-branch requires high resolution laser spectroscopy.

If there were no vibrational–rotational interaction, the spacing of all spec-
tral lines (shown in the top portion of Fig. 8.10) would be the same for all
vibrational levels n. For the case of diatomic molecules and for the polariza-
tion where E is along the molecular axis, then the selection rules Δn = +1
and Δj = 0 determine the vibrational–rotational spectrum, while for E per-
pendicular to the main symmetry axis of the molecule, the selection rules are
Δn = 0 and Δj = +1.

Rotational Raman Spectra are also observed. Here the transitions with
Δj = 2 are excited for the pure rotational transitions, Δn = 0 (see Figs. 8.9
and 8.10). This series is called the S-branch. When vibrational–rotational Ra-
man spectra are excited, transitions with Δj = 0 and Δj = −2 are also pos-
sible and these are called the O-branches. Because of the anharmonic terms
in the Hamiltonian, there are vibrational–rotational spectra which occur be-
tween vibrational states separated by Δn = 2, 3, . . ., etc. These anharmonic
transitions would be expected to have lower intensity.
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Fig. 8.10. P (Δj = −1), R (Δj = +1) and Q (Δj = 0) branches of the
rotational structure of the HCl vibrational–rotational band near 2,885 cm−1 shown
schematically

The above discussion focused on the vibrational degrees of freedom. There
are in addition the electronic levels which generally are separated by much
greater energies than are the vibrational and rotational levels. There is how-
ever some interaction also between the vibrational and rotational states and
the electronic levels. Interactions between the electronic and rotational levels
give rise to “Λ-doubling” of the rotational levels, and coupling between the
electronic and vibrational levels gives rise to vibronic levels.

Selected Problems

8.1. This problem relates to the interrelation of fundamental group the-
ory concepts from small molecular clusters to the molecular vibrations of
actual molecules of interest. We illustrate this approach using the normal
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modes for three equal masses at the corners of an equilibrium triangular (see
Sect. 8.1).

(a) Find the normal modes for a triangular cluster containing three hydrogen
atoms at the corners of an equilateral triangle. Indicate which modes are
IR active and which are Raman active.

(b) Find the normal modes for a hypothetical planar NH3 molecule where
the N atom is at the centroid of the triangle and coplanar with the three
hydrogens. Which point group describes this molecule? Which modes are
infrared active and which are Raman active?

(c) Relate the results in (a) and (b) to the normal modes, and to the IR and
Raman activity for the NH3 molecule with C3v group symmetry.

(d) Relate the normal modes of the water molecule (Sect. 8.4) to the normal
modes of the triangular cluster in (a). Account for the similarities and
differences between the two cases.

8.2. Both CO2 and N2O are linear molecules, but have different equilibrium
arrangements giving rise to different symmetry groups (see Fig. 8.11).

(a) What are the appropriate point groups for CO2 and N2O?
(b) What symmetries are involved for the bonding and antibonding electronic

orbitals for these molecules?
(c) What are the differences in the symmetries of the normal modes for these

two molecules?
(d) Show schematically the atomic displacements for the normal modes of

each molecule.
(e) What are the expected differences in their IR spectra? Raman spectra?
(f) What are the expected differences in the rotational spectra of these two

molecules?
(g) Which of these rotational modes can be excited by infrared or Raman

spectroscopy?

8.3. Consider the linear C2H2 molecule (H–C=C–H) as being composed of
either two C–H blocks or of another configuration with the two hydrogen
atoms vibrating against the two carbon atoms as another block, each with
internal degrees of freedom. Such block grouping approaches help in providing
intuition about the internal vibrations of complex molecules.

Fig. 8.11. Configurations for the linear molecules CO2 and N2O
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(a) Show that the same results for Γmol.vib. are obtained for C2H2 by taking
the direct product of the Γmol.vib. for the constituent C–H blocks consid-
ered above.

(b) By applying appropriate symmetry operations on the basis functions, show
that the bending and stretching modes as given in Fig. 8.6 belong to the
E1g and E1u irreducible representations.

8.4. C2H4 (ethylene) is a planar molecule which has the configuration shown
on Fig. 8.12.

(a) Using the point group and Γ a.s. found in Problem 7.4, find the symmetries
of the allowed molecular vibrations for the C2H4 molecule.

(b) Sketch the normal mode displacements for each of the allowed molecular
vibrations in (a).

(c) Which modes are infrared-active? Which are Raman-active? What are the
polarization selection rules?

8.5. This problem is designed to show that group theory becomes increasingly
important for treating molecular vibrations for high symmetry molecules

(a) Find the molecular vibrations for the hypothetical molecule XH12 where
the 12 hydrogen atoms are at the vertices of a regular icosahedron and
the atom X is at the center of the icosahedron. Find Γ a.s. for XH12 for
the icosahedral group Ih.

(b) What are the symmetries for the normal modes? Which are infrared-
active? Raman active?

(c) What are the polarization selection rules for observing the infrared modes?
for the Raman modes?

8.6. Consider the methane molecule CH4.

(a) What is the group symmetry and to which irreducible representations do
the Rx, Ry, and Rz basis functions belong (see Sect. 7.5.2 and Sect. 8.8.3)?

(b) Describe the symmetries and eigenvectors for the rotational levels.
(c) What are the symmetries for the vibrational–rotational interactions?
(d) Describe the infrared and Raman spectra of methane including rotational,

vibrational modes, and the interaction between them. Consider also the
combination modes (see Table A.32).

(e) What are the expected polarization effects in these spectra?

Fig. 8.12. Configurations of the C2H4 ethylene molecule


