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Recent optical absorption and emission experiments showed that the lower energy optical transitions in
carbon nanotubes are excitonic in nature, as predicted by theory. These experiments were based on the sym-
metry aspects of free electron-hole states and bound excitonic states. The present work shows, however, that
group theory does not predict the selection rules needed to explain the two photon experiments. We obtain the
symmetries and selection rules for the optical transitions of excitons in single-wall carbon nanotubes within the
approach of the group of the wave vector, thus providing important information for the interpretation of
theoretical and experimental optical spectra of these materials.

DOI: 10.1103/PhysRevB.73.241406 PACS number�s�: 78.67.Ch

The use of symmetry is crucial for the description of the
optical spectra of atoms, molecules, and solids. In the case of
single-wall carbon nanotubes �SWNTs�, it has been predicted
that excitonic effects are key to understanding their optical
transitions.1–5 Recent works have used the symmetry aspects
of different excitonic states in carbon nanotubes to prove the
excitonic nature of their optical spectra.6,7 However, an ana-
lytical study of the symmetry of the excitonic states cannot
be found in the literature, and a detailed analysis of the se-
lection rules for one and two photon absorption has not yet
been reported. Therefore, an analysis of exciton symmetries
in SWNTs is needed to understand in greater detail many
aspects of their optical properties. In this work, we use group
theory to obtain the symmetries of the excitonic states in
SWNTs, as well as the selection rules for optical absorption
and emission, for one- and two-photon excitation processes.
We describe in detail the number and symmetries of exciton
states for chiral �n ,m�, zigzag �n ,0�, and armchair �n ,n�
SWNTs. Our group theory analysis shows that the results of
the two-photon absorption experiments cannot be explained
by symmetry-related selection rules. The results reported
here should form a basis for helping the interpretation of
theoretical and experimental optical spectra of SWNTs.

The symmetry of excitons is developed here within the
formalism of the group of the wave vector, which has been
covered partially in the literature8 and will be more fully
developed in a future publication.9 Briefly, the factor groups
for the wave vector k at the center �k=0� and edge of the
Brillouin zone �k=� /T� are isomorphic to the DN �D2nh�
point group for chiral �achiral� nanotubes, while the factor
group for a general wave vector k is isomorphic to the group
CN �C2nv�. Here N �2n� denotes the number of hexagons in
the unit cell for chiral �achiral� nanotubes and T is the length

of the real space unit cell. The irreducible representations of
the factor groups of nanotubes are labeled by the quasiangu-
lar momentum quantum number �̃, which varies between 1
−N /2 and N /2. This quantum number �̃ is related to the
projection of the compound symmetry operation ��R ���� in
the circumferential direction of the nanotube, and can be
associated with the concept of cutting lines.10 Another quan-
tum number, of course, is the wave vector k, related to trans-
lation symmetry. There are also parity quantum numbers re-
lated to a C2 rotation �a � rotation perpendicular to the tube
axis, bringing z to −z�, reflections, and inversion
operations.9,11

A different but equivalent formalism is based on line
groups.11,12 The connection between the two formalisms can
be obtained through Table I that, despite its technical aspect,
is presented here for a clear definition of the symmetry-
related quantum numbers in both group theory formalisms
used in the literature.

Figures 1�a�–1�c� show a schematic diagram of the elec-
tronic valence and conduction single-particle bands with a
given index ��̃�, for general chiral, zigzag, and armchair
SWNTs, respectively. The electron and hole states at the
band edge are labeled according to their irreducible
representations.8,9 The exciton wave function for the one-
dimensional �1D� SWNTs can be written as a linear combi-
nation of products of conduction �electron� and valence
�hole� eigenstates as

��r�e,r�h� = �
v,c

Avc�c�r�e��v
*�r�h� , �1�

where v and c stand for valence- and conduction-band states,
respectively. For an ab initio determination of the coeffi-
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cients Avc, it is necessary to solve a Bethe-Salpeter
equation,2,3,13 which incorporates many-body effects and de-
scribes the coupling between electrons and holes. The many-
body Hamiltonian is invariant under the symmetry opera-
tions of the nanotube and therefore each excitonic eigenstate
will belong to an irreducible representation of the space
group of the nanotube. In general the electron-hole interac-
tion will mix states with all wave vectors and all bands, but
for moderately small-diameter nanotubes �dt�1.5 nm�, the
energy separation between singularities in the single-particle
1D JDOS �joint density of states� is fairly large and it is
reasonable to consider, as a first approximation, that only the
electronic bands contributing to a given 1D singularity will
mix to form the excitonic states.3 This is the ideal situation to
employ the usual effective-mass and envelope-function ap-
proximations �EMA�,14

�EMA�r�e,r�h� = �
v,c

�Bvc�c�r�e��v
*�r�h�F��ze − zh� . �2�

The prime in the summation indicates that only those states
associated with the 1D JDOS singularity are included and the
coefficients Bvc are dictated by symmetry. It is important to
emphasize that the approximate wave functions �EMA have
the same symmetries as the full wave functions �. The use of
such “hydrogenic” envelope functions serves merely as a

physically grounded guess for the ordering in which the dif-
ferent exciton states appear. The envelope function F��ze

−zh� provides an ad hoc localization of the exciton in the
relative coordinate ze−zh along the axis and � labels the lev-
els in the 1D hydrogen series.15 The envelope functions will
be either even ��=0,2 ,4 , . . . , � or odd ��=1,3 ,5 , . . . , � upon
z→−z operations. The irreducible representation of the exci-
tonic state D��EMA� is given by the direct product

D��EMA� = D��c� � D��v� � D�F�� , �3�

where D��c�, D��v�, and D�F�� are the irreducible represen-
tations of the conduction state, valence state, and envelope
function, respectively.14 We now apply Eq. �3� to study the
symmetry of excitons in chiral and achiral �zigzag and arm-
chair� carbon nanotubes. Let us first consider the first optical
transition �E11� in the most general case, the chiral tubes.

Chiral. As shown in Fig. 1�a�, there are two inequivalent
electronic bands in chiral tubes, one with the band edge at
k=k0 and the other one at k=−k0. In order to evaluate the
symmetry of the excitonic states, it is necessary to consider
that the Coulomb interaction will mix the two inequivalent
states in the conduction band �electrons� with the two in-
equivalent states in the valence band �holes�. These electron
and hole states at the vHSs transform as the 1D
representations16 E�̃�k0� and E−�̃�−k0� of the CN point
group,9 where we have considered that conduction and va-
lence band extrema occur at the same k=k0. Taking this into
consideration, the symmetries of the exciton states with the
�=0 envelope function, which transform as the A1�0� repre-
sentation, can be obtained using the direct product in Eq. �3�,

�E�̃�k0� + E−�̃�− k0�� � �E−�̃�− k0� + E�̃�k0�� � A1�0�

= A1�0� + A2�0� + E�̃��k�� + E−�̃��− k�� , �4�

where k� and �̃� are the exciton linear momenta and quasian-
gular momenta, respectively. Note that we considered the
quantum numbers for hole states to be opposite in sign from
those of electron states. Therefore, group theory shows that
the lowest energy set of excitons is composed of four exciton
bands, shown schematically in Fig. 1�d�. Basically, the mix-
ing of two electrons and two holes generates four exciton
states. The mixing of electron and hole states with opposite
quantum number k �ke= ±k0, kh= �k0� will give rise to ex-
citonic states which transform as the A1 and A2 representa-
tions of the DN point group. These representations corre-
spond, respectively, to states even and odd under the C2
rotation. These excitons will have a band minimum at the
	 point. The excitonic states formed from electrons and
holes with ke=kh= ±k0 will transform as the E�̃��k�� and
E−�̃��−k�� 1D irreducible representations of the CN point
group, with an angular quantum number �̃�=2�̃. These ex-
citon states will have a band edge at k�=2k0 if 2k0 is within
the first Brillouin zone �1BZ�. If 2k0 crosses the boundary of
the first Brillouin zone or 2�̃ is larger than N /2, the values of
k� and �̃� have to be translated back into the first Brillouin
zone.9,17 It should be mentioned that the values of �̃ and k0
will be different for each nanotube and also for each Eii
transition.

TABLE I. Irreducible representations �D� relevant to the exciton
problem for chiral and achiral nanotubes. GWV and LG stand for
“group of the wave vector” and “line group” notations, respectively.
The dimension �d� of each representation is shown on the right for
both GWV and LG formalisms. The last column describes the wave
vector �k�, quasiangular momentum ��̃� and parity quantum num-
bers �
�. For chiral tubes, the relevant parity is related to the C2

operation �
C2�, whereas for achiral tubes the parity 
 is also re-
lated to �h ,�v reflections and inversion i. The GWV notation
chooses the parity under i as a quantum number and the LG nota-
tion chooses the parity under �h as a quantum number, thus making
the translation between the two notations somewhat cumbersome. A
zero parity quantum number means that the representation does not
have a well defined parity.

GWV LG

Chiral D d D d �k , �̃ ,
C2�
A1�0� 1 0A0

+ 1 �0,0 , +1�
A2�0� 1 0A0

− 1 �0,0 ,−1�
�E�̃�k�+E−�̃�−k�� 1 kE�̃ 2 �±k , ± �̃ ,0�

Achiral D d D d �k , �̃ ,
�v ,
�h ,
i ,
C2�
A1u�0� 1 0B0

− 1 �0,0 ,−1 ,−1,−1, +1�
A2u�0� 1 0A0

− 1 �0,0 , +1 ,−1,−1,−1�
A1g�0� 1 0A0

+ 1 �0,0 , +1 , +1, +1, +1�
A2g�0� 1 0B0

+ 1 �0,0 ,−1 , +1, +1,−1�
E��̃�u�0� 2

0E��̃�

�h 2 �0, �̃ ,0 , �−1��̃+1 ,−1 ,0�

E��̃�g�0� 2
0E��̃�


�h 2 �0, �̃ ,0 , �−1��̃ , +1 ,0�

�B��k�+B��−k�� 1 kEn
A 2 �±k ,n , +1 ,0 ,0 ,0�

�B��k�+B��−k�� 1 kEn
B 2 �±k ,n ,−1 ,0 ,0 ,0�

�E��̃��k�+E��̃��−k�� 2 kG�̃ 4 �±k , �̃ ,0 ,0 ,0 ,0�
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Let us now consider higher-energy exciton states ��0 for
the same vHSs in JDOS �the so-called E11� in chiral tubes.
For � even, the resulting decomposition is the same as for
�=0, since the envelope function also has A1 symmetry. For
odd values of �, the envelope function will transform as A2,
but that will also leave the decomposition in Eq. �4� un-
changed. The result is still the same if one now considers
higher-energy exciton states derived from higher singulari-
ties in the JDOS �E22 or E33 transitions�. Therefore, Eq. (4)
describes the symmetries of all exciton states in chiral nano-
tubes associated with Eii transitions.

To obtain the selection rules for the optical absorption of
the excitonic states, it is necessary to consider that the
ground state of the nanotube transforms as a totally symmet-
ric representation �A1� and that only K=0 excitons can be
created due to linear momentum conservation. For light po-
larized parallel to the nanotube axis, the interaction between
the electric field and the electric dipole moment in the nano-
tube transforms as the A2 representation for chiral
nanotubes.9 Therefore, from the four excitons obtained for
each envelope function �, only the A2 symmetry excitons are
optically active for parallel polarized light, the remaining
three being dark states. It is clear that the experimental Ka-
taura plot18,19 can be interpreted as the plot of the energy of
the bright exciton state with �=0 as a function of tube diam-
eter. For two-photon excitation experiments, the excitons

with A1 symmetry are accessed �A2 � A2=A1�, and thus, there
will also be one bright exciton for each � envelope function.
This result indicates that group theory does not predict the
selection rules used in Ref. 6. Thus, the explanation of the
results obtained in two-photon excitation experiments does
not rely on symmetry selection rules and should be related to
oscillator strength arguments.7 For instance, the bright exci-
ton associated to odd � states in chiral tubes can be under-
stood as a product between an even Bloch function and an
odd envelope function.7 Therefore, although being formally
bright, we expect a very low oscillation strength for these
excitons, since an odd envelope function should give a very
low probability of finding an electron and a hole at the same
position available for recombination.

Zigzag. For zigzag nanotubes, the vHSs for the electronic
bands associated with all Eii transitions occur at k0=0, and
thus, the symmetry of the electron �hole� states will form the
direct product for � even,

E�̃g�0� � E�̃u�0� � A1g�0� = A1u�0� + A2u�0� + E�̃�u�0� , �5�

and for � odd,

E�̃g�0� � E�̃u�0� � A2u�0� = A2g�0� + A1g�0� + E�̃�g�0� . �6�

The corresponding band structure for �=0 �lowest exciton
states� is shown in Fig. 1�e�. It is interesting to note that, in

FIG. 1. �Color online� Diagrams for the electronic bands and symmetries for �a� chiral �n ,m�, �b� zigzag �n ,0�, and �c� armchair �n ,n�
nanotubes and for their respective excitonic bands �d�, �e�, and �f�. The electron hole and exciton states at the band edges are indicated by
a solid circle and labeled according to their irreducible representation. Different line types and colors in this figure are related to bands with
different symmetries. Thick �black� solid lines correspond to the E�̃� representation, the blue �thin� solid lines correspond to A1 excitons
while the cyan �thin� dashed lines correspond to the A2 excitonic states. In the case of achiral nanotubes, we also have inversion and mirror
plane symmetries. For a better visualization, the bands with different parities under the inversion and mirror planes were grouped together
and appear with the same line color and pattern. In the case of armchair nanotubes, the bands that transform as the B� and B� representations
are shown using a red dot-dash pattern. The electronic and excitonic band structures shown here are only pictorial. Group theory does not
order the values for the eigenenergies and energy dispersions.
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this case, all four excitonic states will have the band edge at
the 	 point �K=0�. The value of �̃� can be obtained in the
same way as in the case of chiral nanotubes.

For achiral nanotubes, the electromagnetic interaction
with the nanotube transforms as the A2u representation, and
thus, one can see from Eq. �5� and Eq. �6� that for zigzag
nanotubes only states with � even �envelope functions even
under z→−z� will have a bright exciton. Therefore, group
theory predicts that zigzag tubes have a smaller number of
allowed optical transitions than chiral tubes, which is consis-
tent with their higher symmetry. For two-photon excitation
and emission in achiral tubes, we have A2u � A2u=A1g, and
therefore only the A1g excitons will be optically active. For
zigzag tubes �see Eq. �6��, only the states with odd envelope
functions will be accessible by two-photon transitions, in
agreement with Ref. 6 in this special case.

Armchair. The optical transitions in armchair tubes are
also excitonic, despite the metallic character of these tubes,
because of symmetry gap effects.3 As shown in Fig. 1�c�, the
Eii-derived excitons will be formed by two E�̃ bands at k
= ±k0, where k0	2� /3a for the lowest-energy excitons.
Therefore, these excitonic states will be given by the direct
product

�E�̃�k0� + E�̃�− k0�� � �E�̃�k0� + E�̃�− k0�� � A1g,2u

= A1u�0� + A2u�0� + A1g�0� + A2u�0�

+ �B��k�� + B��− k��� + �B��k�� + B��− k���

+ E�̃�g�0� + E�̃�u�0� + �En−�̃��k�� + En−�̃��− k��� . �7�

The same decomposition is found for A1g and A2u envelope
functions. Therefore, each JDOS vHS for armchair SWNTs
gives rise to 16 exciton states, as shown in Fig. 1�f� for �
=0. If k0=2� /3a, then k�=k0 �the exciton momentum has to
be translated back to the first Brillouin zone�. The excitons at
K=0 transform as the representations of the D2nh group,

while the excitons at K= ±k� transform as the irreducible
representations of the C2nv point group.

As in the case of zigzag nanotubes, only the A2u �A1g�
symmetry exciton will be optically active for one-photon
�two-photon excitation�. Therefore, from the 16 exciton
states obtained for each envelope function � there will be one
bright exciton. Note that, in the case of armchair nanotubes,
there will also be bright excitons with odd � envelope func-
tions. However, we note that because of the weak electron-
hole interaction due to metallic screening, the existence of
higher � states is unlikely in armchair tubes.

To summarize, we obtained the symmetry of excitonic
states in chiral, zigzag, and armchair SWNTs within the ap-
proach of the group of the wave vector k. Each set of elec-
tronic transitions Eii gives rise to a series of exciton states,
each associated with an envelope function. We show the ab-
sence of selection rules for even and odd envelope functions
for most of the carbon nanotubes �i.e., chiral and armchair�.
This result shows that group theory does not predict the one-
and two-photon selection rules used in the interpretation of
recent experiments.6 When symmetry selection rules do not
come into play, the existence or apparent absence of optical
transitions should be interpreted in terms of their high or low
oscillator strength.7 It is important also to stress that zigzag
nanotubes are a very special class of tubes, with very specific
symmetry aspects. Generalizing results from zigzag carbon
nanotubes to other symmetry tubes is not always appropriate.
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